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THE ROLE OF SEMIGROUPS ,
IN THE ELEMENTARY THEORY OF NUMBERS

STEFAN SCHWARZ

One of the motives to write this paper has been the observation that from time to
time various generalizations of the classical Euler—Fermat theorem are published.

The aim of this paper is to show that one of the methods how to really
understand various results obtained in this connection is via the description of the
multiplicative semigroup of residue classes (mod m) as it is done in section 2
below. This description is visualized in Fig. 1.

We emphasize that we are not seeking the shortest proofs of some special
problems. We rather develop a general point of view from which many special
results concerning congruences (mod m) often become almost obvious.

In section 1 we recall some simple facts concerning finite commutative semig-
roups. The goal is to introduce the necessary notations and to present some results
for those who are not working directly in semigroups. In sections 2 and 3 we give
a description of the multiplicative semigroup S.. of residue classes (mod m). [This
has been done (in a partly different way) also in [2], [8], [9].] Section 4 has to
a certain extent an auxiliary character. It contains information concerning the
orders of the elements in the so-called maximal subgroups of S... In section 5 we
give various generalizations of the Euler—Fermat theorem. In section 6 some
further simple questions are solved. Here the choice has been made taking into
account problems which appeared (mainly in the Amer. Math. Monthly) in the past
few years. In section 7 an (internal) direct product decomposition of S.. is given.
Several consequences are deduced. In section 8 formulas for the product of all
elements contained in the maximal subgroups and maximal one idempotent
subsemigroups of S, are given.

Though the material discussed here has been treated in hundreds of papers and
monographs, the point of view taken in the present paper leads in a natural way to
some observations which as far as I am able to decide have never been explicitly
stated in the vast amount of literature. (See in particular Theorems 5,2 and 5,3,
Theorems 7,1 and 7,3 and Theorems 8,1 and 8,2.)

From the methodical point of view it should be underlined that we are primarily
interested in the multiplicative structure of the ring of residue classes (mod m).
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But, of course, we freely use also the additive properties of this ring, which give
a special feature to the semigroup S..

1. Preliminaries

In all of this section S is a finite commutative semigroup. If x € S, then the
sequence

(1,1) x, x>, x>, ...

contains only a finite number of different elements. Denote by x*, k = k(x), the
least power of x which appears in (1,1) more than once. Denote further by k + d,
d = d(x) =1, the least exponent for which x* = x*** holds. Then (1,1) is of the form

(1,2) X, X%, o, x xR, L xR xR L

k+d—1

It is well known and easy to prove that {x*, ..., x } is a cyclic group of order d.
Hence (1,1) contains a (unique) idempotent ¢ = x" and the least number r = r(x)
having this property is uniquely determined by the inequalities k=r=k+d—1
and the fact that d/r. It is easy to see that x"*' is one of the generators of the group
(x*, ..., x***7"}. Hence {x*, ..., x***"} = [xe, x%e, ..., x"e=c¢).

If e is the idempotent contained in the sequence (1,1), we shall say that x belongs
to e. Denote by E the set of all idempotents € S Denote further by P(e) the set of
all elements € S belonging to the idempotent e. Then S =|_J P(e) is a union of

eeE

disjoint subsemigroups of S. We call P(e) the maximal subsemigroup of S
belonging to the idempotent e. It is the largest subsemigroup of S containing e and
no other idempotent. .

To every e € E there is a unique largest group G(e) (subgroup of S) containing e
as its identity element. We call G(e) the maximal group belonging to the
idempotent e. Clearly G(e) = P(e).

The group G(e) can be characterized as the set of all x € P(e) satisfying xe = x.
We have G(e)=P(e) - e. The mapping .: P(e)— G(e) defined by y.(x) = xe is
a homomorphism of the semigroup P(e) onto the group G(e) leaving all elements
€ G(e) invariant,.

Note explicitly: If S contains an identity element, say 1, then P(1)= G(1).

With any x € S we have associated three integers k(x), d(x), r(x), where k(x) =
r(x) = k(x) + d(x)—1 and d(x)/r(x). Denote

K=max {k(x)|xeS} and D=lcm{d(x)|xeS}

and define R as the unique integer satisfying K=R <K + D and D/R. Clearly, K,
D, R are characteristics of S. We have:
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Proposition 1,1. For any x € S we have x* =< xX+P  The numbers K =< K(S)
and D=D(S) (as defined above) are the least positive integers having this
property.

Proposition 1,2. For any x € S the element x* is an idempotent and R = R(S) is
the least positive integer having this property.

Proposition 1,1 may be called the Euler—Fermat theorem for the finite
semigroup S. The numerical values for K and D in the case of the multiplicative
semigroup of residue classes (mod m) go back to Lucas (1890) and Carmichael
(1910). Incredible though it may sound the observation concerning the value of R
seems to appear for the first time in the present paper. :

Remark. The majority of the results stated above is true also for non-comm-
utative semigroups. But in this case P(e) need not be a semigroup. There is a rather
limited number of classes of semigroups for which the exact values of K and D are
known. In this paper we restrict our attention to the semigroup S.. to be introduced
below.

2. The description of Sm

Let m=pi p22... pr, a;i=1 be the factorization of a given integer m >1 into
the product of different primes. By S.. we denote the multiplicative semigroup of
all residue classes (mod m). The class containing the number x will be denoted by
[x]. G(1) denotes the maximal group belonging to the idempotent [1], i.e. the set of
all [x] for which (x, m)=1. [G(1) is usually called the group of units of S..]

Any element x € S.. can be written in the form

(2.1) x=[pl p% ... pk-a],
where [a]e G(1) and k:=0.
Lemma 2,1. To any element x of the form (2,1) there is a [b] € G(1) such that
x= [prlnin (kyyay) | prznin (ky, ay) . pr'nin (k,, @) , b] .

Proof. Since x=[p%] ... [p*] [a], it is sufficient to prove it for one factor, say
y=[p%], where we may suppose that k;>ai;. We have y = [p§][pi ™+
+ p3? ... p7]. The second factor is in G(1) since it is not divisible by p., p, ..., p-.
Hence y=[p} - ai], [ai]€ G(1). Treating in the same way all factors in which
ki > ai, we obtain Lemma 2,1.

Remark: Itshould be noted that given x the element [b] € G(1) is not uniquely
determined.

Lemma 2,2. Let be 0=ki<a, 0=L=a: (i=1,2, ..., r).If [p¥ ... p¥]G(1) N
[pt ... prIGQ1)#@, then ki=1 (i=1, ..., r).
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Proof. If [pi" .. pr'a] [p% ... p¥b], [a], [b]€ G(1) and, say k,>1;, we may
write [pi] [p% ™" p% ... p¥"-a — p% ... pr- b]=[0]. But this is impossible since the
left-hand side is not divisible by p. .

Corollary 2.1. The semigroup S.. admits a decomposition into (a,+ 1) (a2 + 1)

. (o + 1) mutually disjoint sets in the form S = Uk, .«[p}* ... p¥] G(1), where
0< k=a (i=1, ...,r).

We now proceed to the description of all 1dempotents € S.. But first we make
(for simplicity and typographical reasons) the following convention. In what
follows we shall deal with products of the form (2,1). It will be often important that
some of the p; do not appear and only s(<r) different prime powers have an
exponent #0. In such cases to avoid unnecessary subscripts we shall consider
instead of expressions as [pi pi? ... piral, ke =1 the expression [p¥ p% ... p¥a],
k:=1, having in mind that this is only a typical representative of products of s
different prime powers.

Suppose that e=[pi ... pia], [ale G(1), 1Ski= i, 1 =s=r, is an idempotent
€ Sn. Denote v(m)=max (ai, ..., &). Then e=e’=...=¢" implies e =[pi ...
p:“a”]. By Lemma 2,1 e =[p{' ... pi*c] with a suitably chosen [c]e G(1). If s=r,
we have e=[0], suppose therefore in the following s<r. If an element
[pi ... p&c], [c] € G(1) is an idempotent, then [pi™ ... pi®c®] = [p} ... piec],i.e.

(2,2) pt'...psc=1 (mod p&+ ... pr).

The congruence (2,2) determines ¢ uniquely (mod pss' ... pr). If c is a solution,
then all solutions are ¢ +¢- psyt' ... prr with an integer ¢. Since [pi* ... ps(c +
+tpdn ... p)] = [pT ... p¥c), the element e = [p5! ... p:*c] is independent of the
choice of the solution of (2.2). We have proved: If e is an idempotent, then e is
necessarily of the form e =[pi*... p&c], where c is any solution of (2,2).

Let conversely co be a fixed chosen solution of (2,2) and pi' ... pco=
=1 + topsst ... pr. Clearly co is not divisible by p.+1, ..., p-. Choose now an
integer ¢, such that co + t;p&+ ... prris not divisible by p., ..., ps. Then [ao] = [co+
+tpswt ... prle G(1).

The choice of t, is always possible. If ¢, is divisible by none of the py, ..., p., put
t =0. If co is divisible by py, ..., p» and not divisible by puv+1, ..., ps, put ti = po+1 ..

Ds.
The element £ =[pi ... p:*ao] is an idempotent € S. since

e’=[pt ... p¥ao] [pT' ... pSco] =
=[pT ... pao] [1+ topsst ... p]=[pi ... pseadl=¢.
We have:
Theorem 2,1. Let there be m=p{' ... p7, a;i=1. The semigroup S.. contains
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exactly 2" idempotents (including [0] and [1]). Any idempotent € S.. can be written
in the form e =[pY ... pra), where I is either 0 or o: and [a] is a suitably chosen
element € G(1).

In the set E we introduce two operations: A and v. Let e’, ¢"€ E and

e'=[pt ... pra'l, where l is either 0 or a,

e"=[p' ... p¥a"], where j iseither Oor a..
We define

e'/\e”= e:ev= [pllnax(ll,;',) pl'nax(l,,ir) . C],

P, ot — [min (i) in,,j,)
e've'=[p™Tn  pmrtid.d],

where [c], [d] are determined by the requirement that e’ Ae”, e’ ve” are idempo-
tents € S». It is easy to see that E with respect to these operations becomes
a Boolean algebra.

Two kinds of idempotents play a special role:

The primitive idempotents are the idempotents of the form

fi= [p—"; al, [aleGQ) (i=1,..,7r).

The maximal idempotents € E are the idempotents of the form
fi = [p}" . bi], [bi]G G(l) (l= 1, ..., r).

_ In this terminology: If m=p*®, then f =[1] is a primitive idempotent, while
fi=[0] is a maximal idempotent. o )
If e=[pi ... paleE, s=1, thene=f,"f, ... f.

Lemma 2,3. Any idempotent €S, which is #1 is a product of maximal
idempotents.

The following multiplicative properties of idempotents follow directly from the
definition:

=
(i) : fi fi= [0] fori#j.

The additive properties which we shall use are the following:
i) fi+fi=[11.

ii) H+ ...+ f=[1].

The first follows from the fact that f; + f: is an idempotent and in the above notation

[% a+ p?’be] is clearly contained in G(1). Analogously for the second property.
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Ife=fi..f,,thene=(1~f) .. (A=f) = 1=(fi+...+f) = font..+f.
Hence, any idemptotent e# 0 can be written as a sum of primitive idempotents.
(This is of course well known and holds for large classes of commutative rings.)
Note explicitly that the product of any idempotents is an idempotent, while the sum
of two (non-primitive) idempotents need not be an idempotent. This makes clear
the advantage of the multiplicative representation of idempotents in general
considerations. (In contradistinction to this, for numerical computations the
additive representation is more advantageous.)

We now identify the maximal subsemigroups belonging to a given idempotent e.
Let there be

(2,3) e=[pt...p¥a], 1=s=r, [ale G(1).

An element x =[p'' ... pry], k=20, [y] e G(1) belongs to e if and only if we have
[pt ... p¥y'l = [pt ... p=a] for some integer t=1.
By Lemma 2,1 we may write (with a suitably chosen [b]e G(1)) [pT™" “v ¥ ...
prt®@ee). p] = [pt ... p&a], whence by Lemma 2,2 kyv1 = ... = k,=0.
Conversely: Let x=[p'" ... p¥b], where 1=k = o and [b] any element € G(1).
Denote 0 = max (a, ..., ). Then x* = [p{ ... p{b°] and by Lemma 2,1 there
is a [c] e G(1) such that

x°=[pf ... p=cl=[pt ... p¥a] [ca™']=e[ca™"].
If v is the order of [ca™'] in G(1), we have x™ =e. This implies:
Theorem 2,2. Ife=[p' ... p¥a] € E, then the maximal semigroup belonging to
e is the union of a: a- ... as disjoint subsets P(e) = k|Uk [pt ... p¥]1G(1), where

1=Sk=a (l= 1, ceey S).
To identify the maximal group belonging to e, recall that for any semigroup
G(e) = P(e)-e. If e is of the form (2,3) we have by Theorem 2,2

(2,4) G(e)=kl'L”J, h[p'f' .. p¥IpT ... pPalG(1).

Now (for fixed ki, ..., k.) by Lemma 2,1 [pi* ... ps] [p' ... p5*] = [p?' ... pc] with
[c]€ G(1) and each of the summands in (2.4) is of the form [p§! ... ps* ca]G(1) ="
=[pt ... psa]l [c]G(1) = e- G(1).

We have proved:

Theorem 2,3. If e € E, the maximal group G(e) belonging to e is given by the
formula G(e)=eG(1).

Remark 1. The mapping @.: G(1)—>G(e) defined by P(x)=x-e is
a homomorphism of G(1) onto G(e). The kernel of this homomorphism will be
described later (see Lemma 4,2).
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Remark 2. Note explicitly: If an element x € S.. is given in the (usual) form
x=[p% ... p¥al, [a]e G(1), ki=1, we can 1mmed1ately say that x € P(f. ... f.) and
xeG(fi..f)iff k=a foralli=1, 2,

The results obtained are schematically descrlbed (for r =3) in Figure 1. Here the
circles denote maximal groups, the rectangles denote maximal subsemigroups
belonging to the corresponding idempotents. If e=[p{' ... p~a]eE, it will be
shown that card G(e) = |G(e)] = @(m/pf ...ps) and |P(e)| = pi™!
p% '|G(e)|. Hence if e’<e” (in the sense of the ordering in the Boolean
algebra E), then |P(e')] = |P(e")| and |G(e')] = |G(e")|. This has been

incorporated in Figure 1.
“ () G,
/ b
) 1OR)
&

()]

<

Y

&R
<

Fig. 1

Remark. If S is a commutative semigroup, the principal ideal generated by x is
the set I, = {x, Sx}. By the H-class containing x we mean the set of all y generating
the same ideal I, of S, i.e. H(x) = {y]|(x, Sx) = (y, Sy)}. The semigroup S is
a union of disjoint H-classes. An H-class is a group iff it contains an idempotent. In
the set of H-classes we may introduce a partial ordering by writing H(x) = H(z) if
IL.cl,.

If S=Sn, it is easy to see that each of the sets [pi* ... pr]G(1) mentioned in
Corollary 2,2 is exactly one H-class. Hence there are exactly (a:+1) ... (a-+1)
different H-classes.

Let e=[p1 ... psha], [a]l€ G(1). Then it follows from Theorem 2,2 that P(e) is
the union of exactly a; a: ... @, H-classes of S». The H-classes contained in P(e)
(in the ordering just mentioned) form a lattice with the least element G(e) = [p1
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... p]G(1) and the greatest element [p, ... p.]G(1). From this point of view it is
more appropriate to describe ‘‘the position” of G(e) in P(e) in the way given in
Figure 2 (i.e. to emphasize that G(e) is ““at the bottom” of P(e)).

To have the figure as simple as possible the ordering of the H-classes is not
incorporated in Figure 1.

H(p: ... ps)

°¢ __1+G(e)=H(pi ... p%)
Fig.2

3. How to find k(x) and d(x)?

In this section the element
(3,1) x=[p} ... p¥al, 1=s=r, k=1, [a]le G(1)

is given.

We have to find a (possibly reasonable) method how to compute the numbers
k(x) and d(x).

If x e G(1), then k(x) =1 and d(x) is the least positive integer for which x* =[1].
In the following suppose that x ¢ G(1).

Denote by u=u(x) the least integer such that u- ki=a; foralli=1, 2, ..., s.
Call u(x) the indicator of x. Clearly 1 = u(x) = max (a, ..., ). Whith respect to
Lemma 2,1 the number u(x) is independent of the form in which the class [x] is
presented. It follows (see Theorem 2,3) that u(x) is the least integer such that x* is
contained in a group, namely the group [p1" ... ps*]JG(1) containing the idempotent
e=fi ... f.. Hence k(x)=u(x).

Now the group {x*, x**' ..., x**“7'} is identical with the group {xe, x’e, ...,
x*®e}.Hence d(x) is the least integer d = 1such that x“e = e. This can be written in
the form (x* —1)e = 0(mod m), which implies x*—1 = 0(mod m/p$' ... p%) if
s<r.If s=r, then d(x)=1.

In view of the preceding considerations we may summarize as follows:

Theorem 3,1. Let x be of the form (3,1). Then x' =x""" holds if and only if

i) I=u(x), where u(x) is the indicator of x ;

il) h is a positive multiple of d(x), where d(x) is the least integer such that
x*=1(mod m/p5 ... p¥)if s<r,and d(x)=11if s=r.

This Theorem has been proved in [5]. It may be called the ‘individual”
Euler—Fermat theorem for the given element x € S... (Compare with Theorem 5,1
and Theorem 5,2 below.)
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Remark. From the computational point of view it can be shown that the
number d(x) for x given in (3,1) can be found as follows. For i=s+1, ..., r find
the least d; such that x% = 1(mod p{*). Then d(x) = l.cm.[ds+1, ..., d.]. (This
follows immediately from Lemma 4,3 to be proved below. We omit the explicit
proof.)

4. An internal direct decomposition of G (e)

The aim of this section is to find the value of the highest order of an element
€ G(e). [For G(1) this is well known. See, e.g., [12] or [14].] We need this only to
show that some of our results proved below are the best possible.

By the way we obtain an internal direct decomposition of G(1) and G(e) which
does not seem to be generally known (and which will be used in section 7).

Consider the maximal group belonging to a primitive idempotent f; = [E:ﬁ., a] €eE

(1=i=r). By Theorem 2,3 we have G(fi)) = G(1)f.. If [x], [y]e G(1), we have
[x1fi=Iy]lf. (in S.) if and only if x =y(mod pi¥). This implies '

G(f)={[rlfi[1=h<p¥, (h, p)=1}.

The fact that the structure of this group is known will not be used before the end of
the section.
Each of the groups G(f:) is ‘‘at the bottom” in Figure 1 “far away from G(1)”.
Consider now the set G. = {f: + g | g € G(f.)}. Each of the elements f; + []f; is in
G(1) (since it is divisible by none of the primes p, ..., p.). The set G. is
a semigroup since (fi + [mlf) (f +[hlf) = fi+[h: h]fi. It is a group since
a subsemigroup of a finite group is a group. G; is clearly isomorphic with G(f;).

Lemma 4,1. The group G(1) is the direct product of its r subgroups: G(1)=
=Gl ° Gz Gr.

Proof. i) Let there be x € G(1). Since xf. € G(1)f. = G(f)), the element x; = f; +
+xf. is contained in Gi. Now xi1 x2...x, = (fi+xfi)) ... (f.+xf) = x(fi+
+...+f) = x. Hence G(1) = G ... G, and since trivially G, ... G, = G(1), we
have G(1) = G:-G: ... G,.

ii) To prove that the product is direct we have to show that G:nG; = [1] for
i#j.Letu=fi+g',v=Ff+g", 9 €G(f), g"e G(f). If u=v, we have uf, = vf, i.e.
(f+g') fi = (fi+9")f, g'fi=f (since g"fie G(f)f: =[0]). Hence g'=f; and
u=fi+g' = fi+fi=[1]. Analogously uf;=vf; implies v=[1]. This proves
Lemma 4,1.

Remark. The explicit description of the groups G: as subsets of G(1) is
sometimes important in number-theoretical questions. It enables also to find the
groups G(e) as subsets of S. (and not merely their structural properties up to an
isomorphism).
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Lemma 4,2. Let there be e=fi ... f.€E and s<r.

i) If 1=i=s, then Ge=e.
ii) Ifs+1=i=r, then G is a subgroup of G(¢) which is isomoprhic with G..

Proof. i) Since (f; + [h]f)f. =f: for any h, we have in the first case Gie = G, ...
fi.. fi = (Gf)e = fe = e. B} )

11) In the second case [since for i=s + 1 we have fie = fi] (fi + [h]fi)e = fe+
+[h]fi and Ge = {fe + gl|g € G(f)}.

The mapping F: Gi— Gie defined by fi + [hlfi > fe + [R]fiisa 11 mapping -
from G: onto Gee since fie + [hilfi = fie + [h.]f; implies [hi]fi = [h:]f;, hence
fi+[mlfi = fi + [ha]f.. It is a homomorphism since

(. + () G+ [alf) = + [blfurs fie + [ab)fi =
= (fe + [mf) (Fe +[half).

Hence F is an isomorphism. This proves Lemma 4,2.

Remark. Lemma 4,2 describes explicitly the kernel of the homomorphism
®.: G(1)— G(e) defined by @.(x)=xe.If e=fi ... f, then the kernel of @. is the
subgroup G ... G; of G(1). Also since G: is the kernel of the homomorphism
G (1)— G(f.) defined by x — xfi, we have Gi = {x € G(1) | xf = f:}. (This shows that
it is possible to define G; multiplicatively as {x € G(1)|xfi=f.}. We prefer the
definition given above in order to have an explicit description of G:.)

Lemma 4,3. Lete=f, ... f.e E, 1=s=r. Then the maximal group G(e) is the
direct product of its subgroups:

4,1) G(e)=(Gs+1e) (Gs+2e) ... (Goe).

Proof. By Theorem 2,3 G(e) = G(1)-e = G. ... G, - e and Gie = G(e). By
Lemma 4,2 fori=1, ..., s we have Gie =e. Hence G(e) = G.+1 ... Gre = (Gs+1e)
.. (Gie) so that the product decomposition (4,1) holds.
To prove that the product is direct it is sufficient to show that for i,je{s+1,
, 1}, i#j we have GenGe=e. This is done by the same argument as in
Lemma4 1. Let u= fe+g', v=fe+g", g'e€G(f), g"eG(f). If u=v, then
ufi=vf,, fe+g")f = (fe+4g")f, g’ =fe. Hence u=fie+g' = fe+fe=e. This
proves our statement. - -

Since G is isomorphic with G(fi), G: is a group of order @(pf), the structure of
which is known. If p; is odd or p*=2 or p{*=4, then G; is cyclic of order @(pi). If
pf=2%and a;>2, G is not cyclic, the order of each element € G; is a power of
2 and G: contains an element of order 2%~*

Define (the Carmichael function):

if m=1,
A(m)= {2" 2 if m=2%, a>2,
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A( )_{ @(m) if m=2, 4, p* with p an odd prime,
™= Lem. AT, A(p$), ... A(p)]
if m=pi ... p-.

Then we can state that each of the groups G; contains an element, say g;, of order
A(pi). The element g =g, g2 ... g- € G(1) is exactly of order A(m). Finally any
element € G(1) has an order dividing A(m). Hence for any x € G(1) we have
™ =11].

An analogous result holds for the group G(e). If e=f,...f,.€E, 1=s=r,
consider the decomposition of G(e) given in Lemma 4,3. Each of the groups G.e
(s +1=i=r) is isomorphic with the corresponding group G: and it contains the
element g.e € G(e) of order A(p{"). The element ge = (gs+1€) ... (g-€) is exactly of
order A(m/pf ... ps¥) and the order of any element €G(e) is a divisor of this
number.

Summarily (including the case s=r, i.e. e=[0]):

Theorem 4,1. For any x € G(1) we have x*™=[1]. Ife=f, ... f;, 1=s=r, then
for any xeG(e) we have x*™Pi'--P"=¢ Hereby the exponents cannot be
replaced by a smaller number.

From Lemma 4,3 we also obtain:

Corollary 4,1. If e=f, ... f;, then |G(e)| = @(m/pT ... pP).

Remark 1. Suppose that m =2p3z ... p?. Then it can be immediately verified
that fi=[p3: ... p’] is a primitive idempotent € S.. Hence fi=[1—p3 ... p7] is
a maximal idempotent € S... The maximal group G(f:) is the one point group {fi}
and Gi={[1]}. In this (but in no other case) the product decomposition in
Lemma 4,1 contains only r — 1 non-trivial factors. This implies for Lemma 4,3: If e
as a product of maximal idempotents does not contain the factor [1—p32... p7],
then one of the groups G.+ie, ..., G.e reduces to {e}.

Other pecularities which take place in this (but no other) case are: G(f.) is
isomorphic to G(1) and P(f,) is isomorphic to P(0).

Remark 2. Motivated by further purposes and emphasizing the multiplicative
structure of S.. we described G(e) as a direct product. From the point of view of
numerical computations there is a simpler additive description which is a consequ-
ence of the ring structure of S and follows also from Lemma 4,3. If e=f, ... f,,
then G(e) consists of all elements of the form

(Forr+ [Asrilfs+) ... (F+[RIDfs .. f = [hearlfsmr + ... + RS,
where
1=hi<p®, (h,p)=1(i=s+1,..,7r).

Hence we may write symbolically G(e)=G(f«1) @ ... @ G(f.). We say
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“symbolically” since G(f:) is a multiplicative (but not an additive) subgroup of S,
The sign @ means that every x € G(e) can be written uniquely as x =x,+1 + ...
+ x., x. € G(f)) and (in order to get G(e)) none of the summands can be omitted.

5. Generalizations of the Euler—Fermat theorem

We suppose again m =p{' ... p; and consider the semigroup Sm.

Lemma 5,1. Denote v(m)=max (a, ..., & ). Then for any x € S.. the element
x"™ is contained in a maximal group of Sn.

Proof. If x e G(1)=P(1), the statement is trivially true. Suppose therefore
xeP(e) and e=[pT ... plale E, 1=s=r. By Theorem 2,2 we may write
x=[pV ... psb], [ble G(1), 1Ski=ai.. We have x*™ = [pi“ ... p?b?]. Here
vkiZa;. By Lemma 2,1 there is a [c]e G(1) such that x"=[pT' ... pic]. By
Theorem 2,3 x” € G(e). This proves our statement

Corollary 5,1. For any x € S.. we have k(x)=v(m).
As a matter of fact we have proved more:

Corollary 5,1a. Ifxe P(e)ande =T, ... f, € E, then k(x) = max (ai, az, ..., a).
The estimation is sharp. Denote-for a while — o =max (ay, ..., ). Then for
x=[p: ... ps]€ P(e) we have x° € G(e), while x°"' ¢ G(e).

Lemma 5,2. For any x € S» the number d(x) is a divisor of A(m).

Proof. If x e G(1), this is true by Theorem 4,1. Suppose that x € P(e), e=
fi ... fi. The group {x*®, ..., x*®*¥®™"Y = Ixe, x%e, ..., x%} is a subgroup of
G(e) and d(x) is the least integer for which (xe)*=e. Now the order of any
element € G(e) is a divisor of A(m/p1 ... ps¥), hence d(x)/A(m/p? ... ps*), and
therefore d(x)/A(m) for any x € P(e).

Note that A(m) cannot be replaced by a smaller number since G(1) contains an
element of order A(m).

Again we have proved somewhat more :

Corollary 5,2. If e=f, ... f. and x € P(e), then d(x)/A(m/p%' ... p™).

Theorem 5,1. (The global Euler—Fermat theorem.) For any x € S.. we have x*™
v(m)+A(m)

= x

Proof. Since x" is contained in a subgroup of S.., the set {x“®, ..., x*®*4® 1} g
identical with {x*, x"*', ..., x"**®7'}, Hence x"=x""*®, which implies x* =
=x"**=x""*=_.. and since d(x)/A(m), we have x" =x"**™,

A slightly stronger form of Theorem 5,1 will be given in Proposition 7,1.

Remark. If we insist on the natural requirement to make the exponents
independent of the special choice of the element x, neither v nor v+A4 can be
replaced by a smaller number. It is the best possible generalization of the classical
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Euler—Fermat theorem (which deals only with x € G(1)). The observation con-
cerning v(m) seems to go back to Lucas (1890). A historical survey, including the
history of various confusions, is contained in paper [10].

A few words should be added to the term “best possible generalization”.
Theorem 5,1 is a statement concerning polynomials of the form x™ —x"
(M > L =1) which vanish identically in S... If we consider monic polynomials f(x)
of any form which are identically zero in S, the degree of f(x) may be essentially
smaller than v(m) + A(m). Let there be,e.g., m=p®, p>2,a=1. Then x* —x is
divisible by p (for any x € S..), hence (x” — x)® is a polynomial of degree ap which
vanishes for all x € S.. Hereby pa<v(m) + A(m) = a+p*'(p—1) if a=2.
(Even pa is “in general” not the lowest possible degree. This questlon is treated in
detail in [15].)

If we specify “‘the position” of x in S., we may obtain a result analogous to
Theorem 5,1. The following result is simply the Euler—Fermat theorem for the
semigroup P(e) in the sense of Section 1.

Theorem 5,2. (The local Euler—Fermat theorem.) Let e = fl ...ffeE,1=s=r.
For any x € P(e) we have

(5 l) xmax (@ ... a) x'max (G a,)+A(m/p, 2! ... p )

and none of the exponents can be replaced by a smaller number.

Proof. Denote — for a while — o=max (a, ..., a). By Corollary 5,1a
x° € G(e) and o cannot be replaced by a smaller number. Next the group {x“®, ...,
x KOO = rxe L, x*@e} is a subgroup of G(e) and d(x) is the least mteger
for which (xe)* = e. By Corollary 5,2 d(x) divides A(m/p1" ... p:*) and this number '
cannot be replaced by a smaller one since G(e) contams an element of order
A(m/p$ ... p®). Finally the group {x*®, ..., x“®**® ™'} is identical with the group
{x%, x°*" ..., x°TeOT ‘} hence x —x"*""" This implies x°=x°"* = x°** =
and since A(m/p% ... p%) is a positive multiple of d(x), we have (5,1). This proves
Theorem 5,2.

In the following we shall need

Lemma 5,3. If m#8 and m# 24, then v(m)=A(m).

Proof. Let m=p% ... p* and suppose p1<p:<...<p.. If p is odd, a<
<A(p®) = p*'(p —1). Further v(2) = 1 = A(2), v(2*) = 2 = A(2°) and for
a=4 we have v(2°) = a=2""7? = A(2%). Hence, if m is not of the form

=2°p% ... p7, we have v(m)=A(m).

i) Let m=2". Then v(2°) = 3>A(2%)=2. This is the first exceptional case.

ii) Suppose m=2°p5: ... ptrand r=2. If max (az, ..., @) = a; =3, we have q;

=v(m) < A(pf") = A(m). Suppose therefore moreover a; =2 foralli=2, ..., r. If

r=3 (hence ps=5), we have

AMm)=lem[2, .., p3™" (ps—1),..]Z4>v(m)=3.
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iii) There remains the case of m=2%:p32 and a,=2. If a.=2, A(m) = [2,
pz(pz— 1)] = pz(pz— 1) > V(m) = 3.If ao=1 and p:éS, A(m) = [2, D2— 1] =
4>v(m) = 3.If a;=1and p,=3,i.e. m =24, we have 1(24) = 2<v(24)=3, the
second exceptional case. This proves Lemma 5,3.

We now prove a theorem which is a kind of generalization of the Euler—Fermat
theorem and has an algebraic (rather than number-theoretical) flavour.

Theorem 5,3. Let m>1, and m+ 8 and m+ 24. Then for any x € S.. the element
x*™ is an idempotent € S... Hereby the number A(m) is the least integer having
this property.

Proof. By Theorem 5,1 we have x"=x""* for all xe€S.. If A(m)—v(m)>0,
multiply the last relation by x* ™. We obtain x* =x*, i.e. x* is an idempotent. If
A(m)=v(m), we have directly x* = x>,

Remark. If m=8, or m=24,we have v(m)=3 and A(m)=2. In Ss and S.. the
element x* is an idempotent for all x € Ss and x € Sz, respectively, and the
exponent 4 cannot be replaced by a smaller number.

Corollary 5,3. Let m>1, and m+ 8 and m+ 24. Then for any x € S.. we have
xZA(m) _ xl(m) = [O].

6. Some further applications.

We now give some examples to show how useful the description of S,. may be as
given in section 2.

Example 6,1. Let m>1 be given. We have to find all xeS.. for which
xw(rn)ﬂ =x. (*)

If x satisfies (x), then {x, x°, ..., x*™™} is cyclic group with x*™ =¢ as the
identity element. Hence x is contained in the maximal group G(e). Conversely, if
an element is contained in a maximal group, say x € G(e:), we have x*® =¢, and
since d(x)/A(m)/@(m), we have x*™ = e,, whence x*™*' = x.

We have proved:

@(m)

*(m*1= x holds if and only if x is contained in

Proposition 6,1. The relation x
a subgroup of S,..

This has been proved in [6].

Example 6,2. Under what conditions (concerning m) does there exist an
integer L >1 such that x"“ =x holds for all x € S...

If x=x", L>1 holds for all x, we have necessarily v(m)=1,i.e. m=p, ... p, is

squarefree. In this case S. is a union of disjoint groups S.=|J G(e). By
eeE

Theorem 5,1 we then have x = x*™*! for all x € S... Hereby L =A(m)+1 is the
least integer for which x =x" for all x € Sn.
It is immediately seen that any L satisfying x* = x (for all x € S».) is of the form
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L=1-A(m)+1, where >0 is an integer. Note also that in this case A(m)=
=lem[p:—1, p.—1, ..., p-—1].

We have proved:

Proposition 6,2. The relation x“ = x with some L > 1 holds for all x € S if and
only if m is squarefree. The least L having this property is L=A(m)+ 1.

This has been proved in [3].

Example 6,3. Let 7.: S — S.. be the mapping defined by x — x". Under what
conditions (concerning m and L) m. is a permutation of the elements € S.

This has been solved in [1]. The problem is the same as to ask under what
conditions any element x € S, is an L-th power (See [11].) An analogous some-
what more general question has been solved in [13].

Proposition 6,3. The mapping m. is a permutation of the elements € S.. if and
only if the following two conditions hold: i) m is squarefree, ii) (L, A(m))=1.

Proof. If S.. contains a non-zero nilpotent element, 7. cannot be a per-
mutation. For, if &2 is a permutation, so are xf, xi, ... But for any nilpotent
element x €S, we have m{(x)=x""=[0]. Hence if m. is a permutation, m =
pi ... p- must be squarefree and S.. = | J G(e) is a union of disjoint groups.

1. Let m. be a permutation. Then eaéﬁEc)f the groups G(e) as a whole is invariant
under this mapping. [For, x € G(e) implies x“ € G(e).] Now m. restricted to G(f:)
(a cyclic group of order p; — 1) is a permutation if and only if (L, p; — 1) = 1. Hence
a necessary condition in order that 7, should be a permutation is also the fulfilment
of the conditions (L, pi—1)=1(i=1, ..., r), which is equivalent to (L, A(m))= 1.

2. Let m be squarefree and (L, A(m)) = 1. We first prove that x—x" restricted
to G(1) is a permutation on G(1). To show this it is sufficient to show that for a., -
a, € G(1) the relation at = a5 implies a1 = a.. Since (L, A(m))=1, there exist two
integers u, v such that uL + vA(m) = 1. Then at = a7 implies ai" = a3" and (since
ay™ = a}™ = [1Dai*** = a5, hence a,=a..

To end the proof let x € S.. and x € G(e) for some e € E. By Theorem 2,3 x can
be written in the form x =[a]e, [a] € G(1). Since [a]=[b]" with some [b] e G(1),
we have x =[a]e = [b"e] = [be]" and [be] e G(e). Hence any element € G(e) is
an L-th power and therefore m. is a permutation on S.. This proves Prop-
osition 6,3.

The smallest L satisfying (L, A(m))=1 is the smallest prime which does not
divide A(m).

Example 6,4. The foregoing two examples lead to the following pertinent
question. Consider the set Q.. of all mappings 7.: S»— S defined by x+—x" (not
necessarily a permutation of S,.). Under the usual composition mm(x) = x™* the
set Q.. is a finite abelian semigroup. Denote by Q.. the subgroup of all permuta-
tions of the type considered. What can be said about Q. and Qn?

We restrict ourselves to the case when m is squarefree. By means of
Theorem 5,1 this can be easily extended to the general case.
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Proposition 6,4. Suppose that m is squarefree. Then

i) Qn is isomorphic with the semigroup Sicm);

ii) Qn is isomorphic with the group of units of Sm).

Proof. Since for any x € S.. x =x*“™*', we also have .., = and 7.+;= 7; for
any integer j >0. The mappings {1, 72, ..., m: } are all different one from the other.
Indeed, m =, 1=i<j=A would imply x'=x' (in particular) for all x € G(1).
Hence x =x""""'forall xe G(1). Now [=j—i+1=A and x = x' with [ <A + 1 (for
all x € G(1)) contradicts Theorem 4,1 (or Proposition 6,2).

Note that m; is the zero element € Q... It sends each element of a maximal group
into the corresponding idempotent. [Le. m(Sn)=E.]

The mapping F: Qn— Si defined by F(am.)=[L] has the property that
F(mumm) = [L] [M] (mod A). It is onto. Hence Q.. is isomorphic with Sicm).

By Proposition 6,3 x. is a permutation of S.. if and only if (L,A)=1 and
1=L <A. Hence Q.. is a group consisting of all ni. € Q.. for which (L, A)=1. This
proves Proposition 6,4.

Remark. Problems analogous to that treated in Example 6,4 for wider classes
of semigroups are treated in [4].

7. Aninternal direct decomposition of S

It is immediately clear that S.. is isomorphic to the (external) direct product
Spiet X Spe2 X ... X S,e. To see this it is sufficient to assign to any x € S an
r-tuple (xi, X2, ..., Xr), where x; = x(mod p{*). Thisis a 1 — 1 correspondence which
preserves the obvious multiplication.

What is not obvious is the question how to embed isomorphically S,« into the
semigroup S...

Denote Vi = {[0], f;, [2] f, ..., [p?— 1]f:}. An element [h]f: € V: is equal to [0]
(in S.) iff h is divisible by p{, hence iff h =0. Also any two elements [h']f:, [h"]f:
with h' # h" are different since [h’ — h"]f; =[0] would imply that A’ — h" is divisible
by pi%, which is impossible since |h’'—h"|<p{.

To prove that Vi is a semigroup consider the product of x=[h']fie Vi and
y=[h"lfie Vi. We have xy =[h'h"]f.. Write h'h" in the form h'h" = h+up®,
where he {0, 1, 2, ..., pi"~1} and u=0 is an integer. Then xy =[h + up®|fi=
=[h]f:, hence xy € V;. Summarily:

Lemma 7,1. The set Vi is a subsemigroup of S.. containing exactly pii different
elements € Sn.
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Vi contains G(fi) and it can be written as a union of two disjoint sets in the form
Vi=G(f)) v I(f), where I(f)) = {[h]fi|(h, p)>1, 0=h<p{}. The set I(f) is
contained in P(0), hence it is a nilpotent subsemigroup of S...[As a matter of fact
I(f)) is even a nilpotent ideal of S.. since it follows from the foregoing considera-
tions that V; = Snfi.]

Consider now the sets

T.={f+v|lveVy), i=12,..,r.

T: is a subsemigroup of S.. since (fi + [mlf) (f+[h:)f) = f + [hh:]fi and
[hiha]fi € Vi. Next TinT; = [1] if i#j. For, suppose fi + [m]fi = fi + [h:]f;,
0=h,<p{, 0=h.<pj. Multiplying by f; and f; we obtain [h:]f: =f; and f; = [h.]f;,
whence (by Lemma 7,1) [hi]=[h2] =[1]. But then fi +[h]fi = fi+[kh)f; = [1].

The semigroup Ti contains [1] as its unit element and f; as its zero element. T;
contains G: and it can be written in the form T.=G,ul, where I, = (fi+
-+ [hlfi|(h, p)>1, 0=h<pi}. Clearly I is a semigroup and it is contained in
P(f) - || = p®~'. Moreover I, is a nilpotent ideal of the semigroup T: (but not of
the semigroup S.. if r>1).

The situation is visualized in Figure 3. Note that the whole semigroup T is
“above” G(f).

; /{f’ G(f)

\

\ / R
\ -7

N A

[o1
Fig. 3

We now easily prove:
Theorem 7,1. The semigroup S. admits the following decomposition into
a direct product of its subsemigroups :

Sm=TTz... T,.
Hereby T:={fi+[hlf:|h=0, 1, ..., pfi—1}.
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Proof. We have proved that T:nT; =[1]. The set T; T: ... T, contains formally
pi' ... p7 products. To prove our statement it is sufficient to show that two

products

x=fi+v)...(f+v), vieVi,
y=(f1+u1)... (f_,+u,), uevVv,

are different unless u; =v; forall i=1, 2, ..., r. Suppose that x = y. Multiply by f..
Taking account of the fact that for j# i we have vfi =[0] and ff; = f;, we obtain xf;
= vfi = viand yfi = wfi = w, hence u;=v: for allie {1, 2, ..., r}. This proves
Theorem 7,1.

Remark. The set T; can be defined multiplicatively as T; = {x € Sn|xfi=f:}.
We prefer to define T: by its explicit description. (See the Remark after Lemma 4,1
concerning the definition of Gi.)

We are now able to give product decompositions of the maximal subsemigroups
P(e). Consider the product '

Sm=T Tz ... T.=(G:ul) (G:UL,) ... (G,UlL).

S» is a union of the product G, G:... G, and 2"—1 products of the form
L ...IL G ... G, (1St=7).

Let U = I, ... I, Gus1 ... G,. Any element a € U belongs to the idempotent f, ...
fi-1...1.If U+ U’ and a’' € U’, then a and a’ belong to two different idempotents.
Hence if e =f, ... f;, then the set of all elements € S.. belonging to e is exactly the
set I ... It Gs+1 ... G, so that P(e) = I, ... I, G.41 ... G.. _

Note that for i#j n;=@ and GinG;=[1]. We have proved:

Theorem 7,2. If e=f, ...f, (1=s=r), then P(e) is the direct product of r
subsemigroups of Sn: -

P(e)=Il vii I - Gss1 ... Gy

Corollary 7,1. If e=f, ... f., then
[P(e)| =pr" ...p&"" - @(pi ... p™) =

(ps+1— 1) (pr— 1)

a,-1 a,-1 =
pr ... psT |G(e)| )
Corollary 7,2. The set of all nilpotent elements P(0) is the direct product
PO) = L L, ... I, and |P(0)| = p?'...p¥".
Note that if r>1, then P(0)nL =4.
For the following Corollary recall the ordering in the Boolean algebra E (see
Section 2). :
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Corollary 7,3. If e’ >e”, then |P(e')] = |P(e")| and |G(e')| = |G(e")|.

Proof. Ife'=f, ... f. and e"<e’, then e” = fioofo four oo forn 1St=Sr—s5. 1t
follows from Corollary7,1 and Corollary4,1 [P(e’)] = (ps«1—1) ...
(ps+.—1) |P(e")| and |G(e')| = @(ps ... psw)-|G(e")|. Hence |P(e’)| =
|P(e")| and the equality holds iff t = 1 and p,+: = 2. Further |G(e’)| = |G(e")| and
the sign of equality holds iff t=1 and pvi'=2. .

Returning to Theorem 7,2 it is worth to note that the product I, ... I, =I(e) is
contained in P(e) while for s >1 none of the I; itself is contained in P(e). Further
I(e) is a subsemigroup of P(e) containing e. The set I(e) can be characterized as
the set {x € P(e)|xe =e)}. The semigroup P(e) is a direct product of I(e) and the
group Gis+i ... G- which is outside P(e) (namely in G(1)). Of course since
G;+1 ... G, is isomorphic with G(e), the semigroup P(e) is isomorphic with the
(external) direct product I(e) X G(e).

We are finally able to describe more precisely the homomorphism .: P(e) —
G(e) defined by y.(x) = x-e for x € P(e).

Lete=f ... fi#[0]andxeP(e) = I, ... I, G+, ... G.. Thenx = (fi + [W]f)) ...
(f + [R]f.) a, where [hi], ..., [h] and a are uniquely determined by x. Next,
since (for 1=i=s) we have (i + [h]f)e=e, we obtain xe = aee(G.+i ...
G:)e = G(e). Hence the homomorphism 1. sends the whole set I, ... La = P(e)
into the element ae € G(e). In particular it sends the whole semigroup I(e)
= I, ... L into e. Thus p{"™" ... p&~' elements € P(e) are always mapped onto one
element € G(e). (This will be used in Lemma 8,1.)

Theorem 7,1 can be used to solve the following general question. Given two
integers L, M, 1 =L <M we have to find the number of solutions of x* =x™ in
Sm. :

Clearly the set of all solutions forms a subsemigroup Z=Z(L, M, m) of Sn
containing [0] and [1]. We first prove a formula for |Z| and next we show on
a numerical example how to describe explicitly all the elements € Z. '

By Theorem 7,1 any x € S.. can be written in the form x = x:x. ... x., x: € T, and
x"=x™ holds iff x7=x" foreveryi=1,2, ..., r.

Write again T; = G,uUl.

i) We first find the number of solutions of x7 =x" supposing that x; € I..

If x; € I, then x7 =x% implies x} = x¥ = xM* ™™ = | = xM"'™" for any
integer 1=0. But if M+I(M—L)>a, then x}""'"™ " =f. Hence we have
necessarily x7 = fi. If conversely x; satisfies x = fi, then for any M >L we have
N =f.

Hence we have to find the number of solutions of x7 = f.

An element x =[pYlgie I, (y=1, gi€ Gi) is a solution of xi =f; iff yL=a:. If
y =¥, is the least such integer, then the number of solutions contained in I; is clearly
pi*~". Since ¥: is an integer, we have
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Qi .
i— if L/a s

[%] if Lia,.

In particular, v,=1 iff L Zai.

ii) If x.e G, then x% =x" is equivalent to x* "=[1]. If p: is odd, then G. is
a cyclic group of order @(pi*) and there are di=(M —L, @(pi")) elements € G;
satisfying x% = x¥'. If p{=2, then the number of solutions in G: is d, = 1. If pf=4,
the number of solutions is di=(M —L, 2). If pi"=2°%, a =3, then the number of
solutions of x**=[1]is (M—-L,2)-(M—L,2°7?).

The foregoing considerations imply:

(7,1) Y=

Theorem 7.3. Let m=p7t' ... p;rand 1=L <M. Then the number of solutions
of x"=x" in S.. is given by the formula

\Z(L, M, m)| ='_lj](p?'_y'+d.~).

Here v: is defined by (7,1) and

d; ={(M—L, o (p¥) if if pi is odd, or pi=2 or pi=4;
" I(M-L,2)-(M-L,2°? if p=2%, a=3.

As a numerical ilustration consider the equation x*=x° in S., where
m=3*5"=1125.

Here pf1=3? yl=%=1 di=(4,p(1))=2 and p=5° vy, = [%]+1 =2,
d,=(4, cp(125)) 4 Hence |Z| = (3°7'+2) (57 +4) = 45. There are exactly 45
solutions of x*=x° in Sn.

We next describe Z. A 51mple calculation shows that in S. we have f,=
=[5"-8] = [1000], hence f; = [126] = [3" - 14]. Further (since here primitive and
maximal idempotents coincide) f.=[3*-14] and f>=[5"- 8]. Therefore

Ti={fi+[h]fi|0=h <9}, T.={f+[h]f|0=h<125}.
The solutions of xi=x7in I, are {fi +[h]fi|h =0, 3, 6}. The solutions of x;=[1] in

G, are (as it can be easily verified) {fi+[h]fi|k = 1,8}. Hence all solutions of
xi=x} in T, constitute the following subsemigroup of T\:

Z.={fi+[n']fi|h'eH'}, where H'={0,3,6,1,8)}.

The solutions of x3=x$ in I, are {f>+[h]f2|h = 0,25, 50, 75, 100}. The four
solutions of x3=[1] in G, are {f>+[h]f2|h = 1, 57, 68, 124}.

[Note that to find x: € G- it is necessary in essential to solve x*=1 (mod 125).In .
numerical calculations we cannot avoid to find first a primitive root g (mod 5), next
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a primitive root (mod 57), which is either g or g + 5, and to use then the known fact
that a primitive root (mod p?) is a primitive root (mod p*) for any a>2.]

All solutions of x7=x$ in T: form the semigroup Z. = {f. + [h"]f:|h"e H"},
where H" = {0, 25, 50, 75, 100, 1, 57, 68, 124}.

All 45 solutions in S.. are exactly the elements of the (direct) product of two
subsemigroups Z=Z, - Z..

For numerical calculations (see Remark 2 in Section 4) it is of course more
convenient to use (fi + [h'lf)) (f. + [h"]f:) = [h'lf: + [h"]f.. Hence all 45
solutions are [h'-1000] + [h"-126], where h’, h” run indenpendently over the
sets H' and H", respectively.

Remark. An interresting simple result is obtained for the solutions of x = x>.
By Theorem 7,3 we get

3" for m odd, or m=4p3: ... pr,
|Z(1, 3, m)| ={2 -3"7' form=2-p%...p¥,

5-37' form=2%p% ... pr, a=3.

Suppose that m is odd. Put Z; = {fi, fi—fi, [1]}. Then the set of all solutions is
given by Z=2,-Z, ... Z.. In the additive form these are the 3" elements

[hl]fl +[ha]f2+ ... +[R]f.

where h; run independently through the set {0, 1, —1}. The modifications neces-
sary in the case of m being even are evident.

By the same method as we have proved Theorem 7,3 we may solve the question
concerning the number of solutions of x* =x" in a given maximal subsemigroup
P(e).

By considering the decomposition P(e) = I, ... G;+1 ... G- we obtain:

Theorem7,4. Let e=f,...f; then the number of solutions of x"=x
(1=L<M) in P(e) is given by the formula :

|1Z(L,M, m,e)|=p7 " ... p "dss1 ... dr,

M

where v: and d; have the same meaning as in Theorem 7,3.

Theorem 7,3 enables us to prove again some of the results of sections 5 and 6 in
a somewhat stronger formulation.

Example 7,1. Let us ask under what conditions x"“ = x™ holds identically in S
(i.e. for all x € Sm).

This is the case iff

(7,2) |Z(L, M, m)|=pt ... pr.

If p: is odd, or pi*=2 or pi*~4,we have pi*™ + d; = p™ + (M—-L, o(p¥) =
pi — (pi ' — pi ™). If ¥R 2, thisterm is < pi. If pi = 2%, =3, p " + di =
2% + (M—L,2)2%7* = 2%} 4+ 2% " and this is less than 2% if 1. =2.
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If for at least one i the number v were =2, then the product [[(p5 "+ d)
i=1

would be less than m. Therefore we necessarily have y;=1foralli=1,2, ..., 1, i.e.
L=q; forall i=1, ..., r, hence [Zmax (ay, ..., a;) = v(m).
Write now (7,2) with y:=1 in the form

r a.—1
D' +d.‘
1=[1——.
.1;11 Di'
Since each factor to the right is =1, we have necessarily pi™' + d; = pi d. =
=pi — pi' = @(pi). Hence (M—L, @(p?)) = @(pM), ie. A(p?)|M-L,
except the case pfi=2%, a=3. In this last case we have @(2°) = 2°7'=

=(M-L,2)(M—L,2*?), hence 2°?|M—L, i.e. again A(2*)| M — L. We have
obtained: For i=1, ..., r we have necessarily A(p{)| M — L. Hence l.c.m [A(pT"),
...y A(p7)] divides M—L.

If conversely yi=1 for all i (i.e. L=v(m)) and M — L is divisible by A(m), it is
immediately obvious that |Z(L, M, m)| =m. We have

Proposition 7,1. The relation x“ = x™ holds in S.. identically iff L Zv(m) and
A(m)|M—-L.

This is a stronger edition of Theorem 5,1.

In particular we may ask under what conditions x" is an idempotent € S, i.e. the
relation x" = x?* holds identically in S... Proposition 7,1 implies that this is the case
iff L=v(m) and A(m)|L. Taking account of Lemma 5,3 we have:

Proposition 7,2. If m# 8, m# 24, then x" is an idempotent for any x € S.. iff
A(m)|L. If m=8 or m=24, then x" is an idempotent (for any x ) iff L =4 and L is
even.

Example 7,2. Let us ask under what conditions x" = x™ holds identically in
P(e).

This is the case iff |Z (L, M, N, e¢)| = |P(e)|, i.e.

(7,3) P . pY e .. do =DV L pE (PO ... PT).

This implies y1=...=y.=1, hence L Zmax (ai, ..., &) and (for i=s+1, ..., r)
d; = p(p?). The relation d; = ¢(pi*) implies analogously as above A(p{) | M — L for
i=s+1,...,r, and since L.c.m [A(pSs), ..., A(pr)] = A(m/pY ... ps+), we have
necessarily A(m/p7' ... p&)/M—L.

Conversely if yi=...=y,=1 and A(m/p{' ... p*)/M — L, then (7,3) holds. We
have:

Proposition 7,3. Let be e=f, ... f,. Then x*=x™ (1=L <M) holds for all
x € P(e) iff L=Zmax (ax, ..., &) and A(m/p1 ... ps*) divides M—L.
Theorem 5,2 is a relation of this form with the smallest possible exponents.
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8. New extensions of a classical result

There is an old result of Gauss stating that

(podd,a=1)
[1]  inall other cases.

u =
ueG(1)

{[—1] ifm=4,orm=p®, orm=2p°,

We extend this result by considering the products I.= [[ uand IT:= IT u

ueG(e) uePle)
for a given idempotent e € S.. We may exclude the case e=[0], since then
IT. = IT: = [0] and the case e =[1] given by Gauss (though this last one will follow
from our considerations). '
We suppose in the following again m =p7 ... p7.
The relation between I1. and II. is given by the following.

Lemma8,1. If e=f....f.=[pP ... pPa], [a]leG(1), 0<s<r, then IT.=
=(IL.)", where v=p5~" ... p&~".

Proof. Since e € P(e), we may write IT:=( [[ u)e= [ (ue). We have seen
. ueP(e) ueP(e)

(see Section 7) that the homomorphism 1.: P(e)— G(e) defined by u~> ue sends

always pf*~! ... p&~! different elements € P(e) into the same element ue € G(e).

—l_"pa -1

Hence IT.= ({L)""' ,+ , which proves Lemma 8,1.
Ife=fi ... f, then by Lemma 4,3 we have G(¢) = G,+1 ... G, - e and for x € G;
(i=s+1, ..., r) the mapping x> xe: is an isomorphism of G; onto Gie. Hence for

s+1Sisr[Ju=(]u)- e. Denote g = [G(e)| _ o(pst ... p,'). We then have

u € Gie ueGj (p(P?‘) - (p(P?')
(8,1) He = ue];[(e)u = [ueG[!...Gru]e = [uel;l u]a'” " [uls_!i u]B' e

It follows that the problem reduces (in essential) to find the values of [] u.

ueGi

Lemma 8,2. Fori=1, 2, ..., r we have

1T u={ft—fr if p>2, =1, or pi=4,
ueGi [1] if p?i=2, or pr‘=2a', =3,
Proof. By the definition

Gi={fi+[hlfi |0=h<p® (h, p)=1},
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ILu=I1G+[n)fy=F+[elf.,

where ¢ is the product of @(pi®) positive integers less than and prime to pi*. Denote
this set by U(p).

1. Suppose p:>2; then U(pf) is a cyclic group of order v =g@(pi¥) with
a generating element, say gi, so that € = gig7 ... g% = ¢!">“*" ((mod p). Since

g’ = —1 (mod p{) and v + 1 is odd, we have ¢ = —1 (mod p®). Hence [] u=
ueGi
=fi—f.
2. If pf=2, G is a one point group and [] u=[1].
ue€Gi

3. If pft=4, then ull"u =+ G+ Blf) =f—-f.

4. If pt=2%, a=3, we use the known fact that {+5, +5% ... £5}, where
v =2°"? constitutes the set of all odd residue classes (mod 2*). Hence

e=(-1)"(5-5*...5")*=(5""-57")* = 1(mod 2°).

Therefore [] u=f +f =[1]. This proves Lemma 8,2.

u € Gi
Remark. If r=1, i.e. m=p°*, G(1)=G,, we may write fi=[1], fi=[0] and
Lemma 8,2 implies

u={[—1] if m is odd or m =4,
[1] f m=20rm=2%, a=3.
(This constitutes a part of the statement of Gauss.)

Henceforth we may suppose r=2.
We prove:

Theorem 8,1. Let m=pi' ... p7 and r=2. Let e#[1] be an idempotent € Sn
and II.= [] u. We have:

ueG(e)

ueG(1)

1. II. = —e for any primitive idempotent, with the exception that m =2°p3* ...

pr, a¥2,a>0 and e is the (primitive) idempotent e = [2—”: a] , [ale G(1). In this
exceptional case I1. =e.
2. II.= e for any non-primitive idempotent € S., with the exception of the case

when m =2p3 ... pi and e is any of the r — 1 (non-primitive) idempotents of the
form e = [% a.], [aile G(1). In these exceptional cases we have IT.= —e.

Proof. Let e=fi...f,, 1=s<r, r=2. We shall use Lemma 8,2 and the
formula (8,1). We have to consider several cases.

A. Suppose first that r—s=2 (i.e. e is a non-primitive idempotent € Sm).
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If all primes ps+1, ..., p- are odd, or r —s =3, then all 8,.,, ..., B, are even. Since
(fi—f)*=[1], formula (8,1) implies II.=e.

There remains the case of r—s=2, i.e. e=f ... fr-2, hence Ds+1 = Dr-1, Ds+2
= p,, where one of the primes, say p.-i, is even and p, is odd. In this case G(e)
= G,-1- Gre and by (8,1)

= [T ulP-{I] ul’-e

u€Gr-1 ueGr

Here B,-1= @(p’) is even, while g, = ¢(2°-") is equal to 1 for a,~; =1 and even for
Ar-1 g 2.

We shall now distinguish three cases, namely that pr=y - p” is either 2p;- or 4p7-
or 2% - pr, a,-1=3.

a) If p7=#=2, then (by Lemma 8,2)

O.=[1(f-f)e.

We shall show that this product is —e. By definition of € and f, there are elements
[a'], [a]le G(1) such that e = [a’'-m/2p?), f-=[a] - p7]. Hence

(f- - f)e=(2)f: —[1De=[2] [p7- al] [a'm/2pF] — e = —e.

Thus IT.=—e.
b) If prit=4, we have

m.=[ [T ulP[I] ul?-e=@Fr-1—fror)?(F. = f) e =e.

u€eGr-1 ueGr

c) If pty=2% a,.,=3, then ]—[e = [1P-1(f~f) " e=e.

B. Suppose next that r—s=1, i.e. e=fi ... fr-1 = f, where f, is a primitive

idempotent € S,.. In this case we have IT. = [[] uje = [l_([; ulf:.
ue Gy ueGyr

a) If p,>2, then (by Lemma 8,2) I. = (f.—f).f = —f = —e.
b) If p=2, then M.=[1]f,=e.

c) If pr=4, then II.=(f, - f.)f. = —e.

d) If p=2%, a, =3, then II.=[1]f, =e.

The proof of Theorem 8,1 is complete.
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Remark. The formula (8,1) can be extended also to the case e=[1], r=2. It
has then the form

[T u=(]] u... [I] wp

ueG(1) ueGy

and the same calculations show that the product is [1] with the exception of the case
m =2p°®, in which case it has the value [—1]. (This is the remaining part of the

statement of Gauss.)

To find the value of IT. we use Lemma 8,1. _

If I1.=e, then II.=e, so that we have to consider only the cases in which
I.=—e.

A. Suppose that e is a primitive idempotent.

a) If all p; (i=1, ..., r) are odd, then IT.=(—e)’, where v=p§:~' ... p&~,
s=r—1, hence IT.:= —e.

b) If m=4p3: ... p7 and e is the primitive idempotent e = [% a], [ale G(1),

then IT.=(—e)’, where v=p35~' ... p*~, hence IT.= —e.

B. If m=2p3... p? and e is a (non-primitive) idempotent of the form, say,
e=[a-m/2p3?], [ale G(1), then IT. = (—e)”, where v=p3~" ... p*~', hence
II.=—e. '

Combining these results with Theorem 8,1 we obtain finally (including e =[1]
and e =[0]):

Theorem 8,2. For any idempotent e € S» we have [| u= [] u. The com-
. ueP(e) ueG(e)

mon value of these products is specified in Theorem 8,1.
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POJIb NIOJIYTPYTIIT B DJIEMEHTAPHOYI TEOPUM YHCEI
IlITedan lHIBapy

Pe3ome

ITycTb Sm-MyNTHILINKATHBHAS MOJYTPYIA KJIACCOB BBIYETOB [0 COCTaBHOMY MORyJTI0 m . I3yyaeTtcs
CTPYKTYpa Sm, B YaCTHOCTH OIIMCHBATCH MHOXECTBO HIEMIIOTEHTOB, CTPO€HHE MAKCUMAJIbHBIX IPYIII
¥ MaKCHMAIIIHBIX MOJYTPYIII, MPHUHAIEXALMX K JAHHOMY MIEMIIOTEHTY.

Lens 31O pabGoOTHI NMOKa3aTh, YTO. MHOTHE Pa3NMYHbIE TEOPEMbI, KacalOUMecs CPaBHEHHMH MO
MOAYJIIO m, Jierde MOHATb, NPUMEHAS METOAbI M3BECTHBIE M3 TEOPHMM KOHEYHBIX KOMMYTAaTHBHBIX
MOJIYrpynI (B TOM YHCIIE MONYYalOTC M HEKOTOPBIE Pe3ylIbTaThl, KOTOPbIE HEJb3 Ha3BaTh OOIIEH3-
BECTHBIMH). ITa TOYKA 3PCHHUS BENET AaXe K Pe3yAbTaTaM, KOTOpbie (IO Beell BEPOATHOCTH) HMUKOTTA
HeGbUIbI omyOnuKkoBaHbl. (CM., Hanpumep, TeopeMsl 5,2 u 5,3 win 8,1 u 8,2.)
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