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M a t h . Slovaca 39, 1989, No. 1 , 31—41 

CANTOR EXTENSION OF AN ABELIAN CYCLICALLY 
ORDERED GROUP 

STEFAN CERNAK 

The cyclic order on a set P is a ternary relation [x, y, z] on P with certain 
properties. Cyclically ordered sets where investigated by V. Novak and 
M. Novotny (e.g., [6], [7], [8]). 

V. Novak [7] defined a completion of a cyclically ordered set that was 
constructed by means of regular cuts. The method is analogous to that of 
forming Dedekind cuts to obtain the MacNeille completion of an ordered set. 

L. Rieger [11] introduced the notion of a cyclically ordered group (cf. also 
L. Fuchs [3]). Each linearly ordered group can be considered a cyclically ordered 
group. A representation theorem for cyclically ordered groups was proved by 
S. Swierczkowski [12]. 

Each cyclically ordered group G possesses a largest linearly ordered sub
group; this will be denoted by G0 (see Pringerova [10]). 

Let K be the additive group of all reals ae R such that 0 ^ a < 1, with the 
group operation defined as addition mod 1. For a, b, ceK we put [a, b, c] if and 
only if a < b < c or b < c < a or c < a < b; then K is a cyclically ordered group. 

Let G be an abelian cyclically ordered group. In the present paper we define 
the concept of a convergent (fundamental) sequence in G in such a way that it 
coincides with the concept of an o-convergent (^-fundamental) sequence 
provided G is a linearly ordered group. If every fundamental sequence in G 
converges, then G is called C-complete. 

It will be proved that G is C-complete if and only if some of the following 
conditions is fulfilled: 

(i) G is finite. 
(ii) G is isomorphic to K. 
(iii) G0 # {0} and G0 is C-complete. 
We next define the notion of the Cantor extension Cant G of G. We prove that 

CantG does exist for each abelian cyclically ordered group G and that it is 
uniquely determined (up to isomorphisms leaving the elements of G fixed). Also 
a constructive description of CantG is given. The method is analogous to that 
which was used for lattice ordered groups by C. J. Everett [2] (cf. also L. Fuchs 
[3], F. Papangelou [9]) and in [1] by F. Dashiell, A. Hager and M. Henriksen. 
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Some questions concerning covergence in cyclically ordered groups were 
investigated by M. Harminc [4]. 

1. Preliminaries 

Let us recall the definition of the lexicographic product of linearly ordered 
groups. Let A, B be linearly ordered groups. The cartesian product G of the 
groups A and B is made into a linearly ordered group as follows: if (ah b,)e 
eG (i = 1, 2), then we put (a]9 b,) ^ (a2, b2) if and only if ax < a2 or a} = a2, 
b, !§ b2. Then G is said to be the lexicographic product of linearly ordered 
groups A and B. We shall use the notation G = A o B. 

Let G be a linearly ordered group, IV the set of all positive integers, ge G and 
(gn) a sequence in G (i.e. gneG for each neN). We say that (gn) o-converges 

to g (or g is an o-limit of (gn)) and we write gn—> g if for each £e G, £ > 0 there 
exists n0 G IV such that g — s < gn < g + s for each n e IV, n ^ n0. A sequence (gn) 
is said to be o-fundamental if for each ee G, e > 0 there exists n0eN such that 
— £ < gn — gm < s for each m, neIV, m, w ^ r/0 (see [5]). Every o-convergent 
sequence is o-fundamental. If every o-fundamental sequence is o-convergent, 
then G is called ocomplete. 

Now we describe the Cantor completion method of G (see [5]). A sequence 
(gn) is said to be o-zero if g„ -^0 . Let H°(E°) be the set of all ^-fundamental 
(o-zero) sequences in G. For all (g„), (hn)eH° we put (gn) + (hn) = (gn + hn). 
Then H° is a group and E° is an invariant subgroup of H°. The factor group 
H°/E° can be made into a linearly ordered group by defining the order relation 
in the following way: (gn) + E° ^ (hn) + E° if and only if there exists n0eN such 
that gn ^ hn for each neN, n }± n0. This linearly ordered group will be denoted 
by C(G) and called the Cantor extension of the linearly ordered group G. The 
coset of C(G) containing a sequence (gn)eH° will be denoted by (gnf. The 
following assertions hold true (see [5]): 

(a) C(G) is o-complete. 
(P) G is a subgroup (endowed with the induced order) of C(G). 
(y) Every element ofC(G) is the o-limit of some o-fundamental sequence in G. 

(S) Let (gn) be a sequence in G. If gn—• 0 in G, then gn—• 0 in C(G). 
Let G be a group with the group operation + . A ternary relation [x, y, z] 

which is defined on G is called a cyclic order on G if the following conditions 
are fulfilled: 

I. If x # y 7-= z # x, then either [x, y, z] or [z, y, x]. 
II. [x, y, z] implies [y, z, x]. 
I I I . [x, y, z] and [y, w, z] imply [x, w, z]. 
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IV. [x, y, z] implies [a + x + b, a + y + b, a + z + b] for each a, beG. 
A group on which a cyclic order is defined will be called a cyclically ordered 

group. 
Let L be a linearly ordered group. A cyclic order on L can be defined by 

(1) [x, y, z] = x < y < z or y < z < x or z < x < y. 

We say that the cyclic order on L defined by (1) is generated by the linear order 
on L. Therefore each linearly ordered group is at the same time a cyclically 
ordered group (with respect to the cyclic order generated by its linear order). 

Let L and K be as above. We consider the cyclic order on L given by (1). 
There can be defined a cyclic order on the direct product of groups L x K as 
follows: let u = (x, a), v = (y, b), w = (z, c) be elements of L x K. We put [u, v, w] 
if some of the following conditions is fulfilled: 

(i) [a, b, c]\ 
(ii) a = b ^ c and x < y; 
(iii) b = c 7̂  a andy < z; 
(iv) c = a # b and z < x; 
(v) a = b = c and [x, y, z]. 

The group L x K with this cyclic order will be denoted by L ® K (cf [12]). 
The isomorphism of cyclically ordered groups is defined in the natural way. 

Every subgroup of a cyclically ordered group is a cyclically ordered group (by 
the inherited cyclic order). 

1.1. Theorem. ([12], Theorem) If G is a cyclically ordered group, then there 
exists a linearly ordered group L such that G is isomorphic to a subgroup ofL ® K. 

Let G, L, K be as in 1.1. In the whole paperfdenotes an isomorphism of G 
into L® K. Denote by G0 the set of all ge G such that there exists xeL with the 
property f(g) = (x, 0). Then G0 is a subgroup of G. It can happen that G0 = {0}. 
Let <70 ̂  {0}, geG0, g ^ 0. Hence there exists xeL withf(g) = (x, 0). If we put 
g > 0 if and only if x > 0, then G0 is a linearly ordered group. The cyclic order 
on G0 generated by this linear order coincides with the cyclic order on G0 

inherited from G. Next, G0 is the largest linearly ordered subgroup with this 
property (see [10]). 

Let G be a cyclically ordered group. The notion of r-convexity of subgroups 
of G is defined as follows. The subgroups {0} and G are assumed to be c-convex 
in G. A proper subgroup G" of G is said to be c-convex in G if the following 
conditions are fulfilled (see [10]): 

(i) g ' e G \ £ ' # 0 = > 2 * ' # 0 ; 

(ii) g'eG', [~g', 0, g'], [~g, g, g']^geG'. 
1.2. Lemma. ([10], Chap. Ill, 3.5) Let G be a cyclically ordered group. Then G0 

is a c-convex subgroup in G. 
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2. Convergent and fundamental sequences in an abelian 
cyclically ordered group 

In what follows G will denote an abelian cyclically ordered group. 
Let (gn) be a sequence in G and geG. We say that (gn) converges to g (g is a 

limit of (gn)) in G and we write gn -> g if 
(i) cardG-=2 and there exists n0eN such that gn = g for each //e/V, 

n ^ /?0; or 
(ii) card C ^ 2 and for each seG, e ^ 0, with the property [g — 8, g, g + s] 

there exists n0eN such that [g — s, gn, g + e] for each neN\ n^ n0. 
The sequence (gn) is said to be fundamental in G if for each seG with 

[— £, 0, s] there exists rlo6^ s u c h that [— 8, gn — g„n s] for each m, neN, 
m, n ^ //0. 

2.1. Lemma. g„ -> g if and only if gn — g -> 0. 
Proof. Let g„ -+g, ^ G G with [-£, 0, e]. From [g - £, g, g + e] it follows 

that there exists n0e N such that [g — s, gn, g + s] for each neN, n^ n0. Hence 
[— £, gn — g, 8] and so gn — g -> 0. The converse can be proved analogously. 

By a zero sequence we understand a sequence which converges to 0. The set 
of all fundamental (zero) sequences in G will be denoted by H(E). 

It will be shown later that every convergent sequence in G is fundamental 
in G. The converse does not hold in general. If every fundamental sequence in 
G is convergent in C, then G is called C-complete. 

Let G' be a subgroup of G and (gn) a sequence in G\ Let us remark that it 
can happen that gn -> 0 in G\ but (gn) does not converge to 0 in G. 

Example . Let R be the additive group of all reals with the natural order, 

G = RR,Gf the set of all g e G of the form g = (r, 0), r e R. Then g„ = (-, 0 j 

is a sequence in G\ gn -> 0 in G\ but (gn) fails to converge to 0 in G (it suffices 
to put 8= (0, 1)). 

A cyclically ordered group CantG is said to be a Cantor extension of G if the 
following conditions are satisfied: 

(a) CantG is a C-complete abelian cyclically ordered group. 
(b) G is a subgroup (ordered by the inherited cyclic order) of CantG. 
(c) Every element of Cant G is the limit of some fundamental sequence in G. 
(d) Let (gn) be a sequence in G. If gn -> 0 in G, then #,, -> 0 in CantG. 
It will be proved that for each abelian cyclically ordered group G there exists 

Cant G and that it is uniquely determined (up to isomorphisms). We distinguish 
two cases: G{) / {0} and G{) = {0}. 

First we introduce some auxiliary results. In the following lemmas 2.2 and 2.3 
we suppose that the cyclic order on a linearly ordered group A is generated by 
its linear order. 
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2.2. Lemma. Let A be a linearly ordered group, (gn) a sequence in A andged. 
Then 

(0 gn-+g if and only if gn^ g. 
(ii) (gn) is fundamental if and only if(gn) is o-fundamental. 
Proof, (i) Let gn->g, seA9 s> 0. Hence g — s<g < g + e and so [g — £, 

g, g + e]. The assumption implies that there exists n0eN such that [g — £, gn, 

g + s] for each neIV, n = n0. Therefore g — s < gn< g + s. Hence g„—*g-
The converse is analogous. 

(ii) Let (gn) be a fundamental sequence in A9 seA9 s > 0. Then [— e9 0, s]. By 
the assumption there exists n0eN such that [— e9gn — gm, e] for each m, neN9 

m, n = n0. Hence —e<g„ — gm<E for each m9neN9m9n = n0 and thus (gn) is 
an o-fundamental sequence in A. The converse is analogous. 

From 2.2 we obtain immediately 
2.3. Lemma. Let A be a linearly ordered group. Then A is C-complete if and 

only if A is o-complete. 

3. The case G0 ^ {0} 

In the whole section we assume that G0 7-= {0}. Then card G = K0. Hence G is 
infinite. 

Denote by H0 (E0) the set of all fundamental (zero) sequences in G0. Let (gn)9 

(//.,), (tn) be sequences in G,f(gn) = (xn9 a„)9f(h„) = (yn, b„)9f(t„) = (z„9c„). Let n0 

be a fixed element of IV. Denote gn = gnQ + „ _ , for each n e N. 
3.1. Lemma. Let (gn)eE. Then there exists n0eN such that gneG0for each 

neN9n = n09 and(gn
y)eE0. 

P r o o f Since G0 -?-= {0}, there exists seG09 s> 0. From — s< 0 < s it foll
ows that [—£, 0, s]. The assumption implies that there exists n0eN such that 
[ - £, gn9 s] for each neN9 n = n0. The c-convexity of G0 in G implies that g„eGQ 

for each neN9 n = n0. Evidently, (gn)eE0. 
3.2. Lemma. Let gn -> g9f(g) = (x9 a). Then there exists n0eNsuch that an = a 

for each neN9 n = n0. 
P r o o f By 2.1 and 3.1 there exists n0eN with gn — geG0 for each neN9 

n = n0. Hence an = a for each nsN9 n = n0. 
3.3. Lemma. Every sequence in G has at most one limit in G. 
Proof. Let g„ -> g9 g„ -> h9 f(g) = (x9 a)9 f(h) = (y9 b). From 3.2 it follows 

that there exists AI0eIV such thatf(g„) = (xn9 a)9 f(gn) = (xn9 b) for each neIV, 
n = n0. Hence a = b and so gn — h9 g — heG0 for each neN9 n =.n0. From 
g„-h->g- h9gn - h -> 0in Git follows thatg,? - h ^ g - h9g* - h -+ 0 in G0. 

According to 2.2 we have gn - h—> g - h9 gfj - h-^> 0. Since o-limits are 
uniquely determined, we get g = h. 
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3.4. Lemma. Let g, lu t he distinct elements of G, (#„), (//„), (/„) sequences in G 
such that gn -* #, //„ —> //, /„ -> /. Then [#, lu t] if and only if there exists n{) e N such 
that [<>,., //„, tn] for each neN, // ^ //(). 

P roof . Let [g, lu t], f(g) = (x, a), /(//) = (y, h), / ( / ) = (z, c). Then in view 
of 3.2 there exist n{)e N and a, h, ceK with f(gn) = (.Y„, a), /(//„) = (y,„ />), 
/(/„) = (r,,, C) for each neN, n ^ //(). 

First suppose that [a. h, c]. Hence [gn, //„, /„] for each neN, n = n{). 
Now suppose that a = h ^ C, v < v. Assume that there exist g' e G and .Y' e L 

with/(# ' ) = (x'. a), x < x' < y. We have 2.Y — x' < x < x', x' < y < 2v — x'. If 
we put £, = g' — g, s2 = h — g\ then [g — £,, g, g + £,], [// — L?2, //, // + c2]. Hence 
there exists //, e N such that [g — £,,#„, g + £,], [// — c2. //„, // + s2] for each // e N, 
n ^ //,. Therefore 2x — x' < xn < x', x' < r„ < 2r — .Y' and so xn < yn for each 
n e N, n ^ //,. Hence [gn, //„, /„] for each ne TV, // ^ /l,. Assume that there does not 
exist elements g' e G and x' e L as above. In this case we have 2.Y — y < x < \\ 
If c = h — g, then [g — £, #, g + c]. There exists n2e N such that [g - e, gn, g + c] 
for each neN. n ^ n2. Hence 2Y — y < xn ^ .w From this it follows that xn = x 
for each neN, n ^ n2. In fact, let there exist neN, n ^ n2 with 2.Y - y < xn < x. 
Then x < y — x + xn < y. There exists an element g" e G,f(g") = (y — .Y + x„, c/), 
a contradiction. We get an analogous result for v„. Therefore there exists n}eN 
such that Y„ < v„ for each neN, n ^ //v We conclude that [gn, //„, /„] for each 
neN, n ^ n}. 

Similar arguments can be used to prove the remaining cases. 
Conversely, let there exist n{)e N such that [gn, //„, /„] for each neN, n ^ n(). 

Assume, by way of contradiction, that [/, //, g]. Then there is //, e N with [/„, //„, g„] 
for each ne N, n ^ r/,, a contradiction. 

R e m a r k . If g, //, / are not distinct, then 3.4 need not hold in general. It 
1 2 3 

suffices to put G = R, g„ = -\ hn = - , /„ = - . 
n n n 

From 2.2 it follows 
3.5. Lemma, (i) E() = £//. (ii) H{] = H{

{). 
3.6. Lemma, (i) E{) ^ E, (ii), H{) c H. 
Proof , (i) Let (gn)eE{r ceG, [-c, 0, t;]. If eeG{), then there exists n{)e N 

such that [-£, #„, s] for each neN,n]> n{), If e£G{), we have [ - c,gn, c] for each 
neN. Hence (g„)eE. 

(ii) Let (gn)eH{), ceG, [-c, 0, c]. If seG(), then [-E, gn - gm, c] for each 
m, neN, m, n ^ n{). If ciGu, then [ - c, gn - gm, c] for each m, ne N. We infer 
tha t (£„)e /7 . 

3.7. Lemma. //'(#„) is a convergent sequence in G, then (gn)e H. 
Proof . Let gn-*g. By 2.1 we have (g„ — g)eE. With respect to 3.1 there 

exists n()eN with (gn - g)e En. Since E\] c H", in view of 3.5 and 3.6 we obtain 
(g(; -g)e H. Therefore (g{>) e H and so (gn) e H. 
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3.8. Lemma. Let (gn)eH. Then there exists n0eN such that an = an for each 
neN, n _ n{). 

Proof. Let (gn)eH, seG0, s>0. Hence [-s, 0, e]. There is n0eN such 
that [-£, gn - gm, s] for each m, neN, m, n _ n0. Since G0 is c-convex in G, we 
conclude that gn - gmeG{) and so gn - gfl(eG0 for each neN, n = n0. Hence 
an = c/„() for each neN, n _ /10. 

3.9. Lemma. G /s C-complete if and only if G0 is C-complete. 
Proof. Let G be C-complete, (gn)eH0. According to 3.6 we have (gn)eH. 

There exists geG such that gn -> g in G. 11 suffices to prove that ge G0. Let se G0, 
[ — e, 0, e]. There exists w0 e TV such that [ - e, gn - g, e] for each neN,n = n0. By 
the c-convexity of G0 in G we have gn - g0eG0 for each neN,n = n0. Therefore 
geG0 . 

Conversely, let G0 be C-complete, (gn)eH. Then according to 3.8 there are 
n0e N, ae Kmthf(gn) = (xn,a) for each neN, n _ n0. There exist xe Land ueG 
with f(t>) = (.v, a). Hence (g„ — v)eH0. There is geG0 with gn — v -+ g in G0. 
With respect to 3.6 gn — y -• g in G and g„° -> t> + g in G. Thus gw -> i; + g in G. 

Define the operation + in H by putting (gn) + (/?„) = (gn + hn) for each (gn), 
(10 eH. 

3.10. Lemma. H is a group. 
Proof. Let (gn), (hn)eH. According to 3.8 there are n0eN, a, beK such 

thatf(g,,) = (xn, a),f(hn) = (yH, b) for each neN,n = n0. Let x, yeL and v, weG 
such thatf(i>) = (x, a),f(w) = (y, b). Therefore (g°n - v), (/z„° - w)eH0. Since //0° 
is a group, with respect to 3.5 H0 is also a group and so (gn — v) + (hn — w) e H0. 
Therefore by 3.6 (gw°) + (h^eH. Hence (gj + (//„)e//. 

A similar argument may be applied to prove that if (gn) e H, then — (gn) e H. 

3.11. Lemma. E is a subgroup of H. 
Proof. Let (gn), (hn)eE. By 3.1 there exists n0eN such that gn, hneG0 for 

each neN, n _ n0 and (gn), (hn)eE0. Because E0 is a group, by 3.5 and 3.6 
(g*) - (//,?) e E holds. This implies (gn) - (//„) e E. 

We can form the factor group G = H/E. The coset of G containing a sequence 
(gn)e H will be denoted by (gn). _ _ _ _ _ 

Let (g^), (Fn), (Q be distinct elements of G. We put [(gn), (hn), (tn)] in G if there 
exists n0eN such that [g„, h,„ tn] in G for each neN,n = n0. We can easily verify 
that this definition is correct and that the conditions I—IV are satisfied. Hence 
G is an abelian cyclically ordered group. 

If this definition is applied to C(G0), then the cyclic order of C(G0) is 
generated by the linear order of C(G0). The coset of C(G0) containing a sequence 
(gn) e H°0 = H0 will be denoted by (g,,)*. 

Let (p: G -> G be a mapping defined by the rule (p(g) = (g, g, ...). Then q> is 
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an isomorphism of the cyclically ordered group G into G. We identify G and 
(p(G). Then G is a subgroup of G. 

3.12. Lemma. G is a Cantor extension of G. 
Proo f (a) It remains to show that G is C-complete. Let (gn) be a funda

mental sequence in G (a sequence is to be understood with respect to m), 
f(gm) = C C aml eeG0,[-s, Oj;]. Then [ - ( i ~ i ~ ) , E, (e, e, ...)]. There exists 
w0GIVsuch that [-(s, s, ...), (gn) - (gp

n), (e, e,...)] for each m,peN, m,p = m0. 
Hence there is n0eN with [-£, gn - g£, s] for each neN, n^>n0. Therefore 
gm - gneGoand s o < * " ' = ^ f o r e a c h w* m,peN,n^ n0, m, p = m0. Hence there 
are l/0(Ari)eN,aeKwith a"' = a for each m, neIV, m = m0, ri = w0(/w). Let xeL, 
i> e G withf(i;) = (x, a) and let g'm = gn°

+ m ~ 1 for each w e IV, m = m0. Therefore 
(g*m - v)eH0. According to (a) and 2.3 there exists (gn)*eC(G0) such that 
teT - v)* -> (gn)* in C(G0). We conclude that (g^ - i;) -> (g„) in G and so 
(g;1)->(#„ + ») in G. _ 

(c) Suppose that (gn)eG. There exists n0eN with f(g„) = (x„, a) for each 
neN, n^n0. Let veG, xeL withf(g) = (x, a). Hence (gn — v)eH0. Because 
of (g„° - v, g°n - v, . . . ) * ^ (g°n - v)* in C(G0), in view of 2.2 we have (g„° - v, 
g„° - u , ...)*-+ (g„° - u)*. Therefore (g„ - v, gn - v,...) -+ (g„ - t>) and (g„, g,„ ...)-> 
-(ft,)-

(d) Let (gn) be a sequence in G, g„ -> 0 in G. By 3.1 there exists n0e N such that 
gneG0 for each neN, n^n0 and (gn)eE0. With respect to (£) and 2.2 we get 

(gn> gl -.-)*:> £o in C(G0). Hence (g„°, g,?, ...) -+ Eand so (g„, g„, ...) -+ E, that 
is g„ -> 0 in G. 

Let G be a Cantor extension of G. From G ^ G w e infer that G0 .= (G)0 and 
so (G)0 # {0}. Therefore all results obtained in this section may be used for (G)0. 

3.13. Proposition. Let G, and G2 be Cantor extensions of G. Then there exists 
an isomorphism a from the cyclically ordered group G, onto G2 such that a(g) = g 
for each geG. 

P r o o f With respect to (b) G is a subgroup of G, and G2. Let g]eGx. By 
(c) there exists a fundamental sequence (g„) in G such that gn -• g1 in G,. With 
respect to (a) there exists g2eG2 with gn-> g2 in G2. Define a mapping a from 
G, into G2 by the rule a(gl) = g2. 

First we show that a is correctly defined. Let also (hn) be a fundamental 
sequence in G with hn-+g] in G,. There exists h2eG2 such that hn-+h2 \n G2. 
According to 2.1 and 3.11 we get gn — hn -» 0 in G,. Hence g„ — hn-+ 0 in G. In 
view of (d) we obtain g„ — hn-+0 in G2. Again by 2.1 and 3.11 g„ — hn-+ 
-+ g2 — h2 in G2. By 3.3 we conclude that g2 = h2. 

Let g2eG2. There exist a fundamental sequence (gn) in G and g ' eG, with 
gn->g2 in G2 and gn^gx in G,. Hence a(g]) = g2. Therefore a is surjective. 
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Let g1, A ! G G , , a(g]) = g2, a(h]) = h2. There are fundamental sequences 
(g„), (A„) in G, such that gn->g], hn-*h] in G, and gn->g2, h„-+h2 in G2. If 
g2 = A2, then g„ — A„ -> 0 in G2 and thus g„ — A„ -> 0 in G. Hence g„ — A„ -> 0 
in G,. Since g„ — A„ -> g' — A] in G,, we have g ! = A *. We conclude that a is a 
monomorphism. 

Evidently, a(g] + A1) = a(g]) + a(h]) for each g1, A ' G G , . 

Let g1, A1, / ' G G , , a(g!) = g2, a(h]) = A2, a(t]) = t2. There are fundamental 
sequences (g„), (A„), (r„) in G with g„ -> g1, A„ -> A \ /„ -> /] in G,, g„ -> g2, A„ -> A2, 
l„ -• r2 in G2. Suppose that [g1, A1, r1] in G,. By 3.4 there exists n0eN such that 
[&i> '-«* Q m G for each neN, n^n0. Hence again by 3.4 [g2, A2, l2] is valid 
in G2. The converse is analogous. 

Assume that ge G. We have (g, g, ...)-> g in G. By (d) (g, g, ...) -> g in G, and 
in G2 as well. Hence a(g) = g. 

4. The case G0 = {0} 

In this section it will be assumed that G0 = {0}. Letf x, a be as in section 3, 
geG, f(g) = (x, a). Define the mapping f, from G into K as follows :f,(g) = a. 
Let AGG, f(A) = (y, b). Then f(A) = b is valid. If a = b, then f(g - A) = 
= (x — y, 0). Hence g - heG0. As for G0 = {0}, we get g = A. We conclude 
thatf, is a one to one mapping from G into K. Therefore the following lemma 
is valid: 

4.1. Lemma. The mapping f is an isomorphism from the cyclically ordered 
group G into K. 

R e m a r k 1. From 4.1 it follows that G can be considered as a subgroup 
of a cyclically ordered group K. 

Observe that if G is finite, then G0 = {0}. 
The following lemma obviously holds true: 
4.2. Lemma. Let G be a finite cyclically ordered group. Then G is C-complete. 
The natural linear order on R will be denoted by < . 
4.3. Lemma. Let G be an infinite cyclically ordered group. Then for each aeK, 

a 7-= 0 there exists ge G, 0 < g < a. 
Proof. Denote x = inf{g,-g, : g,, gfeG, gj<gt} in R. Hence x ^ 0. If 

x > 0, then card G :_ - . Therefore G is finite, a contradiction. From this it 
x 

follows that x = 0. Let aeK, a # 0. There are g,, g2eG, g, < g2 with 0 < g2 -
- g , < a . We put g = g 2 - g , . 

4.4. Lemma. Let G be an infinite cyclically ordered group, au a2eK, ax< a2. 
Then there exists geG, a, < g < a2. 
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Proof. Let <:/,, a2eK, ax < a2. With respect to 4.3 it suffices to consider 
the case ax 7̂  0. We have ax ^ a2 — ax < a2 or a2 — ax < ax < a2. According to 

4.3 there exists %eG with 0 < g < c/, — ax. Let ax ^ a^ — ax < a^. Hence ax < -. 
2 

Kg ^ (/,, then there is neN such that ax < ng < a2. Kg > c/,, then the assertion 

is evident. Let a^ — ax < ax < a-,. Then a^ — ax < - . Therefore there exists m e N 
2 with ax < mg < a2. 

4.5. Lemma. Let G be an infinite cyclically ordered group. Then K is a Cantor 
extension of G. 

Proof, (a) It is evident that K is an abelian C-complete cyclically ordered 
group. 

By Remark 1, (b) is satisfied. 
(c) The case a = 0 is obvious. If ae K, a ^ 0, then there exists an increasing 

sequence (an) (i.e., an < an+, for each neN) in K such that an -> a in K. With 
respect to 4.4 for each neN there exists gneG with an < gn < an f ,. Therefore 
gn -> a in K. 

(d) Let (gn) be a sequence in C, gn -» 0 in G, seK\ [— £, 0, £]. Then 0 < 
< s < —s. With respect to 4.3 there is 8X e G, 0 < 8X < 8. Hence — 8 < —8X. We 
obtain [— £,, 0, £,]. There is n0eN such that [ — £,, g„, £,] for each //e/V, // ^ /z(). 
From this it follows that gn < 8X < — 8X or 8X < — 8X < gn and so gn < 8 < —8 
or 8 < — 8 < gn. Therefore [— 8, gn, 8]. We infer that gn -» 0 in K. 

Remark 2. It is easy to prove that 3.13 is valid also in the case G0 = {0}. 
4.6. Lemma. Let G be an infinite cyclically ordered group. Then G is C-

complete if and only if G is isomorphic to K. 
Proof. Let G be C-complete. Hence G is a Cantor extension of G. By 

using 4.5 and Remark 2 we get that G is isomorphic to K. Conversely, let G be 
isomorphic to K. Since K is C-complete, the proof is finished. 

Now let G be an arbitrary abelian cyclically ordered group. 

By summarizing the above results, we infer from 4.2, 4.6 and 3.9 that the 
following theorem is valid: 

4.7. Theorem. Let G be an abelian cyclically ordered group. Then G is C-
complete if and only if some of the following conditions is satisfied: 

(i) G is finite. 
(ii) G is isomorphic to K. 
(iii) G0 7̂  {0} and G0 is C-complete. 
4.8. Corollary. Let G be an abelian cyclically ordered group. Then G is 

C-complete if and only if G0 is C-complete. 
From 3.12, 3.13, 4.5 and from Remark 2 we get 
4.9. Theorem. Let G be an abelian cyclically ordered group. Then 
(i) there exists a Cantor extension of G, 

40 



(ii) if Gx and G2 are Cantor extensions ofG, then there exists an isomorphism 
a from the cyclically ordered group G, onto G2 such that a(g) = gfor each geG. 
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КАНТОРОВСКОЕ РАСШИРЕНИЕ АБЕЛЕВОЙ ЦИКЛИЧЕСКИ 
УПОРЯДОЧЕННОЙ ГРУППЫ 

§1еГап Сегпак 

Р е з ю м е 

Пусть С-абелева циклически упорядоченная группа. В работе определено и построено 
канторовское расширение СатС группы С методом фундаментальных последовательнос
тей. Если Саш С = 0\ то С называется С-полной. Установлены необходимые и достаточные 
условия для того, чтобы С была С-полной. 
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