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ABSTRACT. An abstract group H is said to be a B-group if every primitive per­
mutat ion group containing H as a regular subgroup is 2-transitive. Non-abelian 
B-groups of order pq, where p, q are two distinct primes, are characterized. 

1. Introduction 

An abstract group H is said to be a B-group (Burnside group) if every 
primitive permutation group containing H as a regular subgroup is 2-transitive. 
Primitive permutation groups which are not 2-transitive are called uniprimitive 
groups. The first examples of B-groups wrere given by B u r n s i d e in 1911. He 
proved that every cyclic group of order pm (p prime, m > 1) is a B-group ([2]). 
Later on S c h u r showed that every cyclic group of composite order is a B-group 
([11]). These results have been generalized by W i e l a n d t and B e r c o v who 
proved that every abelian group which has a Sylow subgroup isomorphic to 
7Lva x Zpb (p odd prime, a > b) is a B-group ([1]). 

Some partial results about nonabelian groups are also known. Dihedral groups 
and generalized dicyclic groups (x,H | x2n = 1, y2 = xn , y~lxy = x) , were 
shown to be B-groups, respectively, by W i e 1 a n d t [16] in 1949 and by S c o t t 
[12] in 1957. Furthermore, groups of order 3p (p a prime) have also been dealt 
with. Combining works of several authors (see [7], [13], [8]) we can deduce that 
a nonabelian group of order 3p is a B-group provided one of the following holds: 
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i) p = 2 - 3 a + l , a > 2 , 

ii) 4p = 3c2 + 1 and p > 37, 

iii) I>-=60+l,g>7a prime. 

Most of these results were proved using character theory or the S c h u r method 
([17]). With the classification of finite simple groups a different approach is 
possible. Based on the work of M a r u s i c and S c a p e l l a t o [4], [5], [6] and 
P r a e g e r , W a n g and X u [9], [10], [14] on vertex-transitive pg-graphs, a 
classification of B-groups of order pa, where p > q are two primes, can be 
obtained. 

THEOREM l . l . A group of order pq, where p > q are primes, is not a B-group 
if and only if it is not abelian and one of the following holds: 

(i) q = £ ^ - and p > 5, 

or 

(ii) pg = 3 1 - 5 , 

or 

(iii) pq = 29 -7 . 

2. Proof of Theorem 1.1 

Since every abelian group of order pq is cyclic and therefore a B-group, we 
can restrict ourselves to nonabelian groups. Since a nonabelian group of order 
pq exists if and only if q \ p — 1 (and is unique), we will assume that q \ p — 1. 

A group H of order n is not a B-group if and only if there exists a uni-
primitive group G of degree n containing H as a regular subgroup. Therefore, 
to find all non-abelian groups of degree pq which are not B-groups it is enough 
to find all regular subgroups of uniprimitive groups of degree pq with q \ p — 1. 
Moreover, the socle of a uniprimitive group G of order pq cannot be abelian. 
Assume on the contrary that H = socG is abelian. Since FT is a non-trivial 
normal subgroup of a primitive group, it is transitive, and since it is abelian, it 
must be regular and therefore a cyclic group of composite order. But such groups 
are B-groups and cannot occur as regular subgroups of uniprimitive groups. In [6] 
M a r u s i c and S c a p e l l a t o gave the list of non-abelian socles of uniprimitive 
groups of degree pq. Excluding the cases where q\p — 1, Table 1 is obtained. 
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TABLE 1. Socles of uniprimitive groups of degree pq, q \ p — 1. 

ГOW socG (P, ) action comment 

1 \ (̂ V) pairs p>Ъ 

2 PSL(2,p) ҺФ) cosets of D +1 p = 3 (4) 

3 PSL(2,Ъ9) (59,29) cosets of Aъ 

4 PSL(2,23) (23,11) cosets of 5 4 

5 PSL(2,11) (11,5) cosets of Л 4 

6 Щз (23,11) 

7 мn (11,5) 

8 PSL(Ъ,2) (31,5) 2-spaces 

9 PSL(2,29) (29,7) cosets of Aъ 

10 PSL(2,19) (19,3) cosets of Aъ 

Observe that in the rows 1 to 7, q = P—^ holds. So let us first deal 

with groups of order pq, where q = ?—-. If p = 5, then q = 2 and the 

only non-abelian group of order 10 is dihedral group, wThich is a B-group. 

For p > 5 consider the uniprimitive action of Ap on the set of unordered 

pairs X = {{x,y} : 0 < x < y < p — l } ( |X | = pq). Let a denote the 

cyclic permutation a = ( 0 , 1 , . . . ,P — 1). Since the multiplicative group Z* is 

cyclic, it contains an element r of order ^ - . Let (3 denote the permutation 

which sends i G Z to ri G Z . The decomposition of (3 into disjoint cycles 

equals (0)(a, ra,... ^r^~a) (b, rb , . . . , r ^ ~ b ) , which implies j3 G Ap. Clearly, 
{3~~1a0 = ar, showing that (a,/5) is the non-abelian group of order pq. Using 
the fact that p = 3 (4) it is easy to see that the group (a, (3) acts transitively 
and therefore regularly on X, and thus showing that the non-abelian group of 
order pg, where q = ^ — , is not a B-group. 

We are now going to show that the non-abelian groups of order 3 1 - 5 and 
29 • 7 are not B-groups. We will need the following lemma from [6]. 
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LEMMA 2.1. ([6; Lemma 2.2]) Let G be a transitive group on a set X of 
degree n and order ns. Let H be a subgroup of G such that n divides \H\ and 
([G : H], \H\) = 1. Then H is transitive. 

Let G = PST(5,2) acting on 2-spaces. We know \G\ = 2 1 0-3 2-5-7-31. Let S 
denote a Sylow subgroup of order 31. Its normalizer N = NG(S) is a non-abelian 
group of order 31 • 5 ([3; 7.3]). The group N is transitive by Lemma 2.1 and 
therefore regular. Since the action of G is uniprimitive, the nonabelian group of 
order 31-5 is not a B-group. 

Let nowT G = PSX(2,29) acting on the cosets of its subgroup A5. Its order 
is 29 • 22 • 3 • 5 • 7 and its degree 2 9 - 7 . It contains a SylowT subgroup 5 = 

{ ( o i ) : x G Z 2 9 J of order 29. Its normalizer N = { ( o * - i ) : a e Z * 9 . 

x G Z 2 9 \ contains a non-abelian subgroup of order 7 • 29 which is transitive 

and therefore regular by Lemma 2.1. Since the action of G is uniprimitive. this 
showTs that the non-abelian group of order 7-29 is not a B-group. 

In order to complete the proof we have to show that the nonabelian group of 
order 19-3 is a B-group. Let G be a uniprimitive group of degree 19 • 3. By [14, 
Lemma 2.1], it follows that soc£? = PST(2,19) acting on the cosets of a sub­
group j4^i5,andG is either PSX(2,19) or AutPSL(2,19) = PGF(2.19). 
Suppose that G contains a regular subgroup R. Since the index of P5F(2,19) in 
G is either 1 or 2 and R is a group of odd order, it is contained in P5F(2,19) . 
Thus without loss of generality we can assume G = PSL(2,19) . It is known 
that a Sylow subgroup of order 9 in PST(2,19) is cyclic, implying that all sub­
groups of order 3 in PSX(2,19) are conjugate. It follows that the group R has 
a non-trivial intersection with some conjugate of A. But conjugates of A are 
point stabilizers of the action of G, contradicting the fact that R is regular. We 
have thus proved that the non-abelian group of order 57 = 3 • 19 is a B-group, 
completing the proof of Theorem 1.1. 
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