
Mathematica Slovaca

Tamara Dakić
Generalization of Železník's theorem on embeddings of tensor products of graphs

Mathematica Slovaca, Vol. 46 (1996), No. 1, 1--7

Persistent URL: http://dml.cz/dmlcz/128781

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/128781
http://project.dml.cz


^/btherr^cltica 
Slovaca 

©1996 
r., • *-. - - /^r.nr.\ . . - - -, Mathematic&l Insti tute 
Math . SlOVaCa, 4 6 ( 1996 ) , NO. 1, 1 -7 Slovák Academy of Sciences 

GENERALIZATION OF ZELEZNIK'S 
THEOREM ON EMBEDDINGS OF 

TENSOR PRODUCTS OF G R A P H S 1 

TAMARA D A K I C 

(Communicated by Martin Skoviera ) 

ABSTRACT. If a simple graph G has a diagonalizable quadrilateral embedding, 
then given an arbi trary simple graph H, the tensor product G®H also has a di
agonalizable quadrilateral embedding. Using a (generalized) rotation scheme for a 
diagonalizable quadrilateral embedding of the graph G and a rotation scheme for 
an embedding of the graph H, a (generalized) rotation scheme which determines 
a diagonalizable quadrilateral embedding of G <g> H is constructed . 

Introduction 

Throughout the paper, we will consider only simple finite graphs. 
Let G be a connected graph, and let S be a closed surface. We say that a 

quadrilateral embedding G <—> S is diagonalizable if there exists an embedding 
G' <-> S with a 1-factor F C G ' , such that G = G'\F and G «--> S is obtained 
from G' c—>• S by removing F. Elements of F are called the diagonals. 

In [12], Z e l e z n i k proved a theorem which says that, if a bipartite graph 
G has a diagonalizable quadrilateral embedding (DQE), orientable or nonori-
entable, then for an arbitrary graph H the tensor product G® H also has a di
agonalizable quadrilateral embedding, orientable or nonorientable, respectively. 
Here we will give a constructive proof of this theorem and we will generalize it 
by allowing G to be non-bipartite. 

We will adopt the notations of Z e l e z n i k [12], except that we will use the 
term tensor product of graphs instead of conjunction of graphs as it is now a more 
common usage. Thus, if G and H are graphs, the tensor product of graphs 
H and G is the graph H eg) G whose vertex set V(H eg) G) is the Cartesian 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C10. 
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product of the vertex sets V(H) and V(G), and whose edge set is E(H ® G) = 
{(w1,U1)(u2, v2) | uxu2 E E(H) and vxv2 E E(G)}. For more on the tensor 
product graphs see [9] and [8]. 

The graph embeddings in this paper will be described by (generalized) rotci-
tion schemes. Since we only consider simple graphs, the schemes will be in vertex 
form, i.e., they will be viewed as lists Q = ( g 1 5 . . . , qn), where each qv is a cyclic 
permutation of the neighbours of the vertex v, and, if qv = (v1v2 ... vk), then qv 

will be usually represented by a list of the form v: vxv2 ... vk or qv: v1v2... vk . 

Note that, in this paper, in a generalized embedding scheme, edges receive 
labels 0 and 1 instead of the more usual labels + and —, respectively. Thus, 
we will refer to type 0 and type 1 walks instead of positive and negative walks. 

For some terms not defined here, the reader is referred to G r o s s and 
T u c k e r [7], W h i t e [11], or B e i n e k e and W i l s o n [2]. 

Lately, a great interest in embeddings of tensor product graphs on surfaces 
has arisen. For recent results in this area, we refer the reader to [1], [3], [4], [5], 
[6] (overview), and [10]. 

Example 

The following rotation scheme (denoted by Q) determines a quadrilateral 
diagonalizable embedding of a non-bipartite graph G on the torus. 

a: dbec 

b: ecf a 

c: f adb 

d: a fee 

e: bdaf 

f: cebd 

The regions of this embedding (with diagonals overlined) are: 

acde adfc 

beda aefb 

bfdc cfeb 

Now consider a graph H whose embedding on the sphere is described by the 
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following ro ta t ion scheme. This scheme will be deno ted by R: 

1: 52 

2: 5 3 1 

3: 52 

4: 5 

5: 4 3 2 1 

The following rotation scheme (denoted by Q1) describes a diagonalizable 
quadrilateral embedding of G (g> H in an orientable surface. The symbol vi 

denotes the ordered pair (v,i). 

ai : dS h e5 C5 d2 h e2 C2 a2 '' dS h e5 C5 d3 h e3 C3 dl h ei Cl 

a3 : dS h e5 C5 d2 h e2 C2 a4 ! dS h e5 C5 

a5 : d4 b4 e4 c4 d3 b3 e3 c3 d2 b2 e2 c2 d1 bx ex cx 

h '' e5 C5 A ClS e2 C2 A a2 h : e5 C5 A a5 e3 C3 A a3 el Cl A ai 

h : e5 C5 fs tt5 e2 C2 A a2 h : e5 C5 A aS 

^5 ' e 4 C4 I4 a4 e3 C3 I3 a3 e2 C2 J 2 a 2 e i C l II ai 
ci '• fs a5 ds h A a2 d2 h C2 : fs as ds h A a3 d3 h A ai dl h 
C3 : fs aS dS h A a2 d2 h C4 : A a5 dS h 

c5 : A
 a4 d4 h A a3 d3 h A a2 d2 h A ai di h 

dl '• a2 A C2 e2 a5 A C5 e5 d2 ' al A Cl el a3 A C3 e3 aS A C5 e5 

d3 : a2 f2 c2 e2 a5 f5 c5 e5 d4: a5 f5 c5 e5 

aS ' ai II Cl Cl a2 J 2 C2 e2 a3 J3 C3 e3 a4 A C4 e4 

e i : h d2 a2 A h ds as fs e2 : h di ai A h d3 a3 A h ds as fs 
e3 : b2 d2 a2 f2 b5 d5 a5 f5 e4 : 65 d5 a5 f5 

e5 : bx d1 a1 /-_ 62 d2 a2 f2 b3 d3 a3 f3 64 d4 a4 /4 

A : e2 e2 h d2 cs es h ds A : ci ei h di c3 e3 h d3 Cs e5 h ds 

A : C2 e2 h d2 CS eS h dS A : C5 e5 h dS 

fs : Cl ei h dl C2 e2 h d2 C3 e3 h d3 C4 e4 b4 d4 

The regions of this embedding are the same, up to the erasure of subscripts, 
as the regions of G. For example, the regions which correspond to the region 
adfc are listed below on the left and the regions which correspond to the region 
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acde are listed below on the right. 

a i a ,
5 / i c 2 a i c 5 d i e 5 

a l a 2 I l C 5 a l c 2 a l e 2 
a 2 a 5J2 C l a 2 C 5 a 2 e 5 
a 2 a 3 I2 C 5 a 2 C 3 a 2 e 3 
a 2 a l I 2 C 3 a 2 C l a 2 e l 
a 3 a 5 I3 C 2 a 3 C 5 a 3 e 5 
a 3 a 2 I3 C 5 a 3 C 2 a 3 e 2 
a4d5f4C5 a4C5 a l4 e5 
aSd4fhCl a5C4a?5e4 
a 5 a 3 I5 C 4 a 5 C 3 a 5 e 3 
a5 a2J5C3 a 5 C 2 a 5 e 2 
a5dlfsC2 a 5 C l d 5 e l 

Thus, the regions of the described embedding of G Cg) H that correspond to 
the region acde are of the form acde,, where x and H are the adjacent 

x y .c y 

vertices in H. The regions of G Cg H that correspond to the region adfc are of 
the form axdyfxcz, where the rotation at vertex x of H looks like 

x: ...zy... . 
The difference arises (as we will show) because the region acde of G does not 
contain a diagonal while the region adfc does. Note that for every vertex x of 
H we can choose the diagonal {ax, fx} inside any region of the form axdyfxcz, 
so the diagonals of G eg) H can be chosen to be the same, up to the erasure of 
the subscripts, as the diagonals of G. 

Now, let us take a look at the rotation scheme Q. It has the property that 
for each vertex v of G if v: xi x2 . . . xk is the local rotation at v, the diagonal 
incident with v lies between xk and x1. 

We can assume that for each diagonal of G the sign -f is assigned to one 
of its ends, and the sign — is assigned to the other end. In this example, we 
assigned the sign + to the vertices a, b and c and the sign — to the vertices / , 
d and e. We will describe how the rotation scheme Qx is obtained from rotation 
schemes Q and R. Let v: v1 v2 . . . vn be the local rotation at a vertex v of G. 
If the rotation at a vertex x of H is x: xx x2 . . . xk, and if v is assigned a -f 
sign, then the rotation at the vertex (v, x) of G (g> H looks like 

(v, x): (vx,xx) (v2, Xl)... (vn, xx) (vx,x2) .. . (vn, x2) (vx,xk) . . . (vn,xk) . 

If the vertex v is assigned a — sign, then the local rotation at the vertex (v,x) 
looks like 

(v, x): (vx,xk) (v2, xk)... (vn, xk) (vx,x2)... (vn, x2) (v^xj... (vn,xx). 
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The general construction is very similar. 

Construction 

Let a rotation scheme Q = (qvq2> • • • >qn) describe a diagonalizable quadri
lateral embedding of a graph G. Assume that the set of diagonals has been 
chosen (the set of diagonals is not necessarily uniquely determined by the quadri
lateral embedding). In what follows, we shall always assume that the vertices are 
listed in the local rotations qi, i = 1 ,2 , . . . n, in such a way that the following 
condition holds true: 

If qv: xxx2... xk is the local rotation at the vertex v of G, then the diagonal 
incident with v lies between xk and xx. 

A (generalized) rotation scheme that describes a diagonalizable quadrilateral 
embedding written in this format will be called a (generalized) DQE scheme. 

THEOREM 1. Let i: G c-^ S be a diagonalizable quadrilateral embedding of a 
graph G into some surface S and let H be a connected graph. Then there exists 
a diagonalizable quadrilateral embedding j : G ® H <—* Sf of the tensor product 
G ® H into some surface Sf. Moreover, if i is an orientable embedding, then j 
is also an orientable embedding. 

P r o o f . Let Q = (q±,..., qn) be a DQE rotation scheme for G, and let 
P = (pv ... ,pk) be any rotation scheme for H. Let us assign signs + and — to 
the vertices of G in such a way that the ends of each diagonal of G are assigned 
the opposite signs. 

We now define a DQE rotation scheme Qx for G®H. Let x be a vertex of G, 
and let the local rotation at x, determined by Q, be x: xx x2 ... xm (remember 
that the diagonal {x,y} is contained inside the region x m xx 1 y) . Let a be a 
vertex of H, and let a: ax a2 ... a{ be the local rotation at a determined by P. 
Then the rotation at a vertex (x, a) of G <g) H is 

(x,a): (xx, ax) (x2,ax)... (xm , ax) (x1? a2) (x2, a 2 ) . . . (xm , a 2 ) . . . 

. . . (x15 at) (x2, at)... (xm , at) if x was assigned the + sign, 

(x, a): (xx , at) (x2, at)... (x m , at) (xx , a2) (x2, a2)... (xm , a2) 

(x1 , ax) (x2, ax)... (xm , ax) if x was assigned the - sign. 

We must now prove that the rotation scheme Qx obtained in this way deter
mines a DQE of G <g) H. 

If xyuv is a region of G that does not contain a diagonal, then for every 
vertex a of H and every vertex 6 incident with a, (x,a)(y,b)(u,a)(v,b) is a 
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region determined by Q1, since Ql looks like 

(since yv is not a diagonal) (x,a) : • •(v,b)(y,b).. 

(u,a) : ...(y,b)(v,Ъ).. 

(У,b): . . . (ж, a)(H, a) . 

(v,b): . . . (гI,a)(x,a) . 

Let {x,u} be a diagonal inside the region xyuv in the embedding of G, and 
let a: a1a2...al be the local rotation at a vertex a of H determined by P . 
Then, if we assume that the vertex x of G was assigned the + sign, and the 
vertex u was assigned the — sign, the rotations determined by Qx are 

(x, a) : (y, ax) . . . (U, a j (y, a 2 ) . . . (U, a 2 ) (y, at) . . . (U, az) , 

(u, a) : (U, a z ) . . . (y, az) (U, a 2 ) . . . (y, a 2 ) (U, a x ) . . . (y, a j , 

(y, a.) : . . . (x, a) (H, a) . . . for i = 1, 2 . . . k , 

(U, a^) : . . . (u, a) (x, a ) . . . for i = 1, 2 . . . k . 

Thus, the regions of G (8) H determined by Q 1 that correspond to the region 
xyuv of G are of the form (x1a)(y,ai)(u^a)(v1ai_1) ^ and it is clear that the 
diagonal {(x,a), (y^a)} can be chosen inside any of these regions. 

It is obvious that the embedding of G (g) H determined in this way is an 
orientable embedding and that it is diagonalizable. Note that this embedding 
depends on the way, -+- and — signs were assigned to the vertices. 

If Q is a generalized DQE scheme for G, the proof is similar. The only 
difference is in the way, the -f and — signs are assigned to the vertices of G. 
Let xyuv be a region of G which contains a diagonal {x,H}. If the walk xyu 
is a type 0 walk, then the vertices x and u are assigned opposite signs. If the 
walk xyu is a type 1 walk, then the vertices x and u are assigned the same 
sign. Note that this assignment is well defined, since the boundary walk of a 
quadrilateral region of G must be of type 0. Also, if (H,U) is a type 1 edge in 
the embedding of G, then every edge of the form (H,a)(U,6) in the embedding 
of G (8> H is defined to be a type 1 edge. • 

Note that even if the generalized rotation scheme Q for G determines a 
nonorientable embedding of G, the generalized rotation scheme Qx can deter
mine an orientable embedding of G (8) H. The generalized rotation scheme Q, 
determines a nonorientable embedding of G C8 H if and only if there exists a 
positive integer n such that, in the embedding of G which is determined by the 
generalized DQE scheme Q, there is a type 1 closed walk of length n and there 
is a closed walk of length n in H. 

This construction is based on the inductive proof of the above theorem for 
bipartite graphs H given by Z e l e z n i k . In his proof, he starts with an em
bedding of G C8 K2, where he considers K2 to be an edge of H, and then he 
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proceeds by induction, constructing a DQE for G®Hk, where Hk are subgraphs 
of II such that HA — K2 , and HA.+ i is obtained from Hk by adding one edge of 
II to /1A.. The rotation scheme for G 0 H that looks like the one defined above 
can be obtained by choosing an appropriate set of diagonals at each inductive 
step. For example, in the above example, the diagonal {a 2 ,c 2 } can be chosen 
inside any of the regions a2d5f0c1, a2d3f,?c5 and a2d1f2c3, but, if we want to 
add another edge {2,4} to H so that the local rotations at 2 and 4 look like 
2. 5 3 4 1 and 4: 5 2, and all the other local rotations remain the same, we must 
choose the diagonal {a2,c2} inside the region a2dxf2c3 and similarly for every 
diagonal of the form {x21y2} or {#4,2/4}. 
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