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NEARLY REGULAR CELL-DECOMPOSITIONS 
OF ORIENTABLE 2-MANIFOLDS WITH AT MOST 

TWO EXCEPTIONAL CELLS 

MIRKO HORNAK—ERNEST JUCOVlC 

1. Introduction 

Convex 3-polytopes whose valencies of all vertices are multiples of m and 
numbers of edges of all faces are multiples of k, ra, k < 6, appear as especially 
interesting in the study of combinatorial properties of polytopes (cf. Grunbaum 
[4], Gallai [3]). They are sometimes called nearly regular (cf. Crowe [2]). 

Much effort has been devoted to the study of the nearly regular decompositions 
of the sphere with one or two vertices or faces exceptional in the sense that the 
numbers of edges they are incident with are not multiples of m or k, respectively. 
Some of the results dealing with boundary complexes of 3-polytopes were obtained 
by investigating much more general decompositions of the sphere than those which 
are complexes. (For definitions concerning complexes cf. e.g. Grunbaum [5].) 
And, inspired by Grunbaum [4], Malkevitch [11] answers, for all pairs (m, k) 
the question of existence of a decomposition of the sphere (not necessarily a 
complex) with at most two exceptional elements (vertices or faces). He shows that 
for most pairs (m, k) and required numbers of the exceptional elements such 
decompositions do not exist. The aim of the present paper is to show how things are 
on 2-manifolds of higher genus and to give general assertions. It appears, 
analogously as in some other problems concerning cell-decompositions of 2-man
ifolds (cf. Jucovic—Trenkler [10], Jucovic [8]), that manifolds of low genus are 
exceptional in the sense that decompositions of some type exist only on manifolds 
of sufficiently great genus. But let us first introduce the necessary notions and 
notations. 

We investigate 2-dimensional orientable 2-manifolds with no boundary only and 
decompositions of them which are cell-complexes. For a 2-dimensional cell-comp
lex IV let A(1V) or vt(N) denote the number of 2-cells (faces) or 0-cells (vertices), 
respectively, which are incident with precisely / 1-cells (edges). 

Let my k be integers greater than 1, ev, £>, g non-negative integers. By M(m, k; 
£v* fy; g) we denote the class of decompositions of the manifold of genus g with the 
following properties: 

73 



a) the valencies of all vertices with the exception of precisely £„ vertices 
(exceptional vertices) are multiples of m; 

b) the numbers of edges of all faces, with the exception of precisely F, faces 
(exceptional faces) are multiples of k. 

If £v + £f = 2, the class M(m, k; £v, £f; g) can be divided into subclasses by 
prescribing the distance between the two exceptional cells C,, c2 of the decom
position; by the distance of the cells cx, c2 it is meant the (graphical) length of the 
shortest path joining a vertex of c, with a vertex of c2. A subclass of M(m, k ; £„, £,; 
g) with the distance d of the exceptional cells will be denoted by M(m, k ; £v, £f; g, 
d). 

For d = 0 it is worth while to distinguish the classes M(m, k; 0, 2 ; g, 0) and 
M(m, k ; 0, 2 ; g, 0). In a complex of the first class the exceptional faces have only 
one vertex in common, in a complex of the second class the exceptional faces have 
one edge in common. 

In the following sections there are given solutions of existence problems 
concerning some types of the nearly regular cell-decompositions of orientable 
2-manifolds with at most two exceptional cells. To show that some class of 
complexes is non-empty a member of it is constructed. To simplity the description 
of complexes, many pictures are used; in them the exceptional vertices or faces are 
marked w, or Uf, respectively ( / e { l , 2 } ) . In the assertions infinite numbers of 
non-negative integers g, d appear; therefore inductive constructive steps are 
employed increasing the genus g of the manifold or the distance d of the 
exceptional cells. 

2. Decompositions with at most one exceptional cell 

Lemma 1. Let (m, k)e{(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}, £v, £f and g{) be 
non-negative integers. If the class M(m, k; £v, £f; g()) is non-empty, so is the class 
M(m, k; £v, £f; g) for every integer g >g{). 

Proof. Let the complex DeM(m, k; £v, £f; g()) be realized on the surface 5. 
Choose its arbitrary face W and change it according Fig. la where the subcomplex 
D? means the boundary complex of the regular 3-poIytope with ra-valent vertices 
and k-gonal faces in which one face is omitted. As an example, in Fig. lb for 
(m, k) = (3, 4) a quadrangle is subdivided using graphs of four cubes. Clearly the 
new decomposition D' of surface S is again a complex. The n-gon W is subdivided 
into the k-gons Xx, ..., Xn, the k-gons belonging to the subcomplexes DT and the 
n-gon W'. The valencies of the vertices H>, have increased by m, the vertices w\ are 
2/w-valent and the remaining new vertices are m-valent. So the complex D' has £v 

exceptional vertices and £f exceptional faces; this means it belongs to the class 
M(m, k; EV, £f; g0) as well as the complex D. 
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Now it is clear that from among the k-gons belonging to the subcomplexes D? 
two disjoint k-gons X, Y with vertices .*,, ,.., xk9 yt9 •••- y*- respectively, can be 
chosen. These k-gons are used as openings for setting a handle to the surface S. 

Fig. la Fig. lb 

This is done in the obvious way and the handle is decomposed as marked in Fig. 2, 
3, 4, 5 or 6 depending on whether (m, £) = (3, 3), (3, 4), (4, 3), (3, 5) or (5, 3), 
respectively. The new decomposition £>, of the manifold of genus g0 +1 is again a 

complex (there is no face on the handle meeting simultaneously a vertex of X and a 
vertex of Y). At the passage from D' to L>, the numbers of the exceptional vertices 
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and faces are preserved; so the complex D_ is a member of M(m, k ; £,,, ef; g{) + 1). 
This procedure can continue until a member of M(m, k; e„, ef; g) is obtained for 
any integer g>g{). 

Z_1 Z2 Zҙ Ą 
f • • т — * У, 

Ъ z, z2 z3 ZІ Уi 

Fig.З 

Y Z1 ?2 Zэ \У 
x * к — r — 1 T—-*Уi 

Xi x2 

*«• 

V 

Zu¥ 1 

4 t * f 4 ł-łz. 

z* 

4z, 

У5 

Fig.5 

Уг Уi 

Theorem 1. Let g be a non-negative integer. 
a) If (m, k) e {(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}, the class M(m, k;0,0;g) is 

non-empty. 
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b) The class M(4, 4; 0, 0; g) is empty iff g=0. 
Proof, a) As the boundary complex of the regular 3-polytope with w-valent 

vertices and k-gonal faces is a member of the class M(m, k; 0, 0; 0), it is sufficient 
to apply Lemma 1. 

b) The emptiness of the class M(4, 4; 0,0; 0) is implied by the following 
corollary of Euler's theorem concerning a cell-decomposition IV of the 2-manifold 
of genus g: 

(*) 2 ( 4 - /) (л(Л0 + v,Ш = 8(1 - g). 

The well-known cell-complex decomposing the torus into quadrangles with 
four-valent vertices belongs to the class M(4, 4; 0, 0; 1). 

The required complex for g > 1 is constructed as follows: First a decomposition 
of the torus as in Fig. 7 is performed (by the identification of equally marked 
points). There we have one (Sg -4)-gon W, 2(g - 1) hexagons Hu H2, ..., H2g-2 

with trivalent vertices only, and quadrangles. The hexagons H( and Hj9 / + / = 
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2g - 1, are joined then by g — 1 handles decomposed into quadrangles (cf. 
J u c o v i c — T r e n k l e r [10]). A manifold of genus g decomposed by a complex 
belonging to M(4, 4 ; 0, 0; g) is reached. 

W, Wг W3 Щ. Ws w* Чs-J WhHЧs-3 w*9-2Wt9-lW1 

Уl • нt н2 • нt н2 чн 'гg-з н 'гg-г 

w 

Уi 

*1 

W1 WZ W3 »»V WS W< W*3*. %-^9-S Чg-lHs-lЧ 

Fig.7 

Theorem 2. Let g be a non-negative integer. 
a) The class M(m, k; 0, 1; g) as well as the class M(m, k\ 1,0; g) is empty for 

m = k. 
b) Let (m, k)e{(3, 4), (4, 3), (3, 5), (S, 3)}. The classes M(m,k; 1,0; g), 

M(m, k; 0, 1; g) are empty iff g = 0. 

Proof of T h e o r e m 2. 
a) For a cell-complex IV we obviously have: 

(**) 2'A( l v ) = S ^ ( l v ) = 2e(Лř) 

where e(IV) is the number of edges of IV. From the existence of precisely one 
exceptional cell in IV, e.g. face, a contradiction would follow: 

2 l A ( I V ) * 0 (mod m) and ^ ^ ( I V ) - 0 (mod m) . 
iL»3 . is»3 

b) The emptiness of the classes treated f or g = 0 is proved i n M a l k e v i t c h [ l l ] , 
Figures 8, 9, 10 and 11 present complexes belonging to the classes M(4, 3 ; 1,0; 
1), M(5, 3; 1,0; 1), M(4, 3 ; 0, 1; 1) and M(5, 3; 0, 1; 1), respectively. Their 
duals belong to the classes M(3, 4; 0, 1; 1), M(3, 5; 0, 1; 1), M(3, 4; 1,0; 1), 
M(3, 5; 1,0; 1), respectively. Now using Lemma 1 we get complexes from all 
classes whose non-emptiness is asserted in Theorem 2. 
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3? <h A 

Fig. 10 

3. Decompositions with two exceptional cells 

Lemma 2. Let (m, k)e {(3, 3), (3,4) , (4,3) , (3 ,5) , (5 ,3)} , (ev, ef)e {(1, 1), 
(0, 2), (2, 0)}, g be a non-negative integer and de {0, 0, 1, 2, . . . } . 7/ t/?e c/a55 
M(m, k\ ev, ef\ g(), d) is non-empty, so is the class M(m, k; ev,ef;g;d) for every 
integer g > g{). 

The proof proceeds as that of Lemma 1, but in this case it is moreover 
necessary to preserve the distance between the exeptional cells cx, c2 at the passage 
a) from D to D' and b) from D' to Dx. 

a) For this purpose the face W chosen from D must be multi-Ar-gonal. Then the 
distance of c,, c2 will not decrease because the distance between no two vertices wi9 

Wj of the face W will decrease. As all edges of D remain edges of D', the distance 
of c , c2 will not increase, so it is d in D', too. Therefore D' belongs to M(m9 k; 
ev, ef; g(), d). 
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b) Clearly the k-gons X, Y can be chosen so that no path joining c,, c2 and 
containing inner vertices of the handle is shorter than the shortest path joining c, 
and c2 in D' (e.g. it is sufficient to take the k-gons containing the edges wxw\ and 
w'2w'i, respectively). So the complex L>, belongs to the class M(m, k; ev, ef; g{) + 1, 
d) and it is possible to apply induction. 

Lemma 3. Let g, d0 be non-negative integers, (m, k)e {(3, 3), (3, 4), (4, 3), 
(3,5), (5,3)}, (ev,ef)e{(0,2), (1,1)}. If the class M(m,k; ev,ef; g, d0) is 
non-empty, so is the class M(m, k; ev, ef; g, d) for every integer d>d0. 

Proof. Let the complex DeM(m, k; ev,ef; g, d0), let W be its exceptional 
face and C the second exceptional cell. Arrange the face W analogously as in the 
proof of Lemma 1 in accordance with Fig. l a ; we get a complex D'. If P is a path 
of length do joining a vertex H>, of W with a vertex of C in the complex D, then the 
path P' = {P, WiW\, w'i) is clearly the shortest path joining a vertex of W' with a 
vertex of C in the complex D'. As its length equals d„ + 1, and the cells W', C are 
the only exceptional cells in D', the complex D' eM(m, k; ev, ef; g, d()+ 1) and 
the induction works. 

Theorem 3. Let g and d be non-negative integers. 
a) The class M(3, 3 ; 1, 1; g, d) is empty iff (g, d) = (0, 0). 
b) For (m, k)e{(3, 4), (4, 3), (3, 5), (5, 3)} the class M(m,k; 1, 1; g, d) is 

empty iff g = 0. 
Proof. 

a) The emptiness of the class M ( 3 , 3 ; 1,1; 0,0) has been proved by 
M a l k e v i t c h [11]. 

In Fig. 12 a complex from the class M(3, 3; 1, 1; 1, 0) is drawn. Using Lemma 2 
we get a member of the class M(3, 3 ; 1, 1; g, 0) for every integer g> 1. 

VV 

Щ \Л 

\SÌ 
Fig. 13 
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Fig. 13 shows a complex belonging to the class M(3, 3; 1,1; 0, 1); so by 
Lemma 3 it is guaranteed the existence of complexes from classes M(3, 3; 1,1; 
0, d) for all positive integers d. Now using Lemma 2 we get the remaining required 
complexes. 

b) Again the emptiness of the classes M(m, k; 1, 1; 0, d) has been proved by 
Malkevitch [11]. 

In Fig. 14 and 15 there are complexes belonging to the classes M(4, 3; 1, 1; 
1, 0) and M(3, 5; 1, 1; 1,0), respectively. The duals of these complexes belong to 
the classes M(3, 4; 1, 1; 1, 0) and M(5, 3; 1,1; 1, 0), respectively. Combining 
procedures from Lemmas 2 and 3 our Theorem is proved. 

вy йß üf a3 a r 

pwq 
P W N 

& 

Theorem 4. Let g be a non-negative integer. 
a) For (m, k) e {(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)} the class M(m, k; 0, 2; 

g, 0) is empty iff g = 0. 
b) If (m,k)e{(3,3), (3,4), (4,3), (3,5), (5,3)} and d is a non-negative 

integer, the class M(m, k; 0, 2; g, d) is non-empty. 
c) For de {0, 1, 2, ...} the class M(4, 4; 0,2; g, d) is empty iff g<2. 

Proof. 
a) The emptiness of the classes mentioned in the statement is proved in 

Malkevitch [11]. Examples of complexes belonging to M(m, k;0,2; 1, 0) are 
drawn in Fig. 16, 17, 18, 19 and 20 for (m, k) = (3, 3), (3, 4), (4, 3), (3, 5) and 
(5, 3), respectively. Now use Lemma 2. 
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b) Fig. 21, 22, 23, 24 and 25 show complexes from M(m, k; 0, 2 ; 0, 0) for 
( m , k) = (3, 3), (3, 4), (4, 3), (3, 5) and (5, 3), respectively. Now use Lemmas 2 
and 3 . 

Fig. 16 

Q; a2 Qj a, 

a f a2 ÛJ a 

>f ч\\ 
-V \ч \Uг\ т 

Wч\\ 
h ь г ь г 

4f 

Q2 a^ 

Fig. 20 
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c) The emptiness of the class M(4, 4; 0, 2; 0, d) follows, for every d, from the 
relation (*). For g = 1 from the same relation and from the obvious equality (**) it 
follows that in a complex from the class M(4, 4; 0, 2; 1, d) the exceptional faces 
could be only a triangle and a pentagon with remaining faces being quadrangles and 
all vertices being 4-valent. In Barnette—Jucovic—Trenkler [1] it is proved 
that such decompositions of the torus do not exist. So it remains to show that for all 
pairs (g, d), ge{2,3,...}, de {(0, 1, 2, ...), the class M(4,4; 0,2; g, d) is 
non-empty. 

Fig.21 Fig. 22 Fig. 23 

Fig. 24 Fig. 25 

First a similar decomposition of the torus as in the proof of Theorem 1 is 
constructed, see Fig. 26 (full lines). In it we have two octagons if-, H2a.2 and 
hexagons H2, H3, ..., H2g-3 as openings for handles forming, the adjacent excep
tional faces Uu U2 (hexagons), one 8(g — l)-gon Wand quadrangles. The complex 
constructed so far belongs to M(4, 4; 0, 2; g, 0). 

A member of M(4, 4; 0, 2; g, d) can be obtained by adding d strips containing 
three quadrangles each at the "end" of the map in Fig. 26 (dotted lines). To avoid 
the shortest path which joins the exceptional faces going, for a sufficiently great d, 
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w, wг w3 w. wr 

Уi • • н ' • н a -

X2 Xj 

ut 

l l Xif Xs Xç 

1 1 
1—1—1 » » » 

w^.s Wt$лWi,9_3 w+s_2wч_f w. 

н '2,-3 н '2,-2 

w Xfy-5 XbytXbў-3 
uг 

Ví 

w, w2 wъ П ws wє %S %-<,W+9_j W^гW^ VV, 

Fig. 26 

through edges of the face W, a "great" number (^d/2) of edges parallel to x^w^ 
and to x4g-2w4fl-2 meeting the openings II,, H2u-2 have been added. The 
decomposition of the handles can be done so that the shortest path joining the 
exceptional faces does not meet vertices on the handles. 

Lemma 4. Let g be a non-negative, d() a positive integer and (m, k) e {(3, 3), 
(4, 3), (5, 3)}. If the class M(m, k; 2, 0; g, du) is non-empty, so is the class 
M(m, k; 2, 0; g, d) for every integer d>d0. 

Proof. 

Let the complex DeM(m, k; 2 ,0 ; g,du). The edges ex = uxwx, e2 = 
= uxw2, ..., en=uxwn incident with the exceptional vertex ux can be marked so that 
en belongs to the shortest path P joining ux with the second exceptional vertex u2. 
Inside the edge ex two points xx, yx are chosen, both are joined with w2, wn forming 
four triangles. Two of these triangles are subdivided to form two subcomplexes Dm 

employed already in the proof of Lemma 1 (see Fig. 27a). In Fig. 27b as an 
example for (m, k) = (4,3) the result of this procedure is drawn. In the new 
complex Dx the valencies of the vertices w2, wn have increased by m, the valencies 
of the vertices xx, yx are 2m, the faces W\, W2 are multi-3-gonal (W\ has the same 
number of edges as Wt in the complex D), the remaining added faces are triangles, 
all added vertices are m-valent. The only exceptional cells remain the vertices ux 

and u2. If P' is a part of the path P joining the vertices u2 and wn, then the path 
PX = {P', wnxx, xx, xxux, ux) has length d()+L 

The next arrangement follows the goal to get a complex with the only exceptional 
cells ux, u2 joined by P, as the shortest path. For this purpose inside e2 two new 
vertices x2, y2 are chosen and the whole procedure above with the four triangles 
and two subcomplexes Dm is performed; we get a complex D2. In D2 the same is 
done with the edge e3 and so is proceeded with all edges e(. A sequence of 
complexes D, Dx, D2, ..., Dn is reached whose last member belongs to M(m, k; 
2, 0; g, d0 + 1); in it P, is the shortest path joining ux and u2. The induction can be 
applied. 
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Lemma 5. Let g be a non-negative, d0 a positive integer and (m, k) e {(3, 4), 
(3, 5)}. / / the class M(m, k; 2, 0 ; g, d()) is non-empty, so is the class M(m, k; 
2, 0; g, d0 + 2z) for every positive integer z. 

The proof 
proceeds equally as that of Lemma 4. All edges e{ are subdivided into three edges 
and the subcomplexes D™ of the cube and the regular dodecahedron are used. 

Fig.27b-
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However in the complex Dn the distance from ux to wn is three in this case (Xx is a 
.k-gon, ke{4, 5}) and the shortest path joining ux and u2 contains three edges 
appearing in the subdivision of en. Therefore the last member in the sequence of 
complexes D, Dx, ..., Dn belongs to the class M(m, k; 2, 0; g, d0 + 2). 

Theorem 5. Let g be a non-negative and d a positive integer. 
a) If (m, k)e{(3, 3), (3, 4), (4, 3), (5, 3)}, the class M(m,k; 2, 0 ; g, d) is 

empty iff (g,d) = (0,1). 
b) The class M(3, 5; 2, 0; g, d) is empty iff (g, d) e {(0, 1), (0, 3)}. 
c) The class M(4, 4 ; 2, 0; g, d) is empty iff g<2. 

The proof 
in general will follow the pattern of the proof of Theorem 4. However in the case b) 
and partly in the case a) the induction will step on residue classes mod 2 and not 
directly on all positive integers. 

a) The emptiness of M(m, k; 2, 0; 0, 1) is mentioned in M a l k e v i t c h [11]. 
The dual of a complex belonging to M(m, k; 0, 2; g, 0) is a complex belonging 

to M(k, m; 2, 0; g, 1) and so we have secured the existence of complexes in 
M(m, k; 2, 0 ; 1, 1) by Theorem 4a). In Fig. 28a (D? has the same meaning as 
before) a complex from M(m, k; 2, 0; 0, 2) is schematically represented; Wt are 
.k-gonal faces, wt are 2/w-valent vertices, the only two exceptional cells are the 
vertices ux, u2 whose valencies are m + 1 and m2 — 1, respectively, and the distance 
between them equals two (the shortest path is P={ux, uxwx, wx, wxu2, u2}). In 
Fig. 28b an example for (m, k) = (3, 4) is depicted. 

Fig. 28a Fig. 28b 
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Fig. 29 represents a complex belonging to M ( 3 , 4 ; 2 , 0 ; 0 ,3) . Now using 
Lemmas 2, 4 and 5 the assertion is proved. 

b) For the emptiness of M(3, 5 ; 2, 0; 0, 1) see M a l k e v i t c h [11]. To prove the 
emptiness of M(3, 5 ; 2, 0; 0, 3) it is necessary to distinguish a large number of 
possible shapes of the path joining the exceptional vertices and the faces meeting it. 
We omit the proof here, it is contained in H o r n a k [6]. 

Fig. 29 Fig. 30 

From Theorem 4a) by duality there follows the existence of complexes from 
M(3, 5 ; 2 , 0 ; 1,1) and by Lemmas 2 and 5 the existence of complexes from 
M(3, 5 ; 2, 0; g, d) for every positive integer g and every odd positive integer d. 

The construction used in Fig. 28a for (m, k) = (3, 5) reaches a complex belong
ing to M(3, 5 ; 2, 0; 0, 2). Fig. 30 represents a complex from M(3, 5 ; 2, 0; 0, 5). 
To conclude the proof of our Theorem use Lemmas 2 and 5. 

c) The proof follows by duality of the complexes described in the proof of 
Theorem 4c). 

4. Remarks 

a) In Theorems 1, 2, 3, 4 and 5 a very small portion of nearly regular 
decompositions of 2-manifolds of higher genus has been treated. While for the 
parameters m, k of the nearly regular cell-decompostitions from Euler's formula it 
follows that m, k^5 for the sphere only, for manifolds of higher genus these 
parameters can be greater. We do not know of a general procedure allowing to 
decide whether, for given parameters m, k, g, d, the classes M(m, k; 1, 0; g), 
M(m,k; 0 , 1 ; g), M(m,k; ev,ef; g,d) and even M(m,k; ev,ef; g) for 
(sv, €f)e{(2, 0), (1, 1), (0, 2)} are empty or not. We are unable to decide this 
problem even for maps which are not required to be cell-complexes. Our 
knowledge of different properties of cell-decompositions of 2-manifolds leads to 
the following working conjecture: To every sequence of non-negative integers 
(m, k, £v, Ef, d) with ev + ef^2 there is a non-negative integer g{) such that the 
class M(m, k; ev,Ef; g,d) is non-empty iff g^g(). 

b) Another problem not touched above is: If nearly regular complexes of a 
certain class M(m, k; ev, ef; g) do exist, what are all possible numbers of edges 
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incident with the exceptional cells? (Cf. Crowe [2] and Jendrol [7] for the 
sphere.) 

c) For (m, k)e {(4, 5), (5, 4)} a decomposition, with a unique exceptional cell, 
of the manifold of genus g such that all 2-cells are topological discs, does exist iff 
g^2. However the decompositions of manifolds of genus ^ 2 we know are not 
complexes. So this gap should be filled up.' 

d) Solutions of the mentioned existence questions concerning nearly regular 
cell-decompositions of 2-manifolds are only first steps in the study of these 
complexes. What can be told about the structure of their 1-skeletons? How many 
faces of certain kind and vertices of certain valency can they have ? What can be 
stated about the valencies of their adjacent vertices (cf. Jucovic [9])? 

e) Probably nothing has been published about nearly regular decompositions of 
2-manifolds which are geometrical complexes. Finding general assertions concern
ing the existence of such complexes seems to be a difficult task. 
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ПОЧТИ ПРАВИЛЬНЫЕ КЛЕТОЧНЫЕ РАЗЛОЖЕНИЯ 
ОРИЕНТИРУЕМЫХ ПОВЕРХНОСТЕЙ С ^ 2 ИСКЛЮЧИТЕЛЬНЫМИ 

КЛЕТКАМИ 

Мирко Горняк—Эрнест Юцович 

Резюме 

Пусть т, к> 1, е„, е{, а^О целые числа; символом М(т, к; ех,, ег; д) обозначим класс всех 
клеточных разложений связной ориентируемой поверхности рода д обладающих следующими 
свойствами: а) степени всех вершин (О-клетки) — множители числа т за исключением ех, 
вершин; б) числа вершин всех граней (2-клетки) — множители к за исключением ег граней. Если 
ех,+€г = 2, то символ М(т,к; ех,,ег; д,й) обозначает подкласс класса М(т,к; ех,,ег; д), 
который содержит все разложения с исключительными клетками имеющими расстояние а" (в 
смысле теории графов). 

В статье доказываются следующие утверждения: Для (т, к)е {(3, 4), (4,3), (3,5), (5,3)} 
а) классы М(т, к; 0, 0; д) и М(т, к; 0, 2; д, а1) не пустые; б) классыМ(т, к; 1, 0; д), М(т, к; 
О, 1; /) и М(т, к; 1, 1; д, й) пустые тогда и только тогда когда д = 0. 

Классы М(4, 4; 0, 2; д, д.) и М(4, 4; 2, 0; д, д.) для й^\ пустые тогда и только тогда когда 
д<2. 

Класс М(4, 4; 0, 0; д) пустой тогда и только тогда когда а =0. 
Класс М(3, 3; 1, 1; д, а1) пустой тогда и толско тогда когда д = а* = 0 а класс М(3, 3; 0, 0; д) и 

М(3, 3; 0, 2;. а, а*) не пустой. 
Для а*>0и (т, к)е {(3, 3), (3, 4), (4, 3), (5, 3)} класс М(т, к; 2,0; д, а*) пустой тогда и только 

тогда когда (а, а*) = (0, 1). Класс М(3,5; 2,0; д,с1) пустой тогда и только тогда когда 
(а,а")б{(0, 1), (0,3)}. 

Аналогичные вопросы рассмотрены для разложений с двумя исключительными гранями 
расстояния 0. 

89 


		webmaster@dml.cz
	2012-07-31T21:02:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




