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ODD PERFECT NUMBERS 

JAN SLOWAK 

ABSTRACT. Much work on odd perfect numbers has been done by Euler. He 
found that each odd perfect number can be written as a product of two terms of 
a particular form. In this article, one of these terms has been expanded further 
to give a new form to odd perfect numbers. 

According to Euler, a prime decomposition of an odd perfect number n, i.e. 
k 

one such that a(n) = 2n and 2 \ n, must be of the form n = p4a+! . FT p2ai 

2 = 1 

with p = 1 (mod 4) and (p,pj = 1. Here p4o+1 is called the Euler factor of n. 

For the proof see [1; p. 424]. Clearly, from a(n) = 2n it follows that g(p4°+1> • 
II °(p]ai) = Pia+1 • II P]ai and since p \ a(p*<*+i) w e h a v e y a + i i rr ff(p?"«). 

i=l i=l ^Vj l 

k 

The purpose of this note is to establish that p4a+1 < t\ a(p2cLi) 

THEOREM. An odd perfect number, must be of the form n = p4a+x • a(p4a+ ) ̂  
where d > 1. 

k 

P r o o f . Suppose, on the contrary, that p4<*+i = f[ a(p2oii) or equivalently 
i=l 

I 4a + l \ k ry 

^ 2 — = II Piai • W e investigate two different cases: 
2 = 1 

i) If a =, 0, then k = 1. Thus p = a(p2^) a n d ±±£ = p ^ i w h i c h i s a 

contradiction. 
ii) Let a > 0. Since ^ ^ 1 = a ( p2a } . i ± £ + i a n d ^ ( p 2 a ) ? 1 + ^ = 1 

we have a(p2a) = a2 and 1±JS^1L = b2. Moreover a(a2)-a(b2) = p 4 a + 1 and thus 
a(a2) = ps« and a(b2) = pSb, for some positive integers 8a and 6h, 5a + 5b = 
4a + 1. 
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Using a(a2) = p5a and a(p2a) = a2 we find that 5a > 2a + 1, and using 

a(b2) = / b and ^ ^ ^ = b2 we find that Sb > 2a + 1. 
The inequality 5a + Sb > 4a + 2 gives a contradiction. D 
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