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ABSTRACT. An or thomodular lattice L is said to be interval homogeneous if it 
is a -complete and satisfies the following property: Whenever L is isomorphic to 
an interval [a, b] in L, then L is isomorphic to each interval [c, d] D [a, b]. This 
class was introduced in the effort to determine the orthomodular lattices which 
satisfy the Cantor-Bernstein theorem. 

In this paper we carry on the investigation of this important class. We in­
vestigate permanence properties of this class with respect to the formation of 
substructures and a -epimorphic images. We show tha t there are also fairly com­
plex examples of interval homogeneous orthomodular lattices. 

In fact, we show as a main result tha t every a -complete or thomodu lar lattice 
(abbreviated a-OML) can be embedded into an interval homogeneous or thomod­
ular lattice. In a somewhat dual sense, we find tha t each cr-OML is a a -epimorphic 
image of an interval homogeneous orthomodular lattice. 

1. Introduction 

The celebrated Cantor-Bernstein-type result establishes that a sufficient con­
dition for two Boolean cr-algebras to be isomorphic is the existence of isomor-
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phisms from each of them onto an interval in the other. Generalizations of 
this result have been obtained in other contexts as, for example, cr-OMLs ([3]), 
cr-complete MV-algebras ([2]) and more general structures ([5], [6]). In all gener­
alizations it turned out to be necessary to introduce further requirements, as a 
rule certain restrictions on the bounds of the intervals in question. Unlike these 
results, we want to study the class of cr-OMLs which satisfy the Cantor-Bernstein 
theorem without any additional assumption. This class of cr-OMLs has already 
been introduced in [3] under the name of interval homogeneous OMLs. General 
examples of interval homogeneous OMLs are presented in [3]. 

The aim of this paper is to show that the class of interval homogeneous 
OMLs is much more rich than one would perhaps expect. We prove that any 
cr-OML may be embedded in an interval homogeneous one. Dually, each cr-OML 
can be obtained as a cr-epimorphic image of an interval homogeneous one. The 
constructions presented bring about a large class of interval homogeneous OMLs. 

In Section 2 we first give basic notions, we then introduce the definition of 
interval homogeneous OML and recall some sufficient conditions for an OML 
to be interval homogeneous. Section 3 contains rather non-trivial examples of 
interval homogeneous OMLs. The last two sections are devoted to establish the 
size of the class of interval homogeneous OMLs. 

2. Basic notions 

We shall only deal with O"-OMLs, i.e. with those OMLs which are closed 
under the formation of countable suprema and infima (we refer to [1], [7] and 
[10] for the background on OMLs). We shall frequently use the elementary fact 
(see [10]) that an interval in a cr-OML constitutes, with the operations naturally 
inherited from the host OML, a O--OML. Let us recall that an OML L is called 
concrete if it is isomorphic to a collection of subsets of a set, with set-theoretical 
complementation as orthocomplementation and orthogonal joins coinciding with 
disjoint unions (see [10] for more details). 

If L is a cr-OML, we define its center C(L) as the Boolean sub- a-algebra con­
sisting of all "absolutely compatible" elements, i.e., to be the set of all elements 
compatible to each element of L (see [10]). As known, L is a Boolean a-algebra 
if and only if its elements are all central. 

Let us recall that a sequence ( a n ) n G N of pairwise orthogonal elements in the 
center of a cr-OML is called a central partition of unity if \J an — 1. 

nGN 

Let us consider two cr-OMLs L and M. We recall that a o-homomorphism 
between L and M is any mapping / : L —> M which preserves the orthocomple­
mentation and the countable lattice operations. If, moreover, it is surjective, we 
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call it a a-epimorphism. By an isomorphism between L and M we mean a bijec-
tive mapping f': L —r M such that both / and f~l are OML cr-homomorphisms 
(thus, in this case both / and f~l preserve countable infima and suprema). We 
shall be interested in the class of those cr-OMLs L which, roughly speaking, 
satisfy the following homogeneity condition: If an interval in L is found isomor­
phic to L, then all its hyperintervals in L have to be isomorphic to L. Let us 
formally introduce this class in the following definition. 

DEFINITION 2 . 1 . ([3]) Let L be an OML. Then L is said to be interval 
homogeneous if it is cr-complete and enjoys the following property: 

If, for some a, b G L, a < b, the interval [a, b]L is isomorphic to the entire L, 
then L is isomorphic to each interval [c, d]L with c < a and d> b (c, d G L). 

Let us denote the class of all interval homogeneous OMLs by Inthom. Our 
definition can be rephrased in a slightly simplified form. 

PROPOSITION 2.2. ([3]) A a-OML L belongs to Inthom if and only if it 
enjoys the following property: 

If for some a G L, the interval [0,a]L is isomorphic to the entire L, then 
L is isomorphic to the interval [0,b]L for each b> a (b G L). 

The significance of Inthom to the Cantor-Bernstein theorem known for 
Boolean cr-algebras can be generalized to cr-OMLs. The following result states it. 

PROPOSITION 2.3. ([3]) A a-OML is interval homogeneous if and only if it 
satisfies the following condition: 

If M is a a-OML such that L is isomorphic to an interval [0, b]M in M 
and M is isomorphic to an interval [0, a]L in L, then L is isomorphic to M. 

Let us start by recalling basic examples of cr-OMLs that belong to Inthom . 
As usual, let us call a maximal Boolean subalgebra of an OML a block. As we 
assume cr-completeness of the OMLs we deal with, each block of a cr-OML is 
cr-complete, too. 

THEOREM 2.4. ([3]) Let L be a a-OML. Each of the following conditions is 
sufficient for L to be interval homogeneous: 

1. Each block of L is finite, 
2. L has finitely many blocks (in particular, L is Boolean), 
3. L is not isomorphic to any its proper subinterval, 
4. L is the lattice of projections of a separable Hilbert space. 

R e m a r k 2.5. Notice that a necessary condition for L to be isomorphic to some 
of its proper subintervals is that there is a sequence of intervals [0, bJL, i G N, 
which are nontrivial, mutually isomorphic and orthogonal. Thus, condition 1 of 
the latter theorem actually implies condition 3. 
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It is shown in [3] that there are OMLs which do not belong to Inthom . In 
what follows, we shall show that also the class of OMLs which are in Inthom is 
substantially large. 

3. Some preliminaries 

In this section we present some results which give an idea of the size of the 
class Inthom. We start by showing that none of the sufficient conditions of 
Theorem 2.4 is necessary. Recall that by MOn (n G N) we mean the horizontal 
sum of n two-atomic Boolean algebras (MO^, u any cardinal, is the obvious 
generalization, see [7] for details). 

E X A M P L E 3 .1 . Let I be an uncountable set disjoint from N. We define L = 
M02 x 21. As usual, we will understand / G L as a mapping defined on N U J , 
/( r) being its r t h coordinate. If / is such an element, it has cardN coordinates 
in M02 and card I coordinates in the two-element Boolean algebra. 

Let f £ L and let us suppose that [0 , / ] L -* L. Thus, [ 0 , / ] L = MO^ x 21. 
The factors of [0, f]L isomorphic to M02 correspond to improper intervals in 
factors M02 of L, so 

c a r d ^ - ^ ^ n N ) - c a r d N . (1) 

The factors of [0, f]L isomorphic to 2 correspond either to improper intervals 
in factors 2 of L or to proper intervals in factors M02 of L, but there are only 
count ably many of such proper intervals. As a result, 

c a r d ( / ^ ( l ) Hi") - c a r d / . (2) 

We see that conditions (1), (2) are necessary and sufficient for [0, f]L = L. Now, 
let g G F, g > / • Then / - 1 ( 1 ) C g_1(l), hence g also satisfies (1), (2) and 
[ 0 , g ] L - L . 

We have proved that L G Inthom. It is isomorphic to its proper subintervals. 
It has uncountably many uncountable blocks. Moreover, L is a complete concrete 
( = set-representable) modular ortholattice. 

We shall need the following lemma. Recall that by the height of an OML 
we mean the supremum over the number of elements of its chains minus one. 
A horizontal sum of OMLs is called nontrivial if it has at least two arguments 
nonisomorphic to the trivial OML {0,1}. (The trivial horizontal sum of an OML 
L and {0,1} is isomorphic to L.) 

LEMMA 3.2. ([11], [8]) To every graph we may assign a concrete OML of 
height 3 in such a way that nonisomorphic graphs correspond to nonisomorphic 
OMLs. Moreover, if the graph is connected, we obtain an OML which is not 
reducible to a nontrivial horizontal sum. 
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COROLLARY 3.3 . There is a proper class of mutually nonisomorphic concrete 
OMLs of height 3 which are not reducible to nontrivial horizontal sums. 

P r o o f . It suffices to apply Lemma 3.2 to connected graphs. • 

We are now ready to give an example with some interesting and useful prop­
erties. 

LEMMA 3.4. Let K be a a-OML of height at least 3 and I be a set. Then 

there are a-OMLs Pi, i G I, such that 

1. C(PJ = { 0 P i , l P i } ; 

2. K is a sub-a-OML of P{, 
3. if Pi is isomorphic to a subinterval Q of some P,, j G I, then j — i 

and Q = P{. 

P r o o f . We apply Corollary 3.3 to find a collection of mutually nonisomor­

phic OMLs Mi, i G J , such that each of them is 

• of height 3, 
• not reducible to a nontrivial horizontal sum, 
• not isomorphic to a horizontal summand of a subinterval of K. 

For i G / , we take for Pi the horizontal sum of K and Mi. 

Each proper subinterval of P is either a proper subinterval of i f or a proper 
subinterval of M-. The orthomodular lattice P{ can be neither a proper subin­
terval of M- (because it is of height at least 3), nor of K (as P{ contains M{ 

as a horizontal summand of the improper subinterval). It remains to check the 
isomorphism of Pi with the improper subinterval, i.e., with P , but we have 
chosen these OMLs mutually nonisomorphic. • 

R e m a r k 3.5. In the latter lemma, instead of choosing M i ? i G / , of height 3, 
we could have chosen MOu. (which is of height 2) with mutually different car­
dinalities tcL, i G i". Then the verification of the properties is easier, but the 
whole construction becomes very extensive. Observe that each subinterval of 
MO^ (UJ arbitrary) is isomorphic either to MO^, to 2, or to the degenerate 
(one-element) Boolean algebra. 

4. Epimorphic images of Inthom 

In this section we study the relation of interval homogeneity to a-epimorphic 
images. As a main result, we prove that each a-OML is a cr-epimorphic image 
of an element of Inthom. 
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THEOREM 4.1. Every a-OML is a a-epimorphic image of an interval homo­
geneous OML. 

P r o o f . Let if be a cr-OML. Suppose that K £ Inthom. According to 
Theorem 2.4, K is of infinite height. 

Let 7 be an uncountable (indexing) set. We apply Lemma 3.4 and obtain 
cr-OMLs Pt, i G 7, which contain if as a sub-cr-OML. Let us form the product 
P = n Pi- F r o m P w e se l ect the sub-O--OML L of all / G P for which there 

iei 
exists e(f) G K such that the set 

{ i € / : / ( . ) ? -e ( / )} 

is (at most) countable. Notice that if such element e(f) exists, it is unique. We 
claim that 

1. L is a sub-cr-OML of P and e: L -> K is a cr-epimorphism, 
2. L G Inthom. 

Obviously, L contains 0 P . Further, L is closed under the formation of ortho-
complements. Indeed, if / G L, then e(f) G K and we take e(f±) = e(f)1. 
Finally, let (fn)neN G FN. Denote by 

/ = V fn 

the (pointwise) supremum calculated in P. We have to prove that / G L. As 
e ( / J G 7f, we may define e(/) by 

*(/) = V e(/n) 
nGN 

(the supremum is taken in K). Then 

{t € / : /(i) ?- e(/)} C ( J {i € / : /„(») ?- e ( / J } , 
nGN 

which is a countable set. Thus we proved that L is a sub-cr-OML of P and, as 
a by-product, that e is a cr-homomorphism. The surjectivity of e is immediate, 
thus it is a cr-epimorphism. 

In order to prove that L G Inthom, we shall verify Condition 3 of The­
orem 2.4. Assume that there exists an element / G L and an isomorphism 
h: L -> [0, f]L. We shall prove that / = 1 L . The center of L is composed of 
all 0-1-valued functions of L, i.e., C(L) = i n {0, l } 7 . More exactly, C(L) 
contains all characteristic functions of countable and co-countable subsets of 7. 
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Let i £ I. The element ut£ L defined by the requirement 

1 if i = j , 

0 otherwise, «.0") = { 
is an atom of C(L). The interval [0,ixJL is isomorphic to P{. Its image under 
h, [0,h(ui)]L, must be isomorphic to P{ and its upper bound h(u{) has to be 
an atom of C ( [ 0 , / ] L ) . A central atom g in [0 , / ] L cannot have two nonzero 
coordinates g(j) and g(k): the element v defined by 

f x f dU) if rn = j , 
^ 0 otherwise, 

would be a nonzero central element of [0 , / ] L strictly smaller than g, which 
contradicts the atomicity of g. 

Applying the above argument to h(u{), we see that h(u{) has only one 
nonzero coordinate. Thus [0, h(ui)]L is isomorphic to a subinterval of some 
P- (j e I). But this may occur only if j = i and h(u{) = lp.. Thus f(i) = lp., 
too. This means that all the coordinates f(i) of the element / are equal to 1 
(for all i G I). This completes the proof. • 

COROLLARY 4.2. The class Inthom is not closed under the formation of 
a-epimorphic images. 

We have already observed that not all "interesting" OMLs are in the class 
Inthom. Note also that the class of "non-interval homogeneous" OMLs is in fact 
quite large, too. 

THEOREM 4 .3 . Every a-OML is a a-epimorphic image of a a-OML which is 
not interval homogeneous. 

The proof of the latter result is provided later since the most efficient con­
struction yielding it is based on the following section. 

5. T h e f o r m a t i o n of s u b a l g e b r a s 

The main result of this section reads as follows: 

THEOREM 5 .1 . Every a-OML is a sub-a-OML of an interval homogeneous 
OML. 

P r o o f . Let K be a cr-OML. Using Corollary 3.3, it is possible to find an 
orthomodular lattice M of height 3 such that M is not a horizontal summand 
of a subinterval in K. We form L, a horizontal sum of K and M. The only 
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subinterval of L which contains M as a horizontal summand of a subinterval 
is the improper interval L. Thus, L satisfies condition 3 of Theorem 2.4 and 
L £ Inthom. Note that L is concrete (resp. complete) if K is so. • 

R e m a r k 5.2. There is an alternative way to prove the latter result: It suffices 
to proceed like in Theorem 4.1 and notice that the constant elements of L in 
the proof also form a sub-rr-OML of L isomorphic to K. We wanted to present 
another proof since it preserves also completeness. 

As a consequence, the latter proof presents some examples of rj-OMLs which 
do not satisfy the first two conditions of Theorem 2.4. Indeed, they have infinite 
blocks and infinitely many blocks. 

Note that the interplay seen in Theorems 4.1 and 4.3 has an analogy here as 
well. In fact, the basic technical tool of the envisaged proof of Theorem 4.3 can 
be clearly seen in this way. 

THEOREM 5.3. Every a-OML is a sub-a-OML of a a-OML which is not 
interval homogeneous. 

P r o o f . Take a rj-OML K. In the first step, using the construction from 
the proof of Theorem 4.1, we embed K into a rj-OML P G Inthom which is 
not isomorphic to any of its proper subintervals and which has a trivial center. 
Take L = P N , then L is isomorphic to the interval [ (0 ,0 ,0 , . . . ) , (0 ,1 ,1 , . . . ) ] L , 
a natural isomorphism being the "shift" mapping h: P N -> P N , 

h(al >a2> a3> • ' • > a n ' ' • 0 = (°> a l > a2> • • • > a n - l >•••)• 
On the other hand, L is easily seen to be nonisomorphic to the interval J = 
[ (0 ,0 ,0 , . . . ) , (x, 1,1,...)] L for x $ {0,1}: The element (x, 0 ,0 ,0 , . . . ) is an atom 
in the center of J, and therefore it should be the image of an atom in the center 
of L. This is impossible since the interval [0,x]p is not isomorphic to P . • 

We are now ready to provide the proof of Theorem 4.3. 

P r o o f of T h e o r e m 4 .3 . Let K be an OML which is not interval ho­
mogeneous. Take an OML P which is not isomorphic to any of its proper subin­
tervals (the description of the construction needed is contained in the proof 
of Theorem 5.3). Choose P in such a manner that it also contains a proper 
subinterval [0 ,x] p which has a trivial center and is not isomorphic to any in­
terval of K. The product L = K x P N is isomorphic to its proper subinterval 
[ (0,0,0, . . . ) , (1 ,0 ,1 ,1 , . . . ) ] L by the shift applied on the factor P N . On the other 
hand, the interval [ (0 ,0 ,0 , . . . ) , ( l ,x , 1 ,1 , . . . ) ]L is not isomorphic to L. Indeed, 
it contains a factor [ (0 ,0 ,0 , . . . ) , (0, x, 0,0, . . . )] L isomorphic to [0, x]p that is 
neither isomorphic to a subinterval of P or K, nor decomposable to a product of 
smaller OMLs. Obviously, K is a rj-epimorphic image of L under the canonical 
projection. • 

20 



ON THE PERMANENCE PROPERTIES OF ORTHOMODULAR LATTICES 

Acknowledgement 

The authors thank to Pavel Ptak for his permanent inspiration. 

REFERENCES 

[1] BERAN, L . : Orthomodular Lattices. Algebraic Approach, Academia /D. Reidel, P r a h a / 
Dordrecht, 1984. 

[2] DE SIMONE, A.—MUNDICI, D.—NAVARA, M. : A Cantor-Bernstein theorem for 
a-complete MV-algebras, Czechoslovak Math. J. 53 (128) (2003), 437-447. 

[3] DE SIMONE, A.—NAVARA, M.—PTAK, P . : On interval homogeneous orthomodular 
lattices, Comment . Math . Univ. Carolin. 42 (2001), 23-30. 

[4] FREYTES, H. : An algebraic version of the Cantor-Bernstein-Schroder Theorem, Czecho­
slovak Math. J. (To appear) . 

[5] JAKUBIK, J . : A theorem of Cant or-Bernstein type for orthogonally a-complete pseudo 

MV-algebras, Ta t ra Mt. Math . Publ . 22 (2002), 91-103. 
[6] JENCA, G. : A Cant or-Bernstein type theorem for effect algebras, Algebra Universalis 48 

(2002), 399-411. 

[7] KALMBACH, G. : Orthomodular Lattices, Academic Press, London, 1983. 

[8] KALLUS, M.—TRNKOVA, V. : Symmetries and retracts of quantum logics, Internat . J. 

Theor. Phys. 26 (1987), 1-9. 

[9] Handbook of Boolean Algebras I (J. D. Monk, R. Bonnet, eds.), North Holland Elsevier 

Science Publisher B.V., Amsterdam, 1989. 

[10] PTAK, P .—PULMANNOVA, S.: Orthomodular Structures as Quantum Logics, Kluwer, 

Dordrecht-Boston-London, 1991. 

[11] TRNKOVA, V. : Automorphisms and symmetries of quantum logics, Internat . J. Theor. 
Physics 28 (1989), 1195-1214. 

Received March 31, 2003 Department of Mathematics and Statistics 
University "Federico II" of Naples 
Complesso Monte S. Angelo 
Via Cintia 
1-80126 Naples 
ITALY 

E-mail: annades@unina.it 

Center for Machine Perception 
Department of Cybernetics 
Faculty of Electrical Engineering 
Czech Technical University 
Technickd 2 
CZ-166 27 Praha 
CZECH REPUBLIC 
E-mail: navara@cmp.felk.cvut.cz 

21 


		webmaster@dml.cz
	2012-08-01T17:04:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




