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DUAL POINT-PARTITION NUMBER 
OF COMPLEMENTARY GRAPHS 

ANTON KUNDRIK 

ABSTRACT. Dual point-partition number of a graph G with respect to a hereditary 
property P is the maximum number of disjoint point-induced subgraphs contained in 
G such that any subgraph does not have the property P. In this article, problems of 
the Nordhaus-Gaddum type for the dual point-partition number are investigated. 

Introduction 

In this paper all graphs are finite, undirected, and without loops or multiple 
lines. The notation and the terminology follow [4]. The point set of a graph G 
is denoted by V(G), the line set of a graph G is denoted by E(G). The comple
ment of a graph G is denoted by G. For a subset V of V(G) (E of E(G)), the 
symbol <V> « £ > ) denotes the subgraph of the graph G induced by V(E), 
respectively. The symbol {w, v} means the line with endpoints w, v and 
NG(u) = {we V(G): {w, w}eE(G)} for an arbitrary point u in the graph G. The 
maximum degree A(G) of a graph G is defined as max{degG(i/): ve V(G)}. A 
graph G is bipartite if its set of points V(G) can be partitioned into two sets U, 
W such that every line in E(G) has one endpoint in U and the other in W. We 
shall write G = ([/, W) accordingly. A subset E of E(G) is said to be independent 
if two arbitrary lines of E are not adjacent. For any real x we denote the lower 
and upper integer part of x by \_x j and f x~\ , respectively. Let Zbe the set 
of all integers and consider the closed interval with real endpoints a, b. Define 
[a, b] as <#, b) n Z. The symbol N means the set of all non-negative integers. 

Let ^ denote the set of all graphs. Define as in [1] a subset P of ^ to be a 
property if K0, KxeP\ P is hereditary ifGeP.HczG implies HeP and nontri-
vial if P 7-- #. A graph G has a property P if GeP. The dual point-partition 
number of a graph G with respect to a special hereditary property P (we shall 
denote this by XP(G)) was defined in [2] as the maximum number of disjoint 
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point-induced subgraphs contained in G such that any subgraph does not have 
the property P(xP(G) = 0 if GeP). Define a P-partition of V(G) as a partition 
Vi, Vl9 ..., Vr of V(G) such that (V^^P for ie[ l , r]. Further we denote 
max{me/V: ]£w+1e.P} by c(P) for any nontrivial hereditary property P. 
In this article we observe the following hereditary properties: 

0(k) = {G: if H is a connected subgraph of G9 then | V(H)\ <k + 2}9 

S(k) = {G: A(G) < k + 1}, 
Q(k) = {G: the length of any path in the graph G is at most k}. 
In 1956 Nordhaus and Gaddum [6] proved the following famous result for 

chromatic number of a graph G and of its complement G: 

2Jn^x(G) + x(G)^n+\ 

n _ X(G).X(G) _ | > + 1)2/4J , where \V(G)\ = n. 

Since then the relations of some parameters between a graph and its comple
ment are continuosly discussed, they are called Nordhaus-Gaddum problems 
(see [3, 5]). In this paper, Nordhaus-Gaddum problems are investigated for dual 
point-partition numbers. The upper and lower bounds for xP(G) + xP(G)9 

XP(G).xP(G) are given, where P9 P's{0(k)9 Q(k)9 S(k)}. 
Assume P is a nontrivial hereditary property. The following assertions are 

obtained directly from preceding definitions: 
— XP(Kn)= ln/(c(P) + 2)]9 

— if H is a subgraph of a graph G9 then xP(H) _ XP(G), 

— if G is a graph with n points, then xP(G) = \_n/(c(P) + 2) J , 
— if kelV9 P'e{0(k)9 Q(k)9 S(k)}9 then P' is a nontrivial hereditary property 
and c(P') = k. Let k be a non-negative integer. It is easy to see that if G is a 
graph, Pe{0(k)9 Q(k)9 S(k)}9 V]9 Vl9 ..., Vr is a P-partition of V(G)9 then there 
exists a P-partition W]9 Wl9 ..., Wr of V(G) such that \W\ =k + 2 for ie 
e [ l , r - l ] . 

Preparatory Results 

Lemma 1. Let G = (U9 W) be a bipartite graph with 2n points, n = 3, such that 
\U\ = | W\9 degG(w) _ T^/21 for each point u belonging to U and G ^ 2Kq qfor 
any qsN. Then a path P of length n in G exists. 

Proof. Let E be an independent set of lines in G with maximal number 
of elements. Suppose that Ux c U9 Wx c PTare the sets of points of G such that 
UXKJ Wx = K « £ » . If the set U — Uxis empty, then we easily form the desired 
path. So we suppose that U — Ux ̂  0. Consider a path P' in G with maximal 
length, say s, such that the initial point of P' belongs to U — Ux such that the 
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lines of P' are alternately not in and in E. Assume s < n. Let V be the endpoint 
of P'. Distinguish the possibilities: 

1. The number s is even. It is easy to see that a point WE W adjacent to v 
satisfying {vv, v}£P' exists. Then the path P' may be extended, a contradiction. 

2. The number s is odd. Then the point v belongs to W — Wx. Hence define 
the set E' as E — E(P') u E(P') — E. Evidently, E' is the independence set of 
lines in G and \E'\ = \E\ + 1, which contradicts with maximality of E. The proof 
is complete. 

Lemma 2. Let P, P'e{Q(k), 0(k), S(k)}. Then the following statements hold: 
(1) if G is a graph with 2k + 2 points, GeP, then XP(G) = 1. 
(2) if G is a graph with k + 2 points, GeO(k), then x0(k)(G) = 1-
Proof. Evidently, (2) holds. It is a routine matter to verify (1) for P, 

P'e{Q(k), 0(k), S(k)} satisfying P # Q(k) or P' # Q(k). Now we prove that 
GeQ(k) implies XQ(k)(G) = 1 for a graph G with 2k + 2 points. Use the induc
tion on the number k. Evidently, Lemma 2 holds for k = 0 1. Assume 
XQ{l)(G) = 1 for arbitrary graph G, GeQ(l), having 2/ + 2 points, / < k. Con
sider the graph G with 2k + 2 points, GeQ(k). If a path of length k in G exists, 
then the graph G contains a path of length k + 1 by Lemma 1 (the graph G 
contains a subgraph fulfilling the assumptions of Lemma 1). In the other case, 
remove two arbitrary different points from G resulting in a graph G'. The path 
of length at least k in G' exists by the induction hypothesis. Suppose the length 
of each path in G is less than k + 1. Then the graph G contains a path with 
length k + 1 by Lemma 1, which contradicts to G e Q(k). The proof is complete. 

Lemma 3. Let P, P' e{0(k), Q(k), S(k)}, and let G be a graph with n points. 
Then the following statements hold: 

(1) ifGeP,thenxP(G)^ ln/(k + 2)j - 1 , 
(2) ifGeO(k), then x0{k)(G) = [*/(* + 2)J , 
(3) ifGeS(k), ke{0, 1}, then xS(k)(G) = [*/(* + 2)J , 
(4) ifGeS(2), n^4,5, then z5(2)(G) = ln/4] . 
Proof. We prove only the case (1). Analogously we can proceed the 

other cases. Use the induction on the number n. It is easy to see that (1) holds 
for n ^ 2k + 3. Now suppose that (1) holds for every graph H with m points, 
m < n, belonging to P. Consider a graph G with n points such that GeP. Since 
12 ^ 2k + 4, we can take a subset W of V(G) with 2k + 2 points. By Lemma 2, 
we have a subset U of W with k + 2 points such that < U) $ P'. Further consider 
the graph G' = G — U. By induction hypothesis, we have XP(G') ^ \_n/ 
/(k + 2) J - 2. The fact XP(G) ^ XP(G') + 1 concludes the proof. In the case 
(4), the induction starts from n = 9. Considering all possibilities we can prove 
(4)for/ie{l, 2, 3, 6, 7, 8}. 

Corollary 1. If G is a graph with n points, P, P'e{S(k), Q(k), 0(k)}, 
XP(G)= 1, then 
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(1) Zr(G)> L^/(^ + 2)J " 2> 
(2) ,//> = />' = 0(k), then xP(G) > [_"/(* + 2) J - 1, 
(3) ifP = P' = S(k), ke{0, 1, 2}, l/zen xAG) ^ \_nl(k + 2) J - 1. 

P r o o f The assumption ;£>(G) = 1 implies the existence of W, Wa V(G), 
such that \W\ = k + 2 and <W>£P. Denote G' = G - Ĥ . Then G'eP and 
|V(G')| = n — k — 2. Now we employ Lemma 3 to obtain the desired results. 
The proof is complete. 

Lemma 4. If meN, m^ 2, G is a graph with m.(k + 2) points, G e -S(k) and 

l/zere ex/sls U c V(G) Swe/z t/zaf |C/| = m and Q 7VG(w) = 0, then Xs(k)(G) = m. 
ueU 

P r o o f We use the induction on the number m. It is easy to verify Lem
ma 4 for m = 2. Let m be at least 3. As the induction hypothesis assume 
Xs(k)(G) = / for each graph G with /. (k + 2) points, GeS(k), for which there 

exists W c= V(G) with / points, / < m, satisfying Q -Vc(w) = 0. Consider a 

graph G with m.(k + 2) points such that GeS(k) and consider U a V(G) with 

m points satisfying Q NG(u) = 0. The assumption GeS(k) implies weU with 
WGIj 

property | ^ (w) | > (m — 1). (k + 2) exists. Denote the set £/ — w by £/' and 

denote P) jVG(z/) by M. Assume |M| = 8. Notice that 0 ^ s ^ k and then 
ueU' 

\NG(w) - (Uu M)\ > m(k + 2) - 2k > k + \. It follows from f) NG(u) = 0 that 
ueU 

the fact v e M implies {vv, v}eE(G). Consider a subset V of NG(w) — (£7uM) such 
that 1VI = k + 1 — s. Define the set V„7 as Vu{vv}uM. It is simple that 
(Vm}<£S(k). Further denote G — Vm by G'. By the induction hypothesis it is 
Xs(k)(Gf) = m-\. Since Xs(k)(G) ^ XswiP') + ^ t h e proof is concluded. 

Lemma 5. If G is a graph with m. (k + 2) points, m ^ 2, //zen l/ze following 
conditions are equivalent: 

(1) ^ ) ( ^ ) = 0 = ^ ( A ) ( G ) - m + l , 
(2) A(G) ^ k and if U is a subset of V(G) such that \ U\ = m, then 

WGLl 

Proof. Using Lemma 4 it is easy to prove that (2) follows from (1). Con
versely, suppose that (2) holds. The equality Xs(k)(G) = 0 follows immediately 
from A(G) < k. We have XS(k)(G) ^ m — 1 by Lemma 3. To get the contradic
tion suppose Xs(k)(G) = m. Let V,, V2, ..., Vm be a S^-partition of V(G). Hence 
v(e V( such that deg<T-j(i?/) ^ k + 1 exists for ze [1, m\. Consider the set of points 

m m 

U = {vx,v2,..., vj. Then f] NG(Vj) * 0 by (2). Take any x from f ) Note)- The 
;• = I ; = I 
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line {vi9 x} does not belong to E(G) for ie[l, m]. An index je[\, m] such that 
xe Vj exists, too. Since {Vj}^S(k), \Vf\ = k + 2, it is clear that the line {vj, x} 
belongs to E(G), a contradiction. The proof is complete. 

Lemma 6. Ifk ^ 3, m^ k, G is a graph with m . (k + 2) points, G e S(k), then 
Xs(k)(G) = m. 

Proof. Again we know that Xs(k)(G) ^ m — \ by Lemma 3. Assume 
Xs(k)(G) = m — 1. Consider two different points x, y of V(G). Let 
\NG(x) n jVc(y)| be equal j . Lemma 5 implies: 

(1) every point of (V(G) must be adjacent to some point of NG(x) n NG(y), 
(2)j^m-\. 

We can obtain the inequality j ^ 2 by m ^ k ^ 3 and by (2). Let s denote the 
number of lines joining a point of V(G) and a point of NG(x) n NG(y). By (1), 
the inequality s^ m(k + 2) -j/2 holds. On the other hand the maximum 
number of points of G which may be adjacent to points of NG(x) n NG(y) is 
j(k - 2) + 2. Hence j(k - 2) ^ m(k + 2) - 2 - j / 2 . The fact GeS(k) implies 
j ^ re. Then k(k — 2) ^ m(k + 2) — 2 — k/2 which is impossible. So Xs(k)(G) = 
-= m and the proof is complete. 

Corollary l.IfG is a graph with n points, n ^ k. (k + 2), k ^ 3, G e S(k), r/zen 
Z'WG)- L"/(* + 2)J • 

Corollary 3. If G is a graph with n points, n ^ (k + 1). (k + 2), Ac ^ 3, 
ZS{k)(G)=l9thenZs(k)(G)> ln/(k + 2)j - \ . 

Bounds 

Theorem 1. If G is a graph with n points, P, P'e{0(k), Q(k), S(k)}, then 

(1) lnl(k + 2)\ ^ Xo(k)(G) + Xo(k)(G), 

(2) ln/(k + 2) J - 1 ^ XP(G) + XP(G), 

(3) XP(G) + XP(G)^2. L"/(k + 2)J , 

(4) if k > 3, 0 i {Xs(k)(G)} u {Xs(k)(G)l [1, L"/(* + 2) J - k] n iXs(k)(Gl 
Xs(k)(G)} ^ 0 or n ^ 2k. (k + 2), t/zerz 

Ln/(/c + 2)j ^zW G ) + ^W^X 
(5) ifke{0, 1, 2} andk ^ 2 or n${4, 5}, l/zerz 

L«/(k + 2)J ^ W G ) + L # ) . 
Proof. The case (3) is evident. Further we prove the case (1). The prool 

of the cases (2), (5) is similar. Suppose x0(k)(G) = 0. Lemn*a3 gives 
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Xo(k)(
G) = I n/(k + 2) J implying the desired result. Suppose Xo(k)(G) = P > 0. 

Consider an O(A:)-partition V,, V, ..., Vp of the point set of the graph G such 
that W| =k + 2 for ie[\,p - l]."since x0(k)«K>) = L w e h a v e Xo(k)«K» -* 
^ [«/(£ + 2 ) J - p by Corollary 1. Then Xow(G)> [«/(£ + 2 ) J -/>, which 
completes the proof of (1). Now we prove (4). Assume XS(k-)(

G) = P, />e[l, 
ln/(k + 2) J - k]. Consider a ;S(Ar)-partition Vu V2, ..., Vp of V(G) satisfying 

\V\ = k + 2 for/eM, p _ 1]. Then \Vp\ >(k+\).(k + 2). As £ - ( J t ) «^» = 1, we 
obtain xm(( Vp}) ^ [n/(k + 2) J - p by Corollary 3. The inequality xs^(G) ^ 

>• xS(k)K VP)>) implies the desired result. Hence assume Xs(k)(G) = Pi Xs(k)(G) = <7> 
p >- [n/(k + 2) J -k,q> ln/(k + 2) J - k. If follows from n ^ 2k. (k + 2) 
that p + q>- \_n/(k + 2) J . The proof of Theorem 1 is complete. 

Theorem 2. If G is a graph with n points, P, P'e{0(k), Q(k), S(k)} and 
04{xP(G)}u{xP(G)},then 

(1) ln/(k + 2)J - 1 = Xo(k)(
G)• Xo(k)(G), 

(2) \_n/(k + 2)\ -2 = xP(G).xP<G), 

(3) xP(G).xAG) = (ln/(k + 2)])2, 

(4)ifk = 3,[\, Ln/(k + 2)j -k]n{xw(G),Xs(k)(
G)}*®orn = 2k.(k + 2), 

then L»/(!̂  + 2)J ~\=XS(k)(
G).Xs(k)(G), 

(5) ifke{0, 1, 2}, then \_n/(k + 2)J - 1 = Xm(G)• ZmtfY 

Proof. The case (3) is evident. We now verify the case (1) only. The 
proof of the other cases is similar. Assume Xo(k)(G) = r, \_n/(k + 2) J = a. We 
have found Xo(k)(G) = « — r according to Theorem 1 and Xo(k)(

G) = 1 o n t n e 

other hand. So Xo(k)(G) = max {a - r, 1} for r e [ l , a]. Then Xo(k)(
G) • Xo(k)(

G) = 

= max {a. r — r2, r} where re [1, a]. Hence Xo(k)(
G) • Xo(k)(G) = m m m a x {a.r — 

r e | l . a ] 

— r2, r} = a — 1. The proof is complete. 

Theorem 3. IfkeN; P, P'e{0(k), Q(k), S(k)}, then there exist neN and a 
graph G with n points such that the sum XP(G) + XP(G) attains the corresponding 
bounds of Theorem 1. 

Proof. By Theorem 1, introduce the best lower and upper bounds of 
XP(G) + XP(G) for P, P'e{0(k), Q(k), S(k)}, keN Distinguish the following 
possibilities: 

1. Suppose keN;P,P'e {0(k), S(k), Q(k)}. The corresponding upper bound 
is given in Theorem 1.3. Define n = 2l(k + 2) for an arbitrary leN,G = 2lKk + 2. 

2. LetkeN,P = P' = 0(k). The lower bound is introduced in Theorem 1.1. 
K„ is the desired graph for neN. 
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3. Assume keN,k>z2, Pe{0(k), Q(k), S(k)}, P' = Q(k). The lower bound 
is determined by Theorem 1.2. The number n is defined as l(k + 2) for leN, 
/ ^ 2 a n d G = H{l_m + 2) + k + i. 

4. If /ce{0, 1}; P, P' are as in 3., then n and G are defined as in 2, because 
0(k) = Q(k) = S(k). 

5. Suppose keN, k — 3, P = P' = S(k). The lower bound is given in Theo
rem 1.2. Show that Sf(k) = {G: xS{k)(G) + £W(G) = _n/(k + 2) J - 1} is finite. 
Assume to get a contradiction that Sf(k) is infinite. By Theorem 1.4 the follow
ing condition holds: 
0 6 {xm(G)} u {xm(G)} or (n <2k(k + 2) and xm(H) > I n/(k + 2) J - k) for 
He {G, G}). Hence Sf(k) = S?l(k)vjS% (k) where </[ (k) = {G: GeSf(k), 
Xsik)(G) = 0}, S_ (k) = Sf(k) - Sfx (k). If Ge% (k), then | V(G)\ < 2k(k + 2). 
Then S/{ (k) is infinite. Then a graph G with at least (k + \)(k + 2) points 
belonging to S/\ (k) exists. Consider G' cz G with m(k + 2) points for meN, 
m > k. It is clear that G'eS(k). Hence by Lemma 4 we have: 

(VU <= V(G'))(\U\ =m->(~) NG.(u) -- 0. 
ueU 

Consider U a subset of V(G') with m elements. Then there is weNG(u) which 
implies degc(w) > k. It is a contradiction and ^(k) is finite. The graph 2Kk 

belongs to ^(k). It is the open problem to charakterize the set if(k). 
6. Let rce{0, 1, 2}, P = P' = S(k). The lower bound is given in Theorem 1.5, 

The number n and the graph G are defined as in 2 (in the case k = 2, n e 

e{4, 5}Xs(k)(Cn) + Xs(k)(Cn) = 0 = ["/(* + 2)J " 0-
7. Suppose ke/V, P = 0(k), P' = S(k). The lower bound is given in Theo

rem 1.2. The number n is defined as 2k and G = 2kk. Denote &?'(k) = 
= {G: Xo(k)(G) + Xs(k)(G) = ln/(k + 2) J - 1}. The characterization of £f'(k) 
is an open problem. 
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