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ON RADICALS IN SEMIGROUPS

FRANTISEK KMET

Let S be a semigroup and Jc S a two-sided ideal of S. All ideals in the following
are supposed to be two-sided.

An element x € S is called nilpotent with respect to J if x” € J for some positive
integer n. Anideal, or a subsemigroup I of S, is called nilpotent with respect to J if
I' cJ for some positive integer n. An ideal I of S, each element of which is
nilpotent with respect to J, is called a nilideal with respect to J. An ideal I, each
finitely generated subsemigroup of which is nilpotent with respect to J, is called
a locally nilpotent ideal with respect to J. An ideal P of S is called prime if for any
two ideals A, B of S AB c P implies that either A = P or Bc P. Anideal Pof Sis
called completely prime if for any two elements a, b€ S ab € P implies that either
acPor beP. A subset Mc S is called a filter of S if P=S— M is a completely
prime ideal of S or M= S. It is known that a subset M of S is a filter of S if and only
if x, ye M is equivalent to xy € M.

The set of all nilpotent elements of S with respect to an ideal J of S will be
denoted by N;(S).

The union R,(S) of all nilpotent ideals of S with respect to J is called the
Schwarz radical of S with respect to J. The union L,(S) of all locally nilpotent
ideals of S with respect to J is called the Sevrin radical of S with respect to J. The
union R%(S) of all nilideal of S with respect to J is called the Clifford radical of S
with respect to J. The intersection M;(S) of all prime ideals of S which contain J is
called the McCoy radical of S with respect to J. The intersection C;(S) of all
completely prime ideals of S which contain J is called the Luh radical of S with
respect to J.

J. Luh [5, Theorem 3,3; 3,4; 3,5; 3,7 and Corollary] proved for a semigroup S
with the kernel K (the minimal ideal of S) that Rx(S) = Mx(S) = R¥S) <
Cx(S) and for a commutative semigroup Rx(S) = Mx(S) R¥S) = Ck(S).

8. Schwarz [6, section II, Theorems 7, 8, 9] studied questions connected with
the existence of the kernel of a semigroup S and the relations Rx(S) = Mx(S) c
R¥(S) = M* (the last relation if $*=S and M* # ), where M* is the intersection
of all maximal ideals of S.

R. Sulka [7, Lemma 19] and J. Bosak [2, Theorem 2] proved that in an
arbitrary semigroup S with an ideal J= S we have
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R/(S) = My(S) < Li(S) < R%(S) < Ni(S) = Ci(S). (1)

In the case of a commutative semigroup S as proved by R. Sulka [7, Theorem 7]
and J. Bosdk {2, Corollary 1] we have

A semigroup S is called a G;-semigroup if for all a, b, c, of S abcba = bacab. J.
E. Kuczowski [3] proved that in a C;-semigroup S the equalities

MI(S) ==LJ(S)=R’5(S)==M(S) = CJ(S) -

hold.

A semigroup S is called quasi-commutative if ab =b"a for all a, b of S and for
some positive integer 7= r(a, b). H. Lal [4] proved that in a quasi-commutative
scmigroup S the equalities of (2) hold.

In the author’s paper [8] it is proved that in the semigroup U of all triangular
m X m matrices over a commutative ring we have Ro(U) = My(U) = Lo(U)
= R¥(U) = No(U). Theorem 1 of this paper implies that in U the equalitics of (2)
hold for J=0.

In the present paper we prove (Theorem 1, Corollary 1) that in a semigroup S
we have R3(S) = Ni(S) = G(S) if and only if the set N;(S) is an ideal of S.
Theorem 1 is analogous to the results of A. Abian [1, Theorem 2] for rings
without nilpotent elements. Further we prove that the equalities of (2) in
a semigroup S hold if and only if for each a € N;(S) the principal ideal (a) is
nilpotent with respect to J (Theorem 2). In a finite semigroup S the equalities of
(2) are valid if and only if N;(S) is an ideal of S (Corollary 3).

Lemma 1. Ifa, a, ..., a. are elements of a semigroup S and a\a; ... a, € Ny(S),
then ax ... aqa; ... ax—1 € Ni(S) (k=2, ..., n).

Proof. Let abe M;(S) and (ab) eJ for some positive integer r, then also
(ba)*' = b(ab)aelJ and so baeN;(S). By the preceding it follows from
(a1 ... ax-1) (ac ... @) € Ni(S) that (ax ... a.) (a1 ... ax-1) € Ni(S), where k=
2,...,n.

Lemma 2. Let there be a, € S, N;(S) be an ideal of S, a1a; ... a, € N;(S) and i,
iz, ..., i» an arbitrary permutation of the set {1, 2, ..., n}. Then a,a, ... a,, € N,(S).

Proof. a)Let ab € N;(S). Since N;(S) is an ideal of S, for each ¢ € S the product
bat € N;(S). From b(at) € N;(S) by Lemma 1 we have (at)b € N,(S). Therefore
ab € N;(S) implies sathb € Ni(S) for arbitrary s, te S (where s, t may be empty
symbols).

b) Let there be b;b.b; € Ni(S) for the elements b,, b2, b; of S..We shall prove
that for each permutation i, j, k of the set {1, 2, 3} we have bbb« € N;(S). From
Lemma 1 we at once obtain that b,b3b, € N;(S) and bsb1b, € Ny(S). By a) b1(b2bs)
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€ N;(S) for s =b,, t=>b; implies sb1t(b2bs) = bb1bsb.bs € N,(S). Again by a)
from (b:b:1bsby)bs € Ny(S) for t'=b, we obtain (b:b:1b3b2)t'bs = (b.b1bs)* €
N,(S). Therefore b,b:1b; € N;(S). Then Lemma 1 irnplies that also b,b:b, € Ny(S)
and b3b2b1 € M(S)

c) Let ai ... ax—1ax@i+r ... an € Ni(S) (k=2, 3, ..., n). We shall show that
ady ... Ak-1a1Qk+1 ... An € M(S).

With respect to b) from ai(a: ... ac-1) (ads+1 ... a,) € Ni(S) we have (a ...
air)ai(@aisy ... a.) € Ni(S).

Then (a; ... ar-1a1)a(ar+1 ... a.) € Ny(S) by b) implies that ac(a; ... ax-1a1)
(ax+1 ... as) € Ni(S).

It is well known that the group of all permutations of the set {1, 2, ..., n} is
generated by the set of the transpositions (1, 2), (1, 3), ..., (1, n). From this it
follows that Lemma 2 is true.

Lemma 3.If N;(S) is an ideal of a semigroup S and aa; ... a. € Ni(S), then for
arbitrary elements si, s2, ..., S»+1 (Where some of the s; may be empty symbols) we
have s1a15:az ... Sa@nSas1 € Ny(S).

Proof. Let a1a; ... a. € Ny(S). Since N,;(S) is an ideal of S, for any sy, s2, ...,
Sn+1 0f S we have that 515, ... Spv1a1a2 ... @, € Ny(S). The word $1a15:42 ... Su@nSn+1
is obtained by means of a suitable rearrangement of the letters in 515 ... Sa+v14142 ...
a,. Then by Lemma 2 we have that s,a:5:a; ... $,a.5.+1 € N;(S).

Lemma 4. Let N;(S) be an ideal of S. Suppose that a1a; ... a, € N;(S). Denote
by b, b, ..., b, (r=n) the different elements in the set {a, ..., a.}. Then (in any
order) b\b, ... b, € Ni(S).

Proof. Rearrange the letters in a,a; ... a, in such a manner that we obtain
a word of the form b} ... by By Lemma 2 this element is contained in N;(S). Take
an integer k> k;. Then by Lemma 3 bl1pf “bS2pi~ ... blbi™ = bibs ... bt €
N;(S). By means of a suitable rearrangement of the letters b, we obtain (by Lemm-
a 2) that (bib, ... b,)* € Ny(S) and so b,b; ... b, € Ni(S).

Remark 1. If the set N;(S) of all nilpotent elements of S is not an ideal, then
Lemmas 2—4 need not be true. This shows the next example 1.

Example 1. Let S, = {0, en, €12, €, €x, e} be a semigroup with the
multiplication: ex * € = €, €x " €6n = 0 - ex = ex-0=0,ex-e = e- ex = ex for
i, ], k, ne{1, 2}, j+ k. Evidently the set No(S:) = {0, ez, ex1} is not an ideal of S;.
In S, Lemmas 2—4 do not hold, since, e.g., ez1e2€11 = 0 € No(S,) but ezez e
= e11€ No(S), ehe31 = 0 € Ny(S:) and the product of all distinct letters ejzéx
= én é No(Sl)

Example 2. The subsemigroup S: = {0, ei1, ez, €2, €} of S; with the same
multiplication is an example of a non-commutative semigroup in which the set
No(S2) = {0, ez} is an ideal of S.. Here, e.g., J={0, e1, e;;} is an ideal and
N;(S;)=J is an ideal of S..
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Lemma 5. Let N,(S)+ S be an ideal of a semigroup S and let M be a maximal
subsemigroup of S which does not meet N,(S). Then M is a filter of S

Proof. Let aeS— M. The semigroup {M, a} generated by M and a is larger
than M, hence it has a non-empty intersection with N;(S) There exists therefore
a product containing the element ¢ and elements 2 € M, which is contained in
N;(S). By rearranging the letters in this product we get a new element of the form
mi ... m,a* (m;e M, k=1) which (by Lemma 2) is again contained m N,($). By
Lemma 4 there is an element m e M such that ma e N,(S).

We shall prove that M is a filter of S. It is necessary to prove that ab € M implics
aeM and b e M. We prove 1t indirectly.

Suppose that ab € M, while either ae S—Mor be S —M. Let ae S— M. Then
by the preceding part of the proof there exists an element meM such that
ma € Ny(S). Since N;(S) is an ideal of S we have (ma)b =m(ab) € N,(S) but
me M, ab e M and so m(ab) € M. This is a contradiction with t! e assumption that
M does not meet Ny(S). Analogously let b € S — M. Then there exists m’ € M such
that m'b € N;(S) and so by Lemma 3 m'ab € N;(S). But m' € M, ab € M and .0
m'(ab) e M, which contradicts our assumption that M does not meet N;(S).
Therefore ab € M implies that ae M and b € M and so M is a filter of S.

Theorem 1. Let S be a semigroup, J an ideal of S and suppose that N,(S)c< S is
an ideal of S. Then N;(S) = Ci(S).

Proof. In an arbitrary semigroup S we have N;(S)< C,(S). If N;(S)=S, then
obviously N;(S)=C,(S)=S and the statement holds.

Suppose that N;(S)# S. We prove that C,(S) < N;(S). It is sufficient to show
that for any a € S, a ¢ N;(S) there exists a completely prime ideal P which does not
contain a. Then a ¢ P implies a é Ci(S).

Let a € S, a ¢ N;(S) be an arbitrary element. Then the subsemigroup A = {a, a?,
a’, ...} of S does not meet N;(S). From Zorn’s lemma it follows that there exists
a maximal subsemigroup M of S, Mo A which does not meet N;(S). Then by
Lemma 5 M is a filter of S. Consequently P=S — M is a completely prime ideal of
S containing N;(S) with the property a ¢ P and so a € Cy(S).

Both relations N;(S) < Ci(S) and Ci(S) < Ny(S) imply N;(S)

C/(S).

Corollary 1. In a semigroup S the equalities R%(S) = N,(S)
and only if N;(S) is an ideal of S.

Proof. Evidently if R%(S) = N;(S) =-Ci(S), then N;(S) is an ideal of S.

Conversely, let N;(S) be an ideal of S. By (1) we have R%(S)< N,(S). Since
N;(S) is a nilideal of S from the definition of Clifford’s radical it follows
N,(S) = R*%(S). Therefore R%(S)= N;(S). Then by Theorem 1 we obtain N;(S)

Clearly a € R%(S) if and only if the principal ideal (a) is a nilideal of S with
respect to J.
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Corollary 2. Let S be a semigroup, J be an ideal of S. Then R%(S) = Ni(S)
= C/(S) holds if and only if for each a € N,(S) the principal ideal (a) is a nilideal of
S with respect to J.

Corollary 3. In a finite semigroup S the equalities (2), i.e., Ri(S) = M (S)
= L,(S) = R%(S) = Ni(S) = Gi(S) hold if and only if the set N;(S) is an ideal
of S. -

Proof. Evidently if (2) holds, then N;(S) is an ideal of S. Conversely, let N;(S)
be anideal of S. Then from the statement of J. Bosak [2, p. 211, Corollary 2] that
in an arbitrary finite semigroup we have R,(S) = M,(S) = L,(S) = R*(S) and
from Corollary 1 it follows that (2) holds. ,

Remark 2. In an infinite semigroup S (2) need not hold. The following
example is given by J. Bosak [2, p. 209—210]. Let S be a semigroup generated by
{0, a, b} with generating relations 0x = x0 = x> =0 for every word x over the given
alphabet. Then for the Sevrin, Clifford and Luh radicals with respect to J=0 we
have Lo(S)= R¥(S) = No(S) = G(S) = S, Lo(S) # R¥(S).

Theorem 2. Let S be a semigroup, J be an ideal of S, Ni(S) be the set of all
nilpotent elements of S with respect to J. Then (2), i.e. the equalities

hold if and only if for each a € N;(S) the principal ideal (a) is nilpotent with respect
to J.

Proof. If (2) hold, then evidently for a € N;(S) we have (a) € R,(S) and the
principal ideal (a) is nilpotent with respect to J.

Conversely, suppose that for each a e N;(S) the principal ideal (a) of S is
nilpotent with respect to J. Then from the relation R,;(S)< N;(S) and from the
definition of Schwarz’s radical we have R,(S)= N;(S). Then Theorem 1 implies
N;(S)=Cy(S) and so with respect to (1) we obtain (2).
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‘O PATUKANNAX TTOIYTPYTII
®panrumek KmeTs

Pe3ome

Iycrs S — npowussonbHast nonyrpynmna, J — ugean nonyrpymnsi S, N;(S) — MHOXeCTBO HWIb-
IIOTEHTHBIX IEMEHTOB NONYrpynms! $ oTHOCUHTeNbHO wieana J. Ecnu ans Beskoro a € Ny(S) rnaBublIit
upean (a) ABAsAETCH HWIbMAEAIOM (HIIBNOTEHTHBIM HAEAIOM) OMYTPYNIbl S OTHOCHTENBHO Hieana J,
To pagukansl Knudpdopna u Jlyra (pagukanst Isapua, Makkoiia, lllespuna, Knugdopna u Jyra)
oTHocuTensHO Hieana J pasubt Ny(S), H Ha06OpOT.
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