# Ján Jakubík; Milan Kolibiar Lattices with a third distributive operation

Mathematica Slovaca, Vol. 27 (1977), No. 3, 287--292

Persistent URL: http://dml.cz/dmlcz/129026

## Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.



This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

## LATTICES WITH A THIRD DISTRIBUTIVE OPERATION

#### JÁN JAKUBÍK—MILAN KOLIBIAR

#### Preliminaries

Two binary operations  $\circ$  and \* in a set M are said to be mutually distributive (or the operation  $\circ$  is distributive with the operation \*) if for each a, b,  $c \in M$ ,  $a \circ (b * c) = (a \circ b) * (a \circ c)$ ,  $a * (b \circ c) = (a * b) \circ (a * c)$ .

B. H. Arnold [1] investigated distributive lattices  $(L; \land, \lor)$  with an operation  $\ast$  such that  $(L; \ast)$  is a semilattice and the operation  $\ast$  is distributive with  $\land$  and  $\lor$ . In [4] there were investigated pairs of distributive lattices  $(L; \land, \lor)$ ,  $(L; \cap, \cup)$  such that each of the operations  $\land, \lor$  is distributive with each of the operations  $\cap, \cup$ . In this note we shall show that the results of [1, Th. 16] and [4] are valid also without assuming the distributivity of the mentioned lattices.

In the lattices  $(L; \land, \lor)$  the order will be denoted by  $\leq$ , that in the semilattice  $(L; \cap)$  by  $\subseteq$  (i.e.  $x \subseteq y$  iff  $x \cap y = x$ ). Lattice operations in the lattice of equivalence relations in a set M will be denoted by  $\land$  and  $\lor . \omega$  will denote the least equivalence relations (equality), i the greatest one.  $\Theta . \Phi$  will denote the product of equivalence relations  $\Theta, \Phi$  in the usual sense.

### 1. Results

**Theorem 1.** Let  $L = (L; \land, \lor)$  be a lattice. There is a 1-1 correspondence between semilattice operations  $\cap$  in L such that  $\cap$  is distributive with  $\land$  and  $\lor$ , and pairs of congruence relations  $\Theta_1$ ,  $\Theta_2$  in L such that  $\Theta_1 \land \Theta_2 = \omega$ ,  $(a \land b) \lor c\Theta_i(a \lor c) \land (b \lor c)$  (i = 1, 2) for each a, b,  $c \in L$ , and  $a \lt b$  implies  $a\Theta_1 \Theta_2 b$ .

The congruence relations  $\Theta_i$  corresponding to  $\cap$  are given as follows.  $a\Theta_1 b$  iff  $a \cap b = a \lor b$ ,  $a\Theta_2 b$  iff  $a \cap b = a \land b$ . Conversely, given  $\Theta_1$  and  $\Theta_2$ ,  $a \cap b$  is the uniquely determined element c for which  $a \land b \Theta_1 c\Theta_2 a \lor b$ .

If the desired operation  $\cap$  exists, then L is distributive.

**Theorem 2.** Let  $L = (L; \land, \lor)$  be a lattice. There is a 1-1 correspondence between the operations  $\cap$  as in Theorem 1 and representations of L as a subdirect product of distributive lattices A, B such that if (a, b), (a', b') are elements of the subdirect product and  $(a, b) \le (a', b')$ , then (a, b') belongs to this subdirect product. The subdirect representation belonging to an operation  $\cap$  is that given by congruence relations  $\Theta_1, \Theta_2$  from Theorem 1. The operation  $\cap$  corresponding to a subdirect representation  $\varphi: L \rightarrow A \times B$  is given as follows. If  $\varphi(x) = (a, b),$  $\varphi(y) = (a', b')$ , then  $x \cap y = \varphi^{-1}(a \land a', b \lor b')$ .

**Theorem 3.** a) The semilattice  $(L; \cap)$  of Th. 1 turns out to be a lattice<sup>1</sup>) iff the corresponding congruence relations  $\Theta_1$ ,  $\Theta_2$  commute.

b) The semilattice  $(L; \cap)$  of Th. 2 turns out to be a lattice if the subdirect factorization is a direct one.

In both cases the lattice  $(L; \cap, \cup)$  is distributive and the operation  $\cup$  is distributive with  $\wedge$  and  $\vee$ , too.

**Theorem 4.** a) If for two lattices,  $(L; \land, \lor)$  and  $(L; \cap, \cup)$ , the operation  $\cap$  is distributive with  $\land$  and  $\lor$ , then the operation  $\cup$  is distributive with these operations too and both lattices are distributive.

b) Let  $L_1 = (L; \land, \lor)$  and  $L_2 = (L; \land, \lor)$  be lattices. The operation  $\land$  is distributive with  $\land$  and  $\lor$  iff there are distributive lattices  $A = (A; \land, \lor), B = (B; \land, \lor)$  and a map  $\varphi: L \to A \times B$  such that  $\varphi$  is an isomorphism of  $L_1$  onto the direct product  $A \times B$  and an isomorphism of  $L_2$  onto the direct product  $A \times \overline{B}$  ( $\overline{B}$  being the dual of B).

Remark 1. In Theorem 1 four distributive laws are postulated:  $x \cap (y \wedge z) = (x \cap y) \wedge (x \cap z), x \wedge (y \cap z) = (x \wedge y) \cap (x \wedge z),$ 

 $x \cap (y \lor z) = (x \cap y) \lor (x \cap z)$ , and  $x \lor (y \cap z) = (x \lor y) \cap (x \lor z)$ . None of these laws can be omitted as the following example shows. Let  $L_1$ ,  $L_2$  be lattices on the set  $\{a, b, c\}$  given by the chains  $L_1: a \lt b \lt c, L_2: a \sqsubset c \sqsubset b$ . There hold the first three identities but the last does not.

This example shows also that in Theorem 4 it would not be sufficient to suppose only that one of the operations of  $L_1$  is distributive with one operation of  $L_2$ .

Remark 2. From theorems [4, Th. 3.4] and [5, Th. 3.6] there immediately follows the following weakening of Theorem 4b). If each operation of  $L_1$  is distributive with each operation of  $L_2$ , then there is an isomorphism of  $L_1$  onto a direct product of two lattices A and B which is also an isomorphism of the lattices  $L_2$  and  $A \times \tilde{B}$ .

## 2. Some lemmas

**2.0. Lemma.** Congruence relations  $\Theta$ ,  $\Phi$  of a lattice  $(L; \land, \lor)$  commute iff for each  $a, b \in L, a \leq b, a\Theta\Phi b$  is equivalent with  $a\Phi\Theta b$ .

<sup>&</sup>lt;sup>1</sup>) i.e. there is an operation  $\cup$  on L such that  $(L; \cap, \cup)$  is a lattice

Proof. The condition is obviously necessary. Suppose it is satisfied and let x,  $y \in L$ ,  $x \Theta z$  and  $z \Phi y$ . Then  $x \wedge y \wedge z \Phi x \wedge z \Theta x$ , hence  $t \in L$  exists with  $x \wedge y \wedge z \Theta t \Phi x$ , so that  $y \Theta y \vee t$ . Further,  $x \wedge y \wedge z \Theta y \wedge z \Phi y$ , hence  $y \wedge z \Phi \Theta y \vee t$ ,  $y \wedge z \Theta \Phi y \vee t$  and  $t \Theta y \wedge z$  so that  $t \Theta \Phi y \vee t$ ,  $x \Phi t \Phi \Theta y \vee t \Theta y$ , hence  $x \Phi \Theta y$ . This shows that  $\Theta \Phi \leq \Phi \Theta$ , which implies  $\Theta \Phi = \Phi \Theta$ .

In the paragraphs 2.1–2.5.9 we suppose that  $(L; \land, \lor)$  is a lattice (with the ordering relation  $\leq$ ),  $(L; \cap)$  is a semilattice (with the ordering relation  $\subseteq$ ) and that the operation  $\cap$  is distributive with both operations  $\land$  and  $\lor$ .

**2.1.** From the distributivity of  $\cap$  with the operations  $\wedge$ ,  $\vee$  it follows immediately (see [1])  $x \wedge y \leq x \cap y \leq x \vee y$ ,  $x \cap y \subseteq x \wedge y$ ,  $x \cap y \subseteq x \vee y$ ,  $x \cap (x \wedge y) = x \wedge (x \cap y)$ ,  $x \cap (x \vee y) = x \vee (x \cap y)$ . These relations will be used freely in what follows.

**2.2.**  $a \leq x \leq b$  and  $a \subseteq b$  imply  $a \subseteq x \subseteq b$ .

Proof.  $a \cap x = a \cap (x \land b) = (a \cap x) \land (a \cap b) = (a \cap x) \land a = (a \land x) \cap a = a \cap a = a,$  $b \cap x = (b \lor x) \cap (a \lor x) = (b \cap a) \lor x = a \lor x = x.$ 

**2.3.**  $u \leq x$ ,  $u \leq y$ ,  $u \subseteq x$  and  $u \subseteq y$  imply  $x \land y = x \cap y$ .

Proof.  $u \le x \land y \le x$  and  $u \subseteq x$  yield, by 2.2,  $u \subseteq x \land y \subseteq x$ . Similarly,  $x \land y \subseteq y$ . It follows that  $x \land y \subseteq x \cap y$ , hence  $x \land y = x \cap y$  (using 2.1).

**2.4.** Let the semilattice  $(L; \cap)$  form a lattice  $(L; \cap, \cup)$  (see the footnote<sup>1</sup>)). Then  $a \le a \cup b \le b$  holds for any  $a \le b$ .

Proof.  $[a \lor (a \cup b)] \cap [b \land (a \cup b)] = ([a \lor (a \cup b)] \cap b) \land ([a \lor (a \cup b)] \cap (a \cup b)) = = [(a \cap b) \lor b] \land [a \lor (a \cup b)] = b \land [a \lor (a \cup b)]$ , hence

(1) 
$$b \wedge [a \vee (a \cup b)] \subseteq a \vee (a \cup b),$$
  
 $b \wedge [a \vee (a \cup b)] \subseteq b \wedge (a \cup b).$ 

Further,  $a \cap (b \land [a \lor (a \cup b)]) = (a \cap b) \land a = a$ , hence

(2) 
$$a \subseteq b \land [a \lor (a \cup b)].$$

Using 2.1 we get  $b \cap (b \wedge [a \vee (a \cup b)]) \supseteq b \cap (b \cap [a \vee (a \cup b)]) = (b \cap a) \vee b = b$ , hence

$$(3) b \subseteq b \land [a \lor (a \cup b)].$$

Further,  $[a \lor (a \cup b)] \cap (a \cup b) = a \lor (a \cup b)$ ,  $[b \land (a \cup b)] \cap (a \cup b) = b \land (a \cup b)$ , hence

(4) 
$$a \lor (a \cup b) \subseteq a \cup b, \ b \land (a \cup b) \subseteq a \cup b.$$

From (2) and (3) it follows that  $a \cup b \subseteq b \land [a \lor (a \cup b)]$ , which combined with (1) and (4) yields  $a \lor (a \cup b) = a \cup b = b \land (a \cup b)$ , which proves the assertion.

**2.5.** Define the relations  $\Theta_1$ ,  $\Theta_2$  in L as follows.  $a\Theta_1 b$  iff  $a \cap b = a \lor b$ ,  $a\Theta_2 b$  iff  $a \cap b = a \land b$ .

**2.5.1.**  $\Theta_2$  is an equivalence relation in L.

Proof. Reflexivity and symmetry are obvious. Let  $a\Theta_2 b$ ,  $b\Theta_2 c$ . Then

### $a \cap b = a \wedge b, b \cap c = b \wedge c,$

 $a \wedge b \wedge c = (a \wedge b) \wedge (b \wedge c) = (a \cap b) \wedge (b \cap c) = (a \wedge b) \cap (a \wedge c) \cap b \cap (b \wedge c) =$ =  $(a \cap b) \cap (a \wedge c) \cap b \cap (b \cap c) = a \cap b \cap c \cap (a \wedge c) = a \cap b \cap c$ , since  $a \cap c \subseteq a \wedge c$ . From the relations  $a \wedge b \wedge c \leq a$ , c;  $a \wedge b \wedge c = a \cap b \cap c \subseteq a$ , c it follows by 2.3 that  $a \cap c = a \wedge c$ , hence  $a\Theta_2 c$ .

**2.5.2.**  $\Theta_2$  is a congruence relation in the lattice  $(L; \land, \lor)$ .

Proof. Let  $a\Theta_2 b$ , i.e.,  $a \cap b = a \wedge b$ . Then  $(a \wedge c) \cap (b \wedge c) = (a \cap b) \wedge c = a \wedge b \wedge c = (a \wedge c) \wedge (b \wedge c)$ , hence  $a \wedge c\Theta_2 b \wedge c$ . Further,  $(a \vee c) \wedge (b \vee c) \leq (a \vee c) \cap (b \vee c) = (a \cap b) \vee c = (a \wedge b) \vee c \leq (a \vee c) \wedge (b \vee c)$ , which yields  $a \vee c\Theta_2 b \vee c$ .

**2.5.3.**  $\Theta_1$  is a congruence relation in the lattice  $(L; \land, \lor)$ .

Proof. It suffices to consider the semilattice  $(L; \cap)$  and the lattice dual to  $(L; \land, \lor)$ , and to use 2.5.2.

**2.5.4.**  $\Theta_1$ ,  $\Theta_2$  are congruence relations in the semilattice  $(L; \cap)$ .

Proof.  $a\Theta_1 b$  implies  $(a \cap c) \cap (b \cap c) = (a \cap b) \cap c = (a \vee b) \cap c = (a \cap c) \vee (b \cap c)$ , hence  $a \cap c\Theta_1 b \cap c$ . The proof for  $\Theta_2$  is similar.

**2.5.5.**  $\Theta_1 \wedge \Theta_2 = \omega$ .

The assertion follows immediately from the definition 2.5.

**2.5.6.**  $a \wedge b\Theta_1 a \cap b$ ,  $a \cap b\Theta_2 a \vee b$ .

The assertion follows immediately from 2.5 and 2.1.

**2.5.7.**  $a \leq b$  implies  $a\Theta_1 \Theta_2 b$ .

The assertion follows from 2.5.6.

**2.5.8.** If the semilattice  $(L; \cap)$  forms a lattice (see the footnote<sup>1</sup>)), then  $a\Theta_2\Theta_1 b$  for each  $a \le b$ .

Proof. Using 2.4 we get  $a\Theta_2 a \cup b\Theta_1 b$ .

**2.5.9.** The lattice  $(L; \land, \lor)$  is distributive.

Proof. Using 2.5.6 we get for arbitrary  $x, y, z \in L: (x \lor y) \land z \Theta_2(x \cap y) \land z = = (x \land z) \cap (y \land z) \Theta_2(x \land z) \lor (y \land z)$ . On the other hand,  $(x \lor y) \land z \Theta_1(x \lor y) \cap z = = (x \cap z) \lor (y \cap z) \Theta_1(x \land z) \lor (y \land z)$ . This gives  $(x \lor y) \land z = (x \land z) \lor (y \land z)$  by 2.5.5.

## 3. Proofs of the Theorems

Proof of Th. 1. The existence of the congruence relations  $\Theta_1$ ,  $\Theta_2$  for a given semilattice  $(L; \cap)$  and the distributivity of the lattice  $(L; \wedge, \vee)$  are consequences of 2.5.2, 2.5.3, 2.5.5, 2.5.7 and 2.5.9.

Conversely, let  $\Theta_1$ ,  $\Theta_2$  be congruence relations in L satisfying the given conditions. These conditions ensure the existence of the operation  $\cap$ . Obviously  $\cap$  is idempotent and commutative. The elements  $d_1 = (a \cap b) \cap c$ ,  $d_2 = a \cap (b \cap c)$  satisfy  $d_i \Theta_1 a \wedge b \wedge c$ ,  $d_i \Theta_2 a \vee b \vee c$  (i = 1, 2), hence  $d_1 \Theta_1 \wedge \Theta_2 d_2$ , which yields  $d_1 = d_2$ .

To prove the distributivity of the operation  $\cap$  with  $\wedge$  and  $\vee$  we use the definition of  $\cap$  (i.e. 2.5.6) and the supposed distributivity of quotient lattices  $L/\Theta_i$  (i = 1, 2). The elements  $u_1 = (a \wedge b) \cap c$ ,  $u_2 = (a \cap c) \wedge (b \cap c)$  satisfy  $a \wedge b \wedge c\Theta_1 u_i \quad \Theta_2(a \wedge b) \vee c$ (i = 1, 2), hence  $u_1 = u_2$ . Similarly we get  $(a \cap b) \wedge c = (a \wedge c) \cap (b \wedge c)$  and the distributivity of the operations  $\cap$  and  $\vee$ .

One can easily verify that if  $\Theta_1$ ,  $\Theta_2$  are congruence relations corresponding to a given operation  $\cap$ , then the semilattice operation corresponding to  $\Theta_1$ ,  $\Theta_2$ , coincides with  $\cap$ . Similarly, if we start with  $\Theta_1$ ,  $\Theta_2$ , construct  $\cap$  and then the corresponding congruence relations, we get  $\Theta_1$ ,  $\Theta_2$ . This yields the correspondence stated in the theorem.

Proof of Theorem 2. Let  $(L; \cap)$  be a semilattice with the property stated in the theorem and  $\Theta_1$ ,  $\Theta_2$  the congruence relations from Th. 1. Then the lattice L is isomorphic to a subdirect product of lattices  $L/\Theta_1$ ,  $L/\Theta_2$  under the mapping  $\varphi: x \rightarrow ([x]\Theta_1, [x]\Theta_2)$  ( $[x]\Theta_i$  is the class of the congruence relation  $\Theta_i$ , containing x) (see e.g. [3, § 20]). By Th. 1 the lattices  $L/\Theta_i$  are distributive. Let (a, b), (a', b') have the same meaning as in the theorem. Then elements  $u, v \in L$  exist with  $\varphi(u) = (a, b), \varphi(v) = (a', b'), u \leq v$ . By Th. 1 there is  $t \in L$  with  $u\Theta_1 t\Theta_2 v$ . Then  $\varphi(t) = (a, b')$ .

Conversely, let  $\varphi: L \to A \times B$  be an isomorphism of the lattice L to a subdirect product of lattices A, B having the properties stated in the theorem. Let  $\Theta_1$ ,  $\Theta_2$  be the corresponding congruence relations in L [3, § 20]. Then  $\Theta_1 \wedge \Theta_2 = \omega$  and  $L/\Theta_i$ are isomorphic to A and B, respectively, hence they are distributive. If  $a, b \in L$ ,  $a \leq b, \varphi(a) = (a, a'), \varphi(b) = (b, b')$ , let t be the element of L with  $\varphi(t) = (a, b')$ . Then  $a\Theta_1 t\Theta_2 b$ , hence the congruence relations  $\Theta_1$ ,  $\Theta_2$  have the properties of Theorem 1 so that there is a semilattice operation  $\cap$  in L which is distributive with the operations  $\wedge, \vee$ . The relations  $x \wedge y\Theta_1 x \cap y\Theta_2 x \vee y$  yield the last assertion of Th. 2 concerning the operation  $\cap$ .

Proof of Th 3 a) If the lattice  $(L; \cap, \cup)$  exists, then  $\Theta_1 \cdot \Theta_2 = \Theta_2 \cdot \Theta_1$  by 2.0, 2.5.7 and 2.5.8. Conversely, let  $\Theta_1 \cdot \Theta_2 = \Theta_2 \cdot \Theta_1$ . Then for  $a \leq b$  we get by Th. 1  $a\Theta_1\Theta_2b$ , hence  $a\Theta_2\Theta_1b$ , too. By Th. 1 there is a semilattice operation  $\cup$  in L, which is distributive with the operations  $\wedge, \vee$ , satisfying  $a \wedge b\Theta_2 a \cup b\Theta_1 a \vee b$ . Hence  $(a \cup b) \cap a\Theta_2(a \wedge b) \cap a\Theta_2 a$ ,  $(a \cup b) \cap a\Theta_1(a \vee b) \cap a\Theta_1 a$ , which yields  $(a \cup b) \cap a\Theta_1 \wedge \Theta_2 a$ , i.e.,  $(a \cup b) \cap a = a$ . Similarly we get  $(a \cap b) \cup a = a$  using  $a \wedge b\Theta_1 a \cap b\Theta_2 a \vee b$ . Hence  $(L; \cap, \cup)$  is a lattice. The distributivity of this lattice follows by Th. 1 (or by 2.5.9) from the distributivity of the operation  $\wedge$  with the operations  $\cap, \cup$ .

b) Since  $a\Theta_1\Theta_2 b$  for  $a \le b$ , we get  $\Theta_1 \lor \Theta_2 = \iota$ . Hence the subdirect product is a direct product iff  $\Theta_1 \cdot \Theta_2 = \Theta_2 \cdot \Theta_1$ . By a), this is equivalent to the condition that  $(L; \cap)$  forms a lattice.

Proof of Th. 4. The assertion a) follows from Theorems 1 and 3. The assertion b) follows from Theorems 2 and 3.

#### REFERENCES

- [1] ARNOLD, B. H.: Distributive lattices with a third operation defined. Pacif. J. Math. 1, 1961, 33-41.
- [2] BIRKHOFF, G.: Lattice theory. Third edition. Providence 1967.
- [3] GRÄTZER, G.: Universal algebra. Princeton 1968.
- [4] JAKUBÍK, J.—KOLIBIAR, М.: Об некоторых свойствах пар структур. Czechosl. Math. J. 4, 1954, 1—27.
- [5] KOLIBIAR, M.: K vzťahom "medzi" vo sväzoch. Mat.-fyz. časop. 5, 1955, 162–171.

Received December 19, 1975

Katedra matematiky Strojníckej fakulty Vysokej školy technickej Švermova 5 040 01 Košice

> Katedra algebry a teórie čísel Prírodovedeckej fakulty UK Mlynská dolina 816 31 Bratislava

#### СТРУКТУРЫ С ТРЕТЬЕЙ ДИСТРИБУТИВНОЙ ОПЕРАЦИЕЙ

#### Ян Якубик—Милан Колибиар

#### Резюме

Пусть (L;  $\land$ ,  $\lor$ ) — структура. В этой статье исследуется бинарная операция  $\cap$  на множестве L обладающая следующими свойствами: (a) (L;  $\cap$ ) является полуструктурой; (б) операция  $\cap$  будет дистрибутивной относительно каждой из операций  $\land$  и  $\lor$ . Доказано обобщение одного результата Арнольда.