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A THREE-POINT BOUNDARY VALUE PROBLEM FOR
THIRD ORDER DIFFERENTIAL EQUATIONS

JAN RUSNAK

Introduction

In the present paper we investigate a nonlinear boundary value problem at
3 points with linear boundary conditions of the following type

x"=f(t, x,x',x"), (t,x,x',x")e[a, as] X R?, €9

aix(a;) + ax'(a) + asx"(a)) = A,
Bix(az) + B.x'(az) + Bsx"(az) = A,
y1x(as) + v2x'(as) + ysx"(as) = As,

ai, o, Bi, v, AieR, i=1,2,3, a;<a,<a,, (2)

3 3 3
Slal>0, S6I>0, 3lnl>0.

i=1

We use similar methods as K. Schmitt in [3], where he has proved existence
theorems for the boundary value problem

x"=f(t, x, x'),
ax(a) —axx'(a)=A,, Bix(ax) + Bx'(az) = A,
a;, ﬁ,%O, i=1,2, a1+az>0, B1+Bz>0, a1+ﬁ1>0.

We obtain a certain generalization of Schmitt’s results.

1. The linear boundary value problem

Consider differential equations

x""'=0, 3)
x""'=r(), r(t)eCyI=]ay, a). ©))
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Lemma 1. A homogeneous boundary value problem (3) and (2) for A,=A,=
A;=0 has only the trivial solution if and only if

o, oa+ o, oai+2axa,+2a,
A= ﬁl, ﬂla2+ﬁZ’ ﬁ|a§+262a2+233 #0 (5)
Yi, Yiast+ vz, viai+2v.a:+27y;

Further we always assume that condition (5) is satisfied.

M. Gregus in [1] has solved a linear nonhomogeneous boundary value problem
of the n-th order at m ponts (n, m =2) using special Green’s function. His results
concerning the boundary value problem (4) and (2) are summarized in the next
lemma.

Lemma 2. (a) For each pomt se€(a, ai+1), k=1,2, there exist functions
« = Gi(t, s) (Green’s functions) such that
3G,

1. G, TS
3’Gi

2. i
point of the 1st kind, and Gi,(s +0, s) — G (s — 0, s) = 1.

3. G, as a function of t, is a solution of (3) on the intervals [a,, s), (s, a;], and
satisfies the homogeneous boundary conditions (2) for A,=A,=A;=0.

4. The functions G, are uniquely determined by properties 1., 2., and 3.

(b) The solution x of the boundary value problem (4) and (2) for A,=A,=
A;=0 is of the form

= Gy, are continuous 1n t on 1I.

= G, 1S continuous in t on I except the point s which is a discontinuity

2 A+ 1
x(t)=2 G.(t, s)r(s)ds, tel.
k=1 Jag
(c) The solution x of the boundary value problem (4) and (2) is of the form

=00+ 3 [t s)r(s) ds, tel,

where @ is a solution of the boundary value problem (3) and (2).

Further, denote g(s)=%a,(s—a,)z—az(s—al)+az, h(s)=

% Bi(s — az)>— B.(s —a) + B3, and by A, the corresponding signed minor of A.

Using the above listed properties of Green’s functions G, and function ¢, we can
express them explicitly as follows:
If s € (a1, az), then

g—(;g')‘(A“"*’Alzt‘i'A|3t2)_%(s—t)2, a1§t§-5

Gi(t, S)=[ (6)

igiz (A“ +A121+A;3t2), S<t§a3.
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If s € (ay, as), then Gy(t, s)=
g(s) (A + At + A.3t2)+h(s) (Axi+ At + Azstz)"'_ (s—1) a=t<s
={ (S) (A + At + Apt?) +18) (s) (Azi+ Apt + Ayt?),
sSt=a,. (M

3
(p(t)':%EAi(Ail+Ai2t+Ai3t2), tel. (8)
=

2. The existence theorem for the nonlinear boundary value problem

Throughout the rest of this paper we assume that the function f(¢, x, x’, x") is
continuous on I X R>.

According to Lemma 2, the solution x(t) of the boundary value problem (1) and
(2) is a solution of the integro-differential equation

2 Q41
x(t)=o@(t)+ ; Gi(t, s)f(s, x(s), x'(s), x"(s)) ds, 9
and vice versa.
Theorem 1. Let M >0 be a constant such that
If(t, x, x', x")| =M, V(t,x,x',x")el XR".

Then the boundary value problem (1) and (2) has at least one solution.
Proof. Let C,(I) be the Banach space endowed with the norm

2
Ixll = 3 max [x(0).

Define an operator T: C,(I)— C;(I) as follows

2 Ak41
Tr()=(t)+ S f Gu(t, $)f(s, x(s), x'(s)x"(s)) ds.
k=1 Jag
Further, define constans

K =max ()|, K’ =max l@'(8)l, K"=max |@"(8)],

N=(as—a,) max { sup |G(t,s)|, sup |G2(t, )|},
Ix(az, a3

Ix(ay, a2)

N'=(as—a;) max { sup |Gu(t,s)|, sup |G.(t,s)|},

Ix(ay, a2) Ix(az, a3)
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N"=(as;—a,) max { sup )lG.,,(t, s)|, sup ),Gz,,(t, )|}

Ix(ay, az Ix(ay, a3

Then
|Tx(t)| =K+ MN, |(Tx)'(t)]=SK'+MN’,
|(Tx)"(t)| =K"+MN", Vtel.

Define a set E by
E={xeC(I): |x]SK+MN, |x'|=SK'+MN’, |x"|=K"+ MN".

Then E is a closed convex subset of C,(I), TE < E, TE is relatively compact, and T
is a continuous operator. Thus T satisfies all the assumptions of the Schauder fixed
point theorem (cf. [2], p. 476), and hence there exists at least one fixed point
x(t) € E of T such that (9) holds true. The fixed point is a solution of the boundary
value problem (1) and (2).

3. Special boundary value problem
Definition of lower and upper solutions

In the remaining sections we investigate a boundary value problem of the type
(1) and (2) satisfying the following special boundary conditions

ayx(a)— axx'(a) + asx"(a)) = A,
B:x'(a;) — Bsx"(az:) = A, (10)
Y2x'(as) + ysx"(as) = As,
o, Bi, =0, i=2,3, a,>0,
ﬁ2+ﬁ3>0, Y:+7v:>0, B,+7y.>0.
Denote
h=a3—a1, h1=az_al, h2=a3_a2-

The determinant A from Lemma 1, corresponding to conditions (10), satisfies
condition (5) and we have

A =2a1(ﬂ2)’2h2+Bz'}’3+ﬁ3)’2)>0. (11)

We say that a function o € C5(I) is a lower solution of the boundary value
problem (1) and (10) if

a'""Zf(t, a, a’, a"), (12)
and
a,o(a)— aa'(a)+asa’(a)=A,
B.a’'(a:) — B:a"(a;) S A, (13)
y.a'(as) + y:a'(as) S A;
holds true.
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Similarly, we say that a function 8 € C5(I) is an upper solution of the boundary
value problem (1) and (10) if

B =f(t, B, B, B"), (14)
and
aif(a)— ap'(a) + asf"(a)Z A,
B.B'(az) — B:B"(a) Z A, (15)
v2B'(as) + vsB"(as) 2 A,
holds true.

Using the assumption of the existence of lower and upper solutions we shall
prove existence theorems for the boundary value problem (1) and (10).

4. A modification of the differential equation
x’ll =f(t, x’ xl, xll)

Let f be a function satisfying assumptions of Theorem 1, let a, B e Cs(I) be
functions satisfying (12), (14), and

a(a)sp(a), a'(OSP'(1), Viel. (16)
Consider the following modification of the differential equation (1)
x"""=F(t, x, x', x"), (17)

where F is defined on I X R3 by
F(t, x,x', x")=

f(t, B(), B'(0), x")+ ﬁ“’ x>B@),  x>BM)(D)
£(t, x, B'(t), x") + % ﬁ (‘), a(t)Sx=B@t), x'>B'(¢)...(ID)

1+x2
ft, a(t), B'(¢), x")+ =P ‘fim x<a(t), x'>B(1)...:
f(t, B(®), x', x"), x>p(1), a'(D=x'SB'(1)...
= f(t, x, x', x"), a()=x=B@), a'(=Sx'SP'(r)... (18)
ft, a(?), a'(t), x")+ =257 ‘0;(‘), x<a(t), x'<a'()...

f(t, x, a'(1), ﬂ)+4<ﬂ a()SxSB(), x'<a'(1)...

1, B(), a’'(t), x”)+"\\_‘;/(2 ‘x>/3(t), x'<a'(t)...;
ft, a(®), x', x"), x<a(?), a'O=x'Sp'()...0%)
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Function F is continuous and bounded on I X R? and we have

M+ M;=F(t, x, x', x") =M, +M,, VY(t,x,x',x")el XR>, (19)

where
M, =inf f(t, x, x’, x"), M,=sup f(t, x, x', x"),
IxR? IxR? (20)
o ox'=a'() _ x'=pB'(1)
0>M;= min ===, 0<M.= max —=— "7
x'<a’(t) x'>B'(t)

Putting m, = max a'(t), m2=mlin B'(t), we get

1 1 =
M3=—§(Vm?+l+m1), M4=§( mi+1-m,)

Lemma 3. Let the function f(t, x, x’, x") be nonincreasing in x on R and let
x(t) e C5(I) be a solution of (17). Let u(t)=x(t)— a(t), v(t)=x()—p(t), Vtel.
Then:

(a) Function u'(t) (v'(t)) does not attain a negative local minimum (a positive
local maximum) at any t,€ (a,, as).

(b) If u’(£)<0 and u"(t)=0 (v'(t)>0 and v"(t) 2 0) for some t, €[a, a;), then
u'(t)<0 and u"(t)<0 (v'(¢)>0 and v"(t)>0) for all te(t,, as].

(c) If u’(t,) <0 and u"(t,)20 (v'(t) >0 and v"(t,) = 0) for some t, € (a , a;], then
u'(t)<0 and u"(t)>0 (v'(t)>0 and v"(t)<0) for all te[a,, t,).

Proof. (a) Suppose that at some ¢, € (a,, as) the function u’(t) attains a negative
local minimum (the function v’ attains a positive local maximum). Then u"(t) =0
(v"(t)=0) and u'""(t)Z0 (v'"'(t;)=0). But if u"(t,)=0 (v"(t,)=0), then it
follows from the assumptions that u'’'(t,) <0 (v'''(t,) >0), which is a contradic-
tion. For instance, if v"(t) =0, a(to) — B(t) = v(t,) =0, then from (18)-(II) we get

V""" (to))=x""(to) = B"""(to) = f(to, x(t0), B'(t0), B"(t0)) +

2 ZB) f(0, B0, B0, 1) >0,

Remark. From the above proof it follows that for t,€ (ai, a;) we have: if
u'(t) <0, u"(t)=0, then u’'''(t,) <0 (if v'(t)>0, v"(t,) =0, then v'’'(t)>0).
The same result holds also for ¢, = ay, as.

(b) We prove only the statement in parentheses. The proof of the other
statement is analogous.

Let v'(¢,)>0 and v"(t,) =0 for some t, € [a,, a;). It follows from Remark that
v'"'(t,)>0. Thus, there exists a 8, t; <8 = a, such that V¢ € (¢,, ) we have v'(t)>0
and v"(t)>0. Let v"(6)=0 and 6 <a;. Then again we have v'’'(8)>0. Conse-
quently, the function v” is negative in the left part of some deleted neighborhood of
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&, which is a contradiction. Hence v”(6) >0 and we may have é = a,. However, it
follows from Remark that v”(as)>0, and the assertion is proved.

If v'(t,) >0 and v"(t,) >0, then the proof is similar. Note that in this case it is not
necessary to investigate the value v'’'(t,).

(c) The proof of (c) is similar to that of (b) and is omitted.

The function F satisfies the assumptions of Theorem 1 and hence there exists
a solution x of the boundary value problem (17) and (10). The next lemma gives an
estimate for the value x"(a,) of the solution.

Lemma 4. Let x be a solution of the boundary value problem (17) and (10).
Then we have

kl § x"(a.) é kz,

k=23 ((ﬁzAg Y2As+ vaho (M + M) (% ha+ /33)) — (My+ M),

(21)
k=23 (ﬁzA, 124z + y2ho(My + M) (ﬂz h2+ﬂ3))—(Ml+M3)h,

where A satisfies (11) and the constants M;, M., M5, and M, satisfy (20).
Proof. According to (9), for the solution x(¢) we have

x"(t)=¢"(t)+ 2 fmGk,,(t, $)E(s, x(s), x'(s), x"(s)) ds. (22)

By (6), (7), and (8). with regard to the boundary conditions (10) we get:
for s €(a,, a;) we have

-1, a;,=t=s
Gralt, s)={ 0, :l<t§a3,
for s € (az, a;) we have
2017, Bs—a)+B:)—1, a;=t<s
A
Gzn(t, S) { 2a
=0 (B(s ~ a)+ Bs), sStSas,

and for ¢ we have

2
@"() =" (B:As — 12As).
First, we prove the right-hand side inequality in (21). From (22) we get
x"(a;)= @"(ay) —I 2F(s, x(s), x'(s), x"(s)) ds +
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+J (2(1,)/2 (Ba(s — a;) + Bs) — 1)F(s, x(s), x'(s), x"(s)) ds =
=g@"(a,)— jngF(s, x(s), x'(s), x"(s)) ds +
20 f “(B:(s — a2) + Bs)F(s, x(s), x'(s), x'(s)) ds =

< ¢"(a) - (M1+M3)h+2“"’2 (M, + M,) (g2h2+[33h2) k..

The left-hand side inequality can be proved similarly.

5. The existence theorem via lower and upper solutions

Theorem 2. Let the function f(t, x, x’, x") satisfy the assumptions of Theorem 1
and let f be nonincreasing in x on R.
Further, let there exist a, € Cs(I) which are lower and upper solutions,

respectively, of the boundary value problem (1) and (10) satisfying (16) and such
that

B'(a)=k, k,=a"(a), (23)

where k, and k, are constants defined by (21).

Then there exists at least one solution x of the boundary value problem (1) and
(10) such that

a®)=x()=P(), a'(t)=x'(1)=p'(t), Vtel (24)

Proof. Consider the modified differential equation (17). It follows from the
previous section 4 that there exists at least one solution x(t) of the boundary value
problem (17) and (10). From (10), (13), and (15) we have that the functions
u=x—a and v =x — f satisfy the following conditions

au(a)+ azu'(a)) — a;u"(a,)=0...(I)
—Bau’'(az) + Bsu"(a,) =0...(II)
—7Y2U ’(03) - Y;u”(a;) =0...;
—a,v(a) + axv'(a1) — asv”(a) 20...
—B2v'(a2) + Bsv"(a,) 20...;
—v2v"(as) — y5v"(as) Z0...(VI)

(25)

We prove that u(t)=0, u'(t)Z0, v(t)=0, v'(t)=0, YVt € I. This is equivalent to
(24) and hence, according to (18)-(V), x(t) is the needed solution of equation (1).
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From (23) using Lemma 4 we get
u"(a)=0, v"(a))=0. (26)

Suppose that v’(a;)>0. It follows from Lemma 3(b) that v’(a;)>0 and
v"(a5)>0, which contradict (25)-(VI). Thus v'(a,)=0.

Suppose that v'(a;)>0. and B,>0 (if B5=0, then it follows from (25)-(V) that
v'(az)=0. From (25)-(V) we get v"(a,) =0 and again, by Lemma 3(b), this would
contradict (25)-(VI). Hence v'(a,)=0. It will be shown later that it was not
necessary to investigate the value v’'(a,).

Suppose that v’(a;)>0 and y,>0 (if y;=0, then by (25)-(VI) we have
v'(as)=0). Then by (25)-(VI) we have v”(a;)=0. From Lemma 3(c) it follows
that either v’(a;)>0, and v"(a;) <0, or v"(a;) <0, which contradicts (25)-(V) or
(26). Thus v'(as)=0.

If v’(t;) >0 for some t € (ai, as), then it follows from the above results that there
exists a point ¢, € (a,, a;) at which v’(t) attains a local maximum, which contradicts
Lemma 3(a). Thus v'(t)=0 for all tel.

Since v'(a;)=0 and v"(a,) =0, it follows from condition (25)-(IV) that v(a,)=
0, and hence v(¢t)=0 for all tel.

Similarly it can be shown that u(¢)=0 and u’(t)=0.

Example. Consider the following differential equation

3

e X = ’ " ! ” 3
N - \/1+t+8|x|’ ( f(t,X,x,x),(t,X,x,x)E[O,l]XR) (27)

and choose the boundary conditions of the form
x(0)=0, x'(1/2)—x"(1/2)=3/4, x'(1)=0. (28)
The function f is continuous and bounded on [0, 1] X R?, ]f|<%=M2=—M1,
and it is decreasing in x on R. It is easy to verify that functions a(t)=
1—% (P +12t—-27)and B(t)= —l—tz— (t*+ 12t —27) are a lower and an upper solution

respectively, of the boundary value problem (27) and (28) for which A =3. The
functions a and f satisfy (16) and (23), and 8"(0)= -2 <k, =-23/12, a"(0)=2>
k,=11/12 (M5=-1/2, M,=1/2). Since in this case all the assumptions of
Theorem 2 are satisfied, there exists at least one solution x of the boundary value
problem (27) and (28), for which we obtain

L N x(NE — L (£ -
12(t+12t 2N=x(1)= 12(t+12t 27),
VteloO, 1].
i—(t2+8t—9)§x’(t)§—%(:2+8t—9),
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6. The existence theorem without the assumption of the boundedness of f

In this section we prove a theorem analogous to Theorem 2, however, without
the assumption of the boundedness of f.

Lemma 5. (Nagumo) Let @(s), 0=s<x be a positive continuous function
such that
f“’ sds
= 00
®(s)

Let R, 20, and let x(t) be a function in Cs([a, b]) such that

[x'OIZR,, |x""(OI=@(x"()]), Vtela, b].

Then there exists a constant R, (depending only on ¢(s), R,, and h=b — a) such
that
|x"(t)|=R,, Vte[a, b],

where R, satisfies equation

Ra s ds
=2R,.
LR, n @(s) ' (29)

Since the statement and its proof can be reproduced substituting formally x’— x,
x"—>x', and x'""—>x" in Lemma 5.1 in [2, p. 503], the proof of Lemma 5 is
omitted.

Lemma 6. Let o, 8 € C5(I) be functions satisfying (16) and let L be a positive
constan? such that

,f(t’ X, x” X")—f(l, X, x,9 Y")|§L'x"—)’"', (30)
V(t, x, xYew={(t, x,x'):tel,a()SEx=B@1), a'()=x'=B'()}

holds true.

Then there exists a positive constant R, such that for each solution x(t) € C5(I) of
equation (1) satisfying conditions a(t)=x(t)=B(t), a’'()=x'(t)=B'(¢t), Vte I we
have

|x"()]=R., Vtel. (31)

Proof. Let x(t) be a solution of (1) satisfying the assumptions of the lemma.
From (30) we get

If(t, x(6), x'(2), x"(8)) = f(2, x(2), x' (1), B" (NI =L |x"(t) - B(D)],
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and consequently

[x"" (O] =1f(t, x(2), x'(2), x"(1))| =
SLIx"(t)- B ()] + f(t, x(2), x'(1), B"(1))| =
=L|x"()|+L|B" ()] +f(z, x(2), x' (1), B"())].

Thus
e (0| SLIx"(0)| + max (LIB"()] + If(t, x, x', B(1)))-

Denote by m the maximum in the above expression and put @(s)=Ls+m.
Further, put

R, =max (max|a'(1)], max|B' (1))

The existence of R, follows now from Lemma 5.

Rather than the calculation of R, using (29), an estimate of R, may appear to be
more advantageous. For instance, if the function s/(Ls + m) under the integral sign
2R\/h

in (29) is replaced by a constant JLR.h+m

, then for s, satisfying equation

%  2R/hds _
J;R./h 2LR1/h +m - 2Rl

we have R,<s,. After calculating the value s,, we get the following estimate

R,<2LR,+hm+2R,/h. 32)

Theorem 3. Suppose that all the assumptions of Theorem 2 and Lemma 6 are
satisfied except the one that f need not be bounded and condition (23) concerning
the constants M, and M, is replaced by

M, =, min f(t, x, x', x"), M2=wx[r{13§R2] f(t, x,x', x"), (33)
where R, is the constant from Lemma 6, and suppose that R,=|a"(t)|, |B"(¢)|,

Vtel.

Then there exists at least one solution x of the boundary value problem (1) and
(10) which satisfies (24).

Proof. Define a function ®(t, x, x’, x") on I X R? as follows:

for @ on w X R put

f(ty X, x” Rz), x">R2
o(t, x, x', x") =[ ft, x, x', x"), |[x"| =R,
f(t, X, x’y _RZ), x”<_R2
and extend @ to its entire domain I X R* by
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D(t,x,x', x")=

@(t, (1), B'(1), x"), x> B(1), x'>pB'(t)
d(t, x, B'(t), x"), a()=x=B(1), x'>pB'(t)
d(t, a(t), B'(¢), x"), x <a(t), x'>B'(t)
D, B(), x', x"), x>B(t), a'(H)=x'"=B'(1)
Td(t, alh), a'(t), x"), x <a(t), x'<a'(t)
Dt x,a'(t),x"), a@®)=x=p(), x'<a'(t)
D(t, B(t), a'(t), x"), x> B(1), x'<a'(t)
D(t, a(t), x', x"), x<a(t), a'(H=x"=p'(¢).

Further, consider the following modification of equation (1)
x""=@(t, x, x', x"). (34)

The function @ is on I X R® continuous and bounded, M,=® =M,, and 1t is
nonincreasing in x on R. The functions a and B are also a lower and an upper
solution, respectively, of the boundary value problem (34) and (10), and they
satisfy condition (23) with respect to @. Thus, for equation (34) all the assumptions
of Theorem 2 are satisfied, and hence there exists at least one solution x of the
boundary value problem (34) and (10) which satisfies (24). It follows from the
definition of the function @ that this solution is also a solution of equation (1).

From the above proof there follows an important fact concerning the solution x,
namely that an estimate of the absolute value of its second derivative is given by
31).

Remark 1. In applications, as it can be seen from Example 1, condition (23) is
important when investigating second derivatives of lower and upper solutions.
Clearly, it is desirable to weaken the condition as much as possible. We show how it
can be done.

Let us change the definition of the function F in section 4 as follows. re-
place the increments (x'—a’(#))/(1+x’?) in (18)-(VI), (VII), (VIII), and
(x'=B'()/(1+x'*) in (18)-(I), (II), (III) by &(x'—a’(t))/(1+x"*) and
e(x' = B'(t))/(1+x'?), respectively, where &, €>0. Denote the resulting
function by F;, ., and put

M;=M,(g,) = min ¢, x1+—0;,(2t) , M,=M.,(e,)= max £, x—l%,(zt—) .
x'<a’(t) x >p (1)
Then the function F., ., has the same properties as the function F, and hence
Lemma 3, Lemma 4, Theorem 2, and Theorem 3 are valid for the corresponding
modified equation x'"'=F, .(t, x, x', x"). Further, if we put in Lemma 4 k,=
ki(e1, €2), k2= ka(g,, £2), we get
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sup kl(gly 62) =% <62A3 - ‘Y2A2 + 'Yzthl (% h2 + ﬁ;;)) - Mzh 2‘- El,
0<eg), £2<™
(35)
. 2(11 BZ def. _
inf kz(el, 82) =—[‘1— <ﬁ2A3 - Y2A2+ ‘Yzthz (7 h2 + B;;)) - M]h = k2.

0<ey, £2<>
Condition (23) in Theorem 2 is then equivalent to condition
B'(a) <k, k.<a"(a)). (36)

Indeed, if (36) is satisfied, then there exist &,, £, > 0 such that (23) holds true. Thus
in Theorem 2 and Theorem 3 we can replace condition (23) by condition (36).

Remark 2. Finally, let us return to the estimates in Lemma 4. Using signs of the
corresponding Green’s functions we get new estimates. From the proof of
Lemma 4 we get

Glll(ala S)= "1, S € (al, az),
2
G2u(al’ S) =—aA1& (YZ(S - a3) - Y3)§0, S € (az, 03).
Consequently we get

2 A +1
x"(a)=@"(a) + (M +Ms) Guw(ay, s) ds =
k=1 Jay

2 ef.
= (p"(al) - (M] + M3) ( (Zﬁ2 h2 (% h2+ Y3> + hl) d=f kz.

Similarly we get k,=x"(a,), where k, is obtained from k, when replacing
(M, + M) by (M,+ M,).

Thus obtained estimates are sometimes better than those from Lemma 4. This
can be seen in Example 1, where for the boundary value problem (27) and (28) we
get k;=—13/12 and k,=1/12.

Condition (23) corresponding to these estimates can be, according to Remark 1,
weakened by replacing the nonstrict inequalities by the strict ones and leaving out
the values M; and M.,.
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TPEXTOYEYHAS KPAEBAS 3AIJAYA
A TH®PEPEHITMAIIBHOIO YPABHEHHS 3-TO ITOPSAOKA

Jan Rusnak
B pa6oTe paccMaTpHBaeTCs TPeXTOYeYHasi HEIMHEHHasl KpaeBas 3afjaya aasi qugdepeHuHansHoro
ypaBHenus x''' = f(t, x, x', x") c THHEHHBIMH KPaeBLIMH YCJIOBHIMH. MeTORaMH TEOPEMBI O HEMOABHX-

HOH TOYKe, (yHKUMH I'pHHA M BEpXHMX M HHXXHHMX pDEIICHHMA 3TOH 3aJay¥ [OKa3aHbl TEOPEMbI
CYILECTBOBAHUA PELICHHS 3a[a4H JUIS HENMPEPbIBHOH H OrPaHHYEHHOH WJIM HEOTPaHHYEHHOH f.
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