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Math. Slovaca 33,1983, No. 3, 307—320 

A THREE-POINT BOUNDARY VALUE PROBLEM FOR 
THIRD ORDER DIFFERENTIAL EQUATIONS 

JÁN RUSNÁK 

Introduction 

In the present paper we investigate a nonlinear boundary value problem at 
3 points with linear boundary conditions of the following type 

x'"=f(t, x, x', x"), (t, x, x', x") e [al9 a3] X J?3, (1) 

aix(ai) + a2x'(ax) + a3x"(at) = Ai 
Pix(a2) + p2x'(a2) + p3x"(a2) = A2 

yi*(a3)+ Y2x'(a3)+ Y3x"(a3) = A3, 

ai9Oi9pi9Yi3 AiGR, i=l,2,3, ax<a2<a3, (2) 

ikl>o, ilA|>o, ilr-l>o. 

We use similar methods as K. Schmi t t in [3], where he has proved existence 
theorems for the boundary value problem 

x" = f(t,x,x'), 
axx(ai) - a2x'(ax) = Au Pix(a2) + fi2x'(a2) = A2, 

c f t S O , i = l , 2 , ax + a 2 > 0 , ^ + /32>0, at + Pt>0. 

We obtain a certain generalization of Schmitt's results. 

1. The linear boundary value problem 

Consider differential equations 

x'" = 0, (3) 

x'" = r(t), r(t)eC0(I = [aua3]). (4) 
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Lemma 1. A homogeneous boundary value problem (3) and (2) for Ax = A2 = 
A3 = 0 has only the trivial solution if and only if 

A = 
ax, axa{ + a2, axa

2 + 2a2ax + 2a3 

0i, fra.+ jS,, plal + 2p2a2 + 2p3 

yi, yi- í3+y 2 , yia2 + 2y 2a 3 + 2y 3 

ФO (5) 

Further we always assume that condition (5) is satisfied. 
M . G r e g u s in[ l ] has solved a linear nonhomogeneous boundary value problem 

of the tz-th order at m points (n, ra i^2) using special Green's function. His results 
concerning the boundary value problem (4) and (2) are summarized in the next 
lemma. 

Lemma 2. (a) For each point s e(ak, ak + x), k = l,2, there exist functions 
Gk = Gk(t, s) (Green's functions) such that 

1. Gk, - r -^= Gkt are continuous in t on I. 
ot 

2. 2

k = Gktt is continuous in t on I except the point s which is a discontinuity 
ot 

point of the 1st kind, and Gktt(s + 0, s)- Gktt(s - 0, s) = 1. 
3. Gk, as a function of t, is a solution of (3) on the intervals [ax, s), (s, a3], and 

satisfies the homogeneous boundary conditions (2) for AX = A2 = A3 = 0. 
4. The functions Gk are uniquely determined by properties 1., 2., and 3. 
(b) The solution x of the boundary value problem (4) and (2) for A, = A2 = 

A 3 = 0 is of the form 

* ( 0 = 2 k+XGk(t, s)r(s)ds, tel. 
k-\ Jak 

(c) The solution x of the boundary value problem (4) and (2) is of the form 

x(t) = cp(t)+fJ (k+lGk(t,s)r(s)ds, tel, 
k-l Jak 

where cp is a solution of the boundary value problem (3) and (2). 

Further, denote g(s) = - ax(s - ax)
2- a2(s - ax) + a^, h(s) = 

- flx(s — a2)
2 — (32(s -a2) + j33, and by A., the corresponding signed minor of A. 

Using the above listed properties of Green's functions Gk and function q>, we can 
express them explicitly as follows: 

If s e(ax, a2), then 

r^f- (Axx + AX2t + AX3t
2)-\(s - t)2, ax^t^s 

Gx(t,s) = \ A (6) 
[ ^(Axx + AX2t + AX3t

2),s<t^a3. 
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If s € (a2, a3), then G2(t, s) = 

(^•(Aii + Ai2t + Ai3t
2) + ̂ £-(A2i + A22t + A23t

2)-^(s-t)2,aat<s 

1 ^(Ati + Ai2t + Ai3t
2) + ^(A2i + A22t + A23t

2), 

s^t^a3. (7) 

<p(t) = \i,A(Aii + Al2t + Ai3t
2), tel. (8) 

- J i = l 

2. The existence theorem for the nonlinear boundary value problem 

Throughout the rest of this paper we assume that the function f(t, x, x', x") is 
continuous on IxR3. 

According to Lemma 2, the solution x(t) of the boundary value problem (1) and 
(2) is a solution of the integro-differential equation 

*(0 = <P(0+ t \°k+iGk(t, s)f(s, x(s), x'(s), x"(s)) ds, (9) 
fc = l Jak 

and vice versa. 

Theorem 1. Let M > 0 be a constant such that 

\f(t, x, x', x")\^M, V(t, x, x', x")eIxR3. 

Then the boundary value problem (1) and (2) has at least one solution. 
Proof. Let C2(I) be the Banach space endowed with the norm 

IMI = £ max |*<'>(0|. 
«=0 l 

Define an operator T: C2(I)-*C2(I) as follows 

Tx(0 = <p(0+ t r+lGk(t, s)f(s, x(s), x'(s)x"(s)) ds. 
fc = l Jak 

Further, define constans 

K = max |<p(0|, K'=max \(p'(t)\, K" = max \(p"(t)\, 

N = (a3-a i)max { sup |Gi(f, s)\, sup |G2(t, S)|}, 
lx(ai,a2) Ix(a2,a3) 

N' = (a3-ai)max{ sup \Glt(t, s)\, sup |G2r(f, s)|}, 
lx(ai,a2) lx(a2,a3) 
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/V" = (a3-f l i )max { sup |Glf,(t, s) | , sup \G2tt(t, s)\). 
Ix(ai,a2) Ix(a2,a3) 

Then 
\Tx(t)\^K + MN, \(Tx)'(t)\^K' + MN', 

\(Tx)"(t)\^K" + MN", Vtel. 

Define a set E by 

E = {xeC2(I): \x\^K + MN, \x'\^K' + MN', \x"\^K" + MN". 

Then E is a closed convex subset of C2(I), TE a E, TE is relatively compact, and T 
is a continuous operator. Thus T satisfies all the assumptions of the Schauder fixed 
point theorem (cf. [2], p. 476), and hence there exists at least one fixed point 
x(t) e E of T such that (9) holds true. The fixed point is a solution of the boundary 
value problem (1) and (2). 

3. Special boundary value problem 
Definition of lower and upper solutions 

In the remaining sections we investigate a boundary value problem of the type 
(1) and (2) satisfying the following special boundary conditions 

ai*(ai) - a2x'(ax) + a3x"(ax) = Ax 

p2x'(a2)-p3x"(a2) = A2 (10) 
y2x'(a3) + y3x"(a3) = A3, 

a,, ft, y,SO, i = 2,3, ax>0, 
j32 + ft>0, y2 + y3>0, /32 + y2>0. 

Denote 
h = a3 — ai, hi = a2 — ax, h2 = a3 —a2. 

The determinant A from Lemma 1, corresponding to conditions (10), satisfies 
condition (5) and we have 

A=2al(p2y2h2 + p2y3 + p3y2)>0. (11) 

We say that a function a e C3(I) is a lower solution of the boundary value 
problem (1) and (10) if 

a'"^f(t,a,a',a"), (12) 
and 

ara(ai)- a2a'(al) + a&'Xa^^At 
p2a'(a2)-p3a"(a2)^A2 (13) 
y2a'(a3) + y3a"(a3)-SA3 

holds true. 
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Similarly, we say that a function p e C3(I) is an upper solution of the boundary 
value problem (1) and (10) if 

P'"^f(t,p,P',P"), (14) 
and 

alP(ai)-a2p
,(ai) + a3P''(ai)^Al 

P2P'(a2)-p3P"(a2)^A2 (15) 
Y2P'(a3) + YiP"(a3)^A3 

holds true. 
Using the assumption of the existence of lower and upper solutions we shall 

prove existence theorems for the boundary value problem (1) and (10). 

4. A modification of the differential equation 
x'" = f(t,x,x',x") 

Let / be a function satisfying assumptions of Theorem 1, let a, PeC3(I) be 
functions satisfying (12), (14), and 

a(at)sp(at)9 a'(t)^P'(t), V tel . (16) 

Consider the following modification of the differential equation (1) 

x'" = F(t,x,x',x"), (17) 

where F is defined on IX J?3 by 

F(t,x,x',x") = 

f(t9P(t)9P'(t)9x") + K^p-, x>p(t), x'>P'(t)...(l) 
-- r" X 

f(t,x,P'(t),x") + ̂ M , a(t)£xSP(t), x'>P'(t)...(lI) 

1 + x'2 

f(t,a(t),Mt),x^+*Y&p. x<a(t), x'>p'(t)...l 

f(t,fi(t),x',x"), x>0(t), a'(t)£x'£p'(t)... 
= f(t,x,x',x"), a(t)*x*P(t), a'(t)Sx'Sfi'(t)... <18> 

f(t,a(t),a'(t),x'') + ̂ 2^r, x<a(t), x'<a'(t)... 

f(t,x,a'(t),x") + ̂ £ & , a(t)3x*P(t), x'<a'(t)... 
l+x'2 

f(t,p(t),a'(t),x") + ̂ i ^ , x>0(t), x'<a'(t)...l 

f(t,a(t),x',x"), + X x<a(t), a'(t)t*x'*fi'(t)...(fX) 
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Function F is continuous and bounded on IxR3 and we have 

Mx+M3^F(t, x, x', J C " ) ^ M 2 + M 4 , V(t, x, x', x")e!xR3, (19) 

where 
M, = inf f(t, x, x', x"), M2 = sup f(t, x, x', x"), 

IxR3 IxR3 

rw*,r • x'-a'(t) _ __ x'-(3'(t) 
0 > M 3 = mm —-——JT- , 0 < M 4 = max — — t - ^ 1 

'*/ 1+X tel 1 + J t 
x'<a'(r) *'>0'(O 

Putting mi = max a'(0> A7t2 = min P'(t), we get 

(20) 

M 3 = - 2 ( V m 1 + l + m1), M4 = - ( V ^ | + 1 - m2) 

Lemma 3. Let f1ie function f(t, x, x', x") he nonincreasing in x on R and let 
x(t) e C3(I) be a solution of (17). Let u(t) = x(t) - a(t), v(t) = x(t) - /3(t), Vf e I. 
Then: 

(a) Function u'(t) (v'(t)) does not attain a negative local minimum (a positive 
local maximum) at anyj0e(au a3). 

(b) lfu'(t)<0 andu"(t)^0 (v'(t)>0 and v"(t)^0) for some Ue[ax, a3), then 
u'(t)<0 and u"(t)<0 (v'(t)>0 and v"(t)>0) for all te(tu a3]. 

(c) If u '(t2) < 0 and u"(t2) ^0(v'(t)>0 and v"(t2) g 0) for some t2e(a , a3], then 
u'(t)<0 and u"(t)>0 (v'(t)>0 and v"(t)<0) for all te[au t2). 

Proof, (a) Suppose that at some t0e(ax, a3) the function u'(t) attains a negative 
local minimum (the function v' attains a positive local maximum). Then u"(to) = 0 
(v"(to) = 0) and u"'(to)^0 (v"'(to)^0). But if u"(to) = 0 (v"(to) = 0), then it 
follows from the assumptions that u'"(to)<0 (v"'(to)>0), which is a contradic­
tion. For instance, if v"(t0) = 0, a(t0) - p(t0) ^v(t0) ^ 0, then from (18)-(II) we get 

v'"(t0) = x'"(t0)-p'"(t0)^f(t0,x(t0),l3'(to),nto)) + 

^li'^-fito, P(t0), P'(t0), P"(to))>0. 

R e m a r k . From the above proof it follows that for t0e(ax, a3) we have: if 
u'(t0)<0, u"(to) = 0, then u"'(to)<0 (if v'(to)>0, v"(to) = 0, then v"'(to)>0). 
The same result holds also for t0 = au a3. 

(b) We prove only the statement in parentheses. The proof of the other 
statement is analogous. 

Let v'(ti)>0 and v"(tx) = 0 for some txe[au a3). It follows from Remark that 
v'"(tx)>0. Thus, there exists a 8, U<<5 =ia3 such that Vt e (tu 8) we have v'(t)>0 
and v"(t)>0. Let v"(8) = 0 and <5<a3. Then again we have v"'(8)>0. Conse­
quently, the function v" is negative in the left part of some deleted neighborhood of 
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8, which is a contradiction. Hence v"(8)>0 and we may have 8 = a3. However, it 
follows from Remark that v"(a3)>0, and the assertion is proved. 

If v '(u) > 0 and v"(u) > 0, then the proof is similar. Note that in this case it is not 
necessary to investigate the value v'"(ti). 

(c) The proof of (c) is similar to that of (b) and is omitted. 
The function F satisfies the assumptions of Theorem 1 and hence there exists 

a solution x of the boundary value problem (17) and (10). The next lemma gives an 
estimate for the value x"(ax) of the solution. 

Lemma 4. Let x be a solution of the boundary value problem (17) and (10). 
Then we have 

k^x"(ai)^k2, 

kx=lt {(PlA3" Y2JAI + 72,l2(Ml + Ma) (f hl + ft)) "(M'+ M*)K 

(21) 
kl = i f (ftA3" y2Al + ̂ h^M^ + M<) ( f h> + &))"" (Ml + M3 '̂ 

where A satisfies (11) and the constants Mi, M2, M3, and M4 satisfy (20). 
Proof. According to (9), for the solution x(t) we have 

x"(t) = cp"(t) + J] fa'+1G*,(t, s)F(s, x(s), xf(s), x"(s)) ds. (22) 

By (6), (7), and (8). with regard to the boundary conditions (10) we get: 
for s e (iii, a2) we have 

G l " ( ' ' 5 ) - 1 0, s<ttka3, 

for 5 6 (a2, a3) we have 

r ^ p ( / 3 2 ( S - a 2 ) + /33)-l , a^t<s 
G2a(t,s) = \ * 

I ^^(P2(s-a2) + p3), s£t£a3, 

and for <p we have 

<p"(t) = lf(fl2A3-Y2A2). 

First, we prove the right-hand side inequality in (21). From (22) we get 

x"(al) = <pM(ad- f'2F(s, x(s), x'(s), x"(s)) ds + 
Ja\ 
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+ £ 3 ( ^ p Ш s - a2) + ßъ) - í)F(s, x(s), x'(s), x"(s)) ds = 

= <p"(aг) - Гғ(s, x(s), x'(s), x"(s)) ds + 

+ 2 ^ ř j°\ß2(s-a2) + ß3)F(s, x(s), x'(s), x"(s)) d s š 

=i Ф"(«0 - (M: + M3)h + - ^ (M2 + м«) ( Ş Ai + /Ззlг2) = fe. 

The left-hand side inequality can be proved similarly. 

5. The existence theorem via lower and upper solutions 

Theorem 2. Let the function f(t, x, x', x") satisfy the assumptions of Theorem 1 
and let f be nonincreasing in x on R. 

Further, let there exist a,j3eC3(I) which are lower and upper solutions, 
respectively, of the boundary value problem (1) and (10) satisfying (16) and such 
that 

P"(ai)^ku k2^a"(ai), (23) 

where kx and k2 are constants defined by (21). 
Then there exists at least one solution x of the boundary value problem (1) and 

(10) such that 

a(t)£x(t)^P(t)> a'(t)^x'(t)^(3'(t), Vtel. (24) 

Proof. Consider the modified differential equation (17). It follows from the 
previous section 4 that there exists at least one solution x(t) of the boundary value 
problem (17) and (10). From (10), (13), and (15) we have that the functions 
u = x - a and v = x - /? satisfy the following conditions 

aiM(fl1) + a2ii'(fli)-a3M"(fli) = 0...(I) 
-P2u'(a2) + p3u"(a2)^0...(II) 
-Y2u'(a3)-Y3u"(a3)^0...\ 

-alv(a1) + a2v'(al)-a3v"(al)^0... l D) 

-P2v'(a2) + p3v"(a2)^0...\ 
-Y2V(a3)-y3v"(a3)^0...(Vl) 

We prove that u(t)^0, u'(t)^0, v(t)^0, v'(t)^0, "itel. This is equivalent to 
(24) and hence, according to (18)-(V), x(t) is the needed solution of equation (1). 
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From (23) using Lemma 4 we get 

w"(aO = 0, i/'(aO = 0. (26) 

Suppose that v'(ax)>0. It follows from Lemma 3(b) that v'(a3)>0 and 
v"(a3)>0, which contradict (25)-(VI). Thus v'(at)^0. 

Suppose that v'(a2)>0. and /33>0 (if j33 = 0, then it follows from (25)-(V) that 
v'(a2) = 0. From (25)-(V) we get t/'(a2)="0 and again, by Lemma 3(b), this would 
contradict (25)-(VI). Hence v'(a2)=\0. It will be shown later that it was not 
necessary to investigate the value v'(a2). 

Suppose that u ' (a 3 )>0 and y 3 > 0 (if y3 = 0, then by (25)-(VI) we have 
t>'(a3).= 0). Then by (25)-(VI) we have t>"(a3) = 0. From Lemma 3(c) it follows 
that either v'(a2)>0, and v"(a2)<0, or v"(ax)<0, which contradicts (25)-(V) or 
(26). Thus v'(a3)^0. 

If v '(tO > 0 for some te(au a3), then it follows from the above results that there 
exists a point t0e (au a3) at which v'(t) attains a local maximum, which contradicts 
Lemma 3(a). Thus v'(t)^0 for all tel. 

Since u'(«0 = 0 and i/'(ai)-=0, it follows from condition (25)-(IV) that v(ax)^ 
0, and hence u(r) = 0 for all tel. 

Similarly it can be shown that u(t)l%0 and «'(/t) = 0. 
Examp le . Consider the following differential equation 

x"'~-^\ + t + 8\x\' (=f(t^^''x")'(t>^x',x")e[0,l]xR3) (27) 

and choose the boundary conditions of the form 

JC(0) = 0, JC'(1/2)-JC"(1/2) = 3/4 , JC'(1) = 0. (28) 

The function / is continuous and bounded on [0, l]x.R 3 , | / | < - = M2 = -Mu 

and it is decreasing in JC on R. It is easy to verify that functions a(t) = 

— (t2 + lit - 27) and /3(f) = - — (t2 4- 12r - 27) are a lower and an upper solution 

respectively, of the boundary value problem (27) and (28) for which A =3. The 
functions a and /? satisfy (16) and (23), and |8"(0) = - 2 < Jfc- = -23/12, a"(0) = 2 > 
k2= 11/12 ( M 3 = - l / 2 , M 4 = l / 2 ) . Since in this case all the assumptions of 
Theorem 2 are satisfied, there exists at least one solution JC of the boundary value 
problem (27) and (28), for which we obtain 

^ ( f 2 + 1 2 f - 2 7 ) = J c ( 0 = - ^ ( t 2 + 1 2 f - 2 7 ) , 

VfG[0,l]. 

\(ŕ + 8t-9)žx'(t)lâ-\(Ѓ + 8t-9), 
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6. The existence theorem without the assumption of the boundedness of / 

In this section we prove a theorem analogous to Theorem 2, however, without 
the assumption of the boundedness of /. 

Lemma 5. (Nagumo) Let cp(s), 0^s<co be a positive continuous function 
such that 

s ds 
<p(s) 

Let Ri^O, and let x(t) be a function in C3([a, b]) such that 

/ " — • 

M0I-5K-, \x'"(t)\^(p(\x"(t)\), Vte[a,b]. 

Then there exists a constant R2 (depending only on (f(s), Ru and h = b- a) such 
that 

\x"(t)\^R2, Vte[a,b], 

where R2 satisfies equation 

f *2 s ds 
1f{ = 2R1. (29) 

i2Rlh <P(S) 

Since the statement and its proof can be reproduced substituting formally x'-*x, 
x"->x', and x'"—>x" in Lemma 5.1 in [2, p. 503], the proof of Lemma 5 is 
omitted. 

Lemma 6. Let a, fie C3(I) be functions satisfying (16) and let L be a positive 
constant such that 

\f(t, x, x', x")-f(t, x, x', y")\^L\x"-y"\, 
V(t,x,x')ea) = {(t,x,x'):tel,a(t)^x^l3(t),a'(t)^x'^l3'(t)} K } 

holds true. 
Then there exists a positive constant R2 such that for each solution x(t) e C3(I) of 

equation (1) satisfying conditions a(t)^x(t)^P(t), a'(t)^x'(t)^P'(t), Vtelwe 
have 

\x"(t)\^R2, Vtel. (31) 

Proof. Let x(t) be a solution of (1) satisfying the assumptions of the lemma. 
From (30) we get 

\f(t, x(t), x'(t), x"(t))-f(t, x(t), x'(t), fi"(t))\^L\x"(t)-P"(t)l 
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and consequently 

\x'"(t)\ = \f(t,x(t),x'(t),x"(t))\£ 
^L\x"(t)- P"(t)\ + \f(t, x(t), x'(t), P"(t))\^ 

£L\x"(t)\ + L\P"(t)\ + |/(r, x(t), x'(t), p"(t))\. 

Thus 

|*"'(0l^l*"0)l + max (L\nt)\ + I/O, x, x', /3"0))D-
to 

Denote by m the maximum in the above expression and put q>(s) = Ls + m. 
Further, put 

Rt =max (max|a'(0|, max|j8'(f)|). 

The existence of JR2 follows now from Lemma 5. 
Rather than the calculation of .R2 using (29), an estimate of R2 may appear to be 

more advantageous. For instance, if the function s/(Ls + m) under the integral sign 

in (29) is replaced by a constant 0 / , — , then for s0 satisfying equation 
ZLi\\/ n + m 

i IRJhds =2R 

)2Rl/h 2LRJh + m 

we have R2 < s0. After calculating the value s0, we get the following estimate 

R2<2LRl + hm + 2R1/h. (32) 

Theorem 3. Suppose that all the assumptions of Theorem 2 and Lemma 6 are 
satisfied except the one that f need not be bounded and condition (23) concerning 
the constants Mi and M2 is replaced by 

M,= min f(t, x, x', x"), M2= max f(t, x, x', x"), (33) 
u)X[-R2, R2] wx[-R2,R2] 

where R2 is the constant from Lemma 6, and suppose that .R2§|a"(0l> \fi"(t)\> 
Vtel. 

Then there exists at least one solution x of the boundary value problem (1) and 
(10) which satisfies (24). 

Proof. Define a function <P(t, x, x', x") on Ixl* 3 as follows: 
for 0 on a) x R put 

r f(t,x,x',R2),x">R2 

<P(t, x, x', x") = \ f(t, x, x', x"), \x"\^R2 

[f(t,x,x',-R2),x"<-R2 

and extend 0 to its entire domain IxR3 by 
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<P(t,x,x',x") = 

<P(t, p(t), P'(t), x"), x>P(t), x'>p'(t) 
<P(t, x, p'(t), x"), a(t)tkx^P(t), x'>P'(t) 
<P(t,a(t),P'(t),x"), x<a(t), x'>P'(t) 
<P(t,P(t),x',x"), x>P(t), a'(t)^x'^/3'(t) 
<P(t,a(t), a'(t),x"), x<a(t), x'<a'(t) 
<P(t, x, a'(t), x"), a(t)^x^P(t), x'<a'(t) 
0(t, fi(t), « ' (0 , x"), x >p(t), x'<a'(t) 

0(t,a(t),x',x"), x<a(t), a'(t)^x'<p'(t). 

Further, consider the following modification of equation (1) 

x'" = <P(t,x,x',x"). (34) 

The function <P is on IxR3 continuous and bounded, Mx^0^M2, and it is 
nonincreasing in x on i?. The functions a and /3 are also a lower and an upper 
solution, respectively, of the boundary value problem (34) and (10), and they 
satisfy condition (23) with respect to <P. Thus, for equation (34) all the assumptions 
of Theorem 2 are satisfied, and hence there exists at least one solution x of the 
boundary value problem (34) and (10) which satisfies (24). It follows from the 
definition of the function <P that this solution is also a solution of equation (1). 

From the above proof there follows an important fact concerning the solution x, 
namely that an estimate of the absolute value of its second derivative is given by 

(31). 
R e m a r k 1. In applications, as it can be seen from Example 1, condition (23) is 

important when investigating second derivatives of lower and upper solutions. 
Clearly, it is desirable to weaken the condition as much as possible. We show how it 
can be done. 

Let us change the definition of the function F in section 4 as follows, re­
place the increments (x'-a'(t))/(l +x'2) in (18)-(VI), (VII), (VIII), and 
(x'-P'(t))/(l + x'2) in (18)-(I), (II), (III) by £l(x'- a'(t))/(l + x'2) and 
e2(x' — P'(t))/(l+ x'2), respectively, where eu e2>0. Denote the resulting 
function by Fei>e2 and put 

x* ** < \ • x'-a'(t) A- . . . . x'-p'(t) 
M3 = M3(£i)= mm £1—7-—TT~ , M4 = M4(e2)= max e2 ,2 . 

' lei 1 + X tel 1 -F JC 
x'<a'(t) x >f3 (f) 

Then the function K1>£2 has the same properties as the function F, and hence 
Lemma 3, Lemma 4, Theorem 2, and Theorem 3 are valid for the corresponding 
modified equation x'" = FeijB2(t, x, x', x"). Further, if we put in Lemma 4 k! = 
ki(eu £2), k2 = k2(eu e2), we get 
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sup fc,(e„ e2) = ^ i (/32A3 - y2A2 + y2/i2M, ( ^ h2 + /33)) - M2/t = k\, 

0<"£2<" - ( 3 5 ) 

inf Ueu £2) = - ^ (/32A3-y2A2 + y2/i2M2 ( ^ / i 2 + |S3))-M,fc = k2. 

Condition (23) in Theorem 2 is then equivalent to condition 

P"(ai)<ku k2<a"(ai). (36) 

Indeed, if (36) is satisfied, then there exist eu e2>0 such that (23) holds true. Thus 
in Theorem 2 and Theorem 3 we can replace condition (23) by condition (36). 

Remark 2. Finally, let us return to the estimates in Lemma 4. Using signs of the 
corresponding Green's functions we get new estimates. From the proof of 
Lemma 4 we get 

Gut(au s) = - l , se(au a2), 

G2tt(au s) = - ^ - i (y2(s - a3) - y3)-§0, s e (a2, a3). 

Consequently we get 

x"(al)^cp"(a1) + (M1^M3) 2 r+1Gktt(au s) ds = 
k = l Jak 

= <p"(«,) - (M, + M3) ( ^ /i2 ( I /.2 + y3) + A,) = k2. 

Similarly we get ki^=Jt"(ai), where kx is obtained from k2 when replacing 
(Mt + M3) by (M2 + M4). 

Thus obtained estimates are sometimes better than those from Lemma 4. This 
can be seen in Example 1, where for the boundary value problem (27) and (28) we 
get ^ = -13 /12 and fc2 = l/12. 

Condition (23) corresponding to these estimates can be, according to Remark 1, 
weakened by replacing the nonstrict inequalities by the strict ones and leaving out 
the values M3 and M4. 
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ТРЕХТОЧЕЧНАЯ КРАЕВАЯ ЗАДАЧА 

ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 3-ГО ПОРЯДКА 

5ап Кизпак 

В работе рассматривается трехточечная нелинейная краевая задача для дифференциального 
уравнения х'" =/(*, х, х\ х") с линейными краевыми условиями. Методами теоремы о неподвиж­
ной точке, функции Грина и верхних и нижних решений этой задачи доказаны теоремы 
существования решения задачи для непрерывной и ограниченной или неограниченной /. 

320 


		webmaster@dml.cz
	2012-08-01T00:26:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




