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(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. MV*-algebras consti tute a subcategory of perfect MV-algebras 
categorically equivalent to 1-rings. In this paper we study the ideals of MV*-al
gebras in connection with the 1-ideals of the associated 1-ring. The most impor
tant results of this paper are concerning with the MV/-algebras , a subclass of 
MV*-algebras corresponding to / - r ings. 

1. Introduction 

MV-algebras were introduced in 1958 by C. C. Chang as algebraic models for 
Lukasiewicz infinite valued logic. In 1986, D. Mundici proved that the category 
of MV-algebras is equivalent to the category of abelian 1-groups with strong 
unit (see [6]). This result was followed by an impressive growth of the theory of 
MV-algebras. The best reference on MV-algebras is the book [6]. 

In [7] A. D i N o l a and A. L e t t i e r i established a categorical equiva
lence between the category of perfect MV-algebras and the category of abelian 
l-groups. This result was extended in [4] by L. P. B e l l u c e , A. Di N o l a and 
G. G e o r g e s c u . They proved that the 1-rings are categorically equivalent to 
the MV*-algebras, a subcategory of perfect MV-algebras. 

The aim of this paper is to study the ideals in MV*-algebras in connection 
with the 1-ideals in the associated 1-rings. We also include some results given in 
[4] in an outlined form-

Section 2 contains some basic notions and results on *-ideals in a *-algebra. 
In Section 3 we define /-algebras, an important class of *-algebras corresponding 
to /-rings, and in Section 4 we study the *-prime ideals in /-algebras . Section 5 
is devoted to some MV-versions of some results of M. H e n r i k s e n [4] and 
S. L a r s o n [10], [11], [12], [13], [14], [15], and in Section 6, to chain condition 
in /-algebras. The paper ends with the investigation of two kinds of reticulations 
associated with an /-algebra. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06D30. 
K e y w o r d s : MV*-algebra, 1-ring, MV/-algebra, •-ideal. 
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Let (A, +, -, *,0,1) be an MV-algebra. We shall write xy instead of x • y. 
Recall that the lattice operations in A are given by x V y = xy* + y and 
x Ay — (x + y*)y. For x, y in A denote d(x,y) = xy* + x*y. Any ideal J of 
A induces a congruence on A: x = y (mod J) if and only if d(x,y) G I. The 
corresponding quotient MV-algebra will be denoted by A/I, and Id A will be 
the complete lattice of ideals in A. 

The radical RadA is the intersection of the maximal ideals in A. An 
MV-algebra A is perfect if A = Rad A U (Rad A)*, where (Rad A)* = {x* : x G 
RadA} (see [7]). 

Consider a perfect MV-algebra A and define a congruence 9 on RadA x 
RadA: (x,y) 9 (u,v) if and only if x + v = y + u. Denote by [x,y] the class 
of (x,y) G RadA x RadA and D(A) = (RadA x RadA) /9 . Thus D(A) is an 
abelian 1-group with the following properties for x,y,u,v G RadA: 

[x, y] + [u, v] = [x + u, y + v], 

[x,y] < [u,v] <=> x + v <u + y, 

[x, y] A [u, v] = [(x + v) A(u + y),y + v] , 

[x, y] V [u, v] = [x + u, (x + v) A (u + y)] . 

In fact D is a functor from the category of perfect MV-algebras to the category 
of abelian 1-groups. 

For any [x,y] G D(A) one can prove that [x,y] = [xy*,x*y], [x,y]+ = 
[xy*,0], [x,y]- = [x*y,0] and \[x,y]\ = [d(x,y),0]. 

For an abelian 1-group G consider the lexicographic product Z x G . (1, 0) is 
a strong unit in Z x G, so we can take A(G) = T(Z x G, (1,0)), where T is the 
M u n d i c i functor (see [6]). Thus A(G) is a perfect MV-algebra and the func
tors D and A establish a categorical equivalence between perfect MV-algebras 
and abelian 1-groups [7]. 

An MV*-algebra (A,*) ( = •-algebra) is a perfect MV-algebra A with a 
binary operation • on RadA fulfilling the following conditions, for x,y,z G 
RadA: 

(a) x • (y • z) = (x • y) • z; 
(b) x*(y + z) = x*y + x*z, (y + z)*x — y • x + z* x\ 
(c) x • 0 = 0 • x = 0. 

If (K, +, • ,0,1) is an 1-ring and K+ = (K,+,0) the additive 1-group of K, 
then the perfect MV-algebra A(J\T+) = T(Z x JC+, (1, 0)) is an MV*-algebra by 
putting (0,x)*(0,y) = (0,xy) for all x, y > 0 in K. Conversely, assume (A,*) 
is an MV*-algebra and define a multiplication on the 1-group D(A): 

[a, b] • [c, d] — [a • c + b • d, a • d + b • c] . 

Thus (D(A), •) is an 1-ring and the above constructions give a categorical equiv
alence between MV*-algebras and 1-rings ([2]). 
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If A is a perfect MV-algebra and I , a proper ideal of A, then D(I) = {[x, y] : 
x,y el} is a convex 1-subgroup of D(A). The map I H-> D(I) is a bijection 
between the proper ideals of A and convex 1-subgroups of D(A) (see [3]). 

The background for 1-rings can be found in [5], [9]. 

2. *-Ideals 

This section contains basic notions and results on the •-ideals of an •-algebra. 
Let (A,*) be a •-algebra. A *-ideal in A is an ideal I C Rad^i such that 

a e I k b e R a d A ===> a*b, b*a e I. 
Similarly, one can define the left and right •-ideals. 

PROPOSITION 2 . 1 . For an ideal I C Rad A the following are equivalent: 

(1) I is a *-ideal; 
(2) D(I) is an (-ideal in the (-ring D(A). 

P r o o f . 
(1) = > (2): 

Assume [a,b] e D(I), a,b e I and [c,d] e D(A) a,b e D(A). Then a*c, b* 
d, a* d, b* c e I and a • c -f 6 • d, a*d+b* c e I. Therefore 

[a, 6] • [c, d] = [a • c -f 6 • d, a * d -f b * c] e D(I). 

(2) = > (1): 
Assume a e I, be Rad A, so [a,0] G D(I), [6,0] G D(A), hence [ a* 6,0] = 
[a, 0] • [6,0] G D(I). It follows that a * 6 G I . • 

PROPOSITION 2.2. If J is an (.-ideal in the I-ring K, then A ( J + ) is a 
*-ideal in *-algebra A(K) = T(Z x K+, (1,0)) . 

LEMMA 2 .1 . If I is a *-ideal and x1,x2,yl,y2 G Rad A, then 

xi/i = x
2l

I & yi/I = y2/1 = > (xi*yi)/I=z(x2*y2)/1-

P r o o f . If xx/I = x2/I, then xxx2, x\x2 G I and xx -f Xj.x2 = rr̂  V x2 = 
x2 -f x2xx, so there exist ax,a2 G I such that xx -f aa = a ; 2 + a 2 . Similarly, 
2/i+^i = 2/2+^2 for some 61,62 G I . Thus (#-_+04 )*(:*/!+6-_) = (x2+a2)*(y2+b2), 
so (xx *yx) + cx = (x2 * y2) -f c2 for some c1? c2 G i since I is a •-ideal. Thus 

(xl*yl)/I = (xl*yl)/I + cl/I = (x2*y2)/I + c2/I = (x2*y2)/I. 

• 
R e m a r k 2 .1 . It is obvious that Rad(A/I) = (Rad^4)/I . By this Lemma one 
can define • : Rad ,4/I*Rad A/I —> Rad ,4/1 by putting (x/I)*(y/I) = (x*y)/I. 
It is easy to prove that A/1 becomes a •-algebra. 
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PROPOSITION 2.3. If I is a *-ideal in A, then the £-rings D(A/I) and 
D(A)/D(I) are isomorphic. 

P r o o f . We shall prove that, for ax, a2, b1, b2 G Rad A, the following holds: 

[ajl,bjl] = [a2/J,b2/l] <=» [avbx]/D(I) = [a2, b2 ]/D(I). (*) 

If [al/I,b1/I] = [a2/I, b2/I], then al + b2 = b1 + a2 (mod I), so a 7 ^ + b2, 
b- + a 2 ) G I . 

It follows that 

IK, &i] - [«2>
 6

2ll = IK + 62> &i + fl
2]l = K a i + 62> &i + a

2)> 0] G £ ( I ) . 

But jD(I) is an ^-ideal, so [ a ^ b j - [a2,b2] G I?(I), i.e. [a1? b1]/D(I) = 
[a2lb2]/D(I). 

Conversely, if [a1? bJ/jD(I) = [a2, b2]/D(I), then 

[d(fll + b2, b! + a2),0] = | [ a l 5 b j - [a2, b2]| G Z?(J), 

therefore ^(aj + b2, bx + a2) G I, so ax + b2 = bx + a2 (mod I), etc.. 
Thus one can define a map [a/I, b/I] i-> [a, b]/D(I) which is an isomorphism 

of l-v'mgs. D 

R e m a r k 2.2. Any intersection of *-ideals is a *-ideal. Consider a family IA, 
A G A, of *-ideals and its supremum \/IA in Id A. It is easy to prove that \/ Ix 

is a *-ideal. Thus the set XdA of *-ideals of A is a complete sublattice of Id A. 

PROPOSITION 2.4. The map I H* D(I) is a lattice isomorphism between Xd A 
and the lattice XdD(A) of the £-ideals in D(A). 

P r o o f . It is known that I i-> D(I) is a lattice isomorphism between 
Id A — {A} and the lattice IdD(A) of the convex ^-subgroups of D(A). By 
Proposition 2.1 one can take the restriction of this isomorphism to XdA. 

By [5; 8.2.2] and Proposition 2.3, it follows that we have in XdA: 

(\Jix)nJ = \/(ixnJ). 

This also follows from the distributivity of Id A. For M C Rad A let us denote 

id(jAI) = the ideal generated by i\I, 

(M) = the *-ideal generated by M. 

D 
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PROPOSITION 2.5. We have 

(M) = {x G Rad_4 : x <u + t*u + u*t + t*u*t, u G id(Af), t G R a d y l } . 

P r o o f . If J is the right member, then it is clear that J C (A/) and M C J . 
We shall prove that J is a •-ideal. If xl,x2 G J , then x{ < ui + ti*ui+ui*ti + 

ti*ui*ti, ui G id(AI), t{ G Rad A, i = 1,2. Thus xx+x2 < u+t*u + u*t+t*u*t 
with H = ^ + w2 G id(M), t = £-_ + t2 G Rad .4 . 

If x < Tz + ^*Tx + i /*t + i * u * t and a G Rad A, then a • x < s*u + s*u* s 
with 5 = a + a*t + t G Rad A. D 

COROLLARY 1. (a) = {x : x<na + s*a + a*s + s*a*s, s G Rad A} for 
a G Rad A. 

L E M M A 2.2. D((a)) = ([a,0]) for a G Rad A. 

P r o o f . Assume u G / )((a)) . Then u = [x,0] with x G (a). Hence x < 
na + s ^ a + a ^ s + s ^ a ^ s with 5 G Rad.4. 

It follows that u = [x, 0] < n[a, 0] + [5,0] • [a, 0] + [a, 0] • [5,0] + [5,0] • [a, 0] • [5, 0]. 
So u G ([a, 0]) by [4; 8.2.7]. The converse inclusion is similar. O 

COROLLARY 2. For x,y G Rad A we have: 

(1) (-r*2/>C(a:)n(i /) , 
(2) (x) V (y) = (xVy) = (x + y). 

P r o o f . By [5; 8.2.8] and Lemma 2.2, or directly, using Corollary 1. D 

For any •-ideals / , J define 

I*J = ({a*b: ael, b G J} ) . 

PROPOSITION 2.6. For any *-ideals I1, I2 we have 

Ix • I2 = {x G Rad A: x < a • b, a G / p bG/2}. 

P r o o f . If J is the right member, then J C IX*I2, and a E Ix, b E I2 imply 
a • b G J . Thus it suffices to prove J is a •-ideal. For example, if xi < ai*bi, 
ai G I1 , b; G / 2 , z = 1,2, then xx + x 2 < a : • b j + a 2 ^ b 2 < (ax +a2)*(bx + b 2 ) , 
ax + a2 G / x , bx + b2 G / 2 , so xx + x2 G J . D 

PROPOSITION 2.7. J D ^ • / 2 ) = £ ) ( / - ) -D(I2). 

P r o o f . Assume u G /^( / x • / 2 ) + , so u = [x,0] with x G /x • I2, i.e. 
.r < a^a-2 with ax E Ix, a2 € I2, therefore w = [x, 0] < [ax*a2,0] = [a1? 0]-[a2, 0] 
and [a-,0] G D ^ ) , [a2,0] G F>(/2), hence ix G .0(7-,) • £>(/2) by [5; 8.2.11]. The 
converse inclusion is similar. D 
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C O R O L L A R Y 3 . 

(1) I*{J*K) = (I*J)*K; 

(2) I*(yix) = W*Ix)> (V IA)* I = V( IA* I ) -

P r o o f . By [5; 8.2.12] and Proposition 2.3, 2.7 or directly, by Proposi
tion 2.6. Thus (Id A,*) is a quantale. D 

PROPOSITION 2.8. The map I H-> D(I) is a quantale isomorphism between 
(IdA, •) and (ldD(A)r). 

P r o o f . By Propositions 2.4 and 2.7. D 

One can define / ( n ) = / • • • • • / . Thus F>(/(n)) = (D(I))n. 
"V 

n-times 
For a G Rad A let us denote a (n ) = a • • • • • a. 

v v ' 
n-times 

PROPOSITION 2.9. / ( n ) = {x GRadA : x < a (n ) , a G / } . 

PROPOSITION 2.10. For a *-ideal I ^ Rad A the following are equivalent: 

(1) (VIvI2eldA)(l1nl2=I ===> (1 = 1, orI = I2)); 
(2) (\flvl2e Id A)(l1nl2 CI => (I, CI or I2 CI)); 
(3) (Va,6G Rad A) ((a>n(6> C / = > (a G / or b G / ) ) . 

A •-star ideal / ^ Rad A satisfying these properties will be called irreducible. 
It is easy to see that any maximal •-ideal is irreducible. 

LEMMA 2.3 . For I e Id A, I is irreducible if and only if D(I) is an irreducible 
i-ideal. 

P r o o f . By Propositions 2.4 and 2.10. D 

LEMMA 2.4. For I £ Id A and a G Rad A — / there is an irreducible • -ideal 
P such that I C P and a £ P. 

P r o o f . Let P be a •-ideal maximal with respect / C P , a (£ P. Assume 
(a) n (6) C P , a, 6 $ P. Therefore P V (a) = P V (b) = Rad A, so P = 
P V ((a) n (6» = (P V (a)) f l ( P V (6» = Rad A, which is a contradiction. D 

PROPOSITION 2 .11 . Any proper -k-ideal is an intersection of irreducible 
• -ideals. 

P r o o f . By Lemma 2.4. D 

Particularly, the intersection of all irreducible •-ideals in A is {0}. 
An element x G Rad A is *-nilpotent if x ( n ) = 0 for some integer n > 1. 
A is *-sem,iprime if there is no non-zero •-nilpotent element of A. 
A is a • -domain if x*y = 0 implies x = 0 or y = 0. 

484 



IDEALS, ^-RINGS AND MV*-ALGEBRAS 

LEMMA 2.5. Any totally-ordered *-semiprime *-algebra A is a *-domain. 

P r o o f . Assume x*y = 0.Ifx<y, then x2 < x * y = 0, so x2 = 0, hence 
x = 0. • 

A *-ideal / is *-nilpotent if 1^ = {0} for some integer n > 1. 
A *-ideal I is *-semiprime if A/1 is a *-semiprime *-algebra. One can see 

that I is *-semiprime if and only if x^ G / implies x G / for any x G Rad A. 

3. /-Algebras 

In this section we shall study the MV/-algebras, a subclass of MV*-algebras 
corresponding to the /-rings. 

For any subset M C Rad A, ML = {a e A : a A m = 0, me M} is an 
ideal included in Rad A, x < y for any x G Rad A, y G (Rad A)*. 

LEMMA 3 .1 . If P is a minimal prime ideal in A, then P = U{X_L : x & P} • 

P r o o f . Assume x G P, so x A y = 0 for some y tf- P since P is minimal 
prime. Thus y £ xL. The converse is obvious. • 

PROPOSITION 3 .1 . For a *-algebra A the following are equivalent: 

(1) a,b, x G R a d A & a A b = 0 -=-=> a A (b*x) = a A ( x * b ) = 0 ; 
(2) /or an?/ / C Rad A, IL is a *-ideal; 
(3) any P G MinA is a *-ideal. 

P r o o f . 
(1) = » (2): 

If a € Rad yl, b e I-1, then & A a: = 0 for x G / , therefore (a * 6) A rr = 0, i.e. 
a * b E Ix . 

(2) = > (3): 
By Lemma 3.1. 

(3) = > (1): 
Consider a, b, x G Rad A, a A 6 = 0 and P G MinA, hence a G P or b G P . If 
a e P, then a A (b * x) e P because a A (6 * x) < a. If b G P , then 6 * x G P , 
so a A (6 * x) G P . It follows that a A (6 * x) G n Min A = {0} . • 

A *-algebra A satisfying these properties will be called an MVf'-algebra 
(= f-algebra). 

PROPOSITION 3.2. For a *-algebra A the following are equivalent: 

(1) A is an f-algebra; 
(2) A 75 a subdirect product of totally-ordered *-algebra. 
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P r o o f . 

(1) => (2): 
In accordance to Proposition 3.1(3) and f | M i n -4 = {0}, A <-> U{A/P : P € 
Min_4} is the desired representation of _4. 

(2) -=> (1): 
Any totally-ordered •-algebra is an /-algebra. • 

PROPOSITION 3.3. The following stationes are equivalent: 

(1) A is an f-algebra; 
(2) D(A) is an f-ring. 

P r o o f . 
(1) => (2): 

Consider u,v,w > 0 in D(A) such that u A v = 0, so w = [a, 0], it = [6,0], 
w = [x,0] with a,b,x e RadA.Thus [aA6,0] = [a,0]A[6,0] = [a,0],so aA6 = 0, 
hence a A (6 • x) = 0. We get 

u/\(vw) = [a,0]A ([6,0]- [x,0]) = [aA(6*z),0] = [0,0]. 

(2) = • (1): 
Similarly. • 

PROPOSITION 3.4. I/ A is an f-algebra, then, for a,b,af,bf,x G RadA. we 
have: 

(a) 
x * (a V 6) = (x * a) V (x * b), x * (a A 6) = (x * a) A (x * 6); 

(a V 6) • x = (a * x) V (6 • x), (a A 6) • x = (a * x) A (6 • x); 

aA6 = 0 = > a ^ 6 = 0; (b) 

d(a,b)*d(a',b') = d(a*af + b*bf, a*bf + b*af). (c) 

P r o o f . We shall prove only (c). By [5; 9.1.10(iii)]: 

|[a,6].[a/6']| = |[a,6]|.|[a',6 ,]|, 

therefore 

[d(a*a' + b*b',a*b' + b*a'),0] = \[a*a' + b*b', a*b' + b*a']\ 

= |[o,6]-[o',6']| = |[a,6]|-|[o',6']| 

= [d(a,6),0]-[d(a',6'),0] 

= [d(a,6)*d(a',6'),0]. 

O 
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PROPOSITION 3.5. For a *-algebra A the following are equivalent: 

(1) A is an f-algebra. 
(2) For any irreducible *-ideal P of A, A/P is a totally-ordered *-algebra. 

P r o o f . 

(1) = * (2): 
Assume A/P is not totally-ordered for some irreducible P. Thus there exist 
a/P, b/P e A/P, a/P ^ b/P and b/P j£ a/P. One can assume a, b e RadA. 
We have ab*/P ^ 0 / P , ba*/P ^ 0/P. Denoting x = ab*, y = a*b we have 
x,y £ P, x AH = 0. 

Thus x"L,xJ-_L $£ P and x1- D x±J~ = {0}. But xL, .x-11- are *-ideals since 
.A is an /-algebra. This contradicts the fact that P is irreducible. 

(2) = > (1): 
The intersection of all irreducible *-ideals of A is {0}, so A is a subdirect 
product of totally-ordered *-algebra, hence A is an /-algebra by Proposition 3.2. 

• 
PROPOSITION 3.6. If A is an f-algebra, then (a) n (b) = (a A 6) for any 
a,b G Rad A. 

P r o o f . -D(_4) is an /-ring, so, by [5; 9.1.8] and Lemma 2.2: 

D((a) n (6)) = D{(a)) n ((b)) - <[a,0]> n ([6,0]) 

= ([a ,0])n([b ,0]) = ([aAb ,0]) =D((aAb)) . 

By Proposition 2.4, (a) n (b) = (a A b). D 

4. *-Prime ideals in /-algebras 

In this section we shall introduce the *-prime ideals in an /-algebra. They 
correspond to prime ideals in an /-ring and will have a main role in this paper. 

LEMMA 4 . 1 . If A is an f-algebra and x,t /G RadAL. then we have: 

x*y <y*x = > x ( n ) * 7/(n) < (x * y){n) < (y * x ) ( n ) < H(n) * x ( n ) . 

P r o o f . By [5; 9.2.1] we have in D(A): 

x*y <y*x = > [x, 0] * [y, 0] < [y, 0] • [x, 0] 

=> [x ,0] n . [y ,0] n < ( [ x , 0 ] . [ H , 0 ] ) n < ( [ i / , 0 ] . [ x , 0 ] ) n 

< b , o ] n - [ x , o ] n 

= > [x ( n ) *H ( n ) ,0 ] < [(**H) ( n ) ,0] < [(H*x) ( n ) ,0] 

< [ H ( n ) * x ( n ) , 0 ] , 
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which gives the inequality of the lemma. D 

Now consider A totally-ordered. Define Un= [x e Rad_4 : x ( n ) = 0} . 

LEMMA 4.2. 

(1) x,yeUn => x + yeUn; 
(2) xeUn k yeR&dA = > x*y,y*x eUn; 
(3) x<yeUn => xeUn. 

P r o o f . 
(1) If x < y, then (x + 7/)(n) < 2 ( n ) • y ( n ) = 0. 

(2) Assume x*y <y*x. By Lemma 4.1, 

(x • H)(n) < (y • x ) ( n ) < y{n) • x ( n ) = 0 . 

(3) x < y e Un ==-> x ( n ) < y{n) =0. D 

COROLLARY 4. If A is totally-ordered and x G Rad A, then 

x ( n ) = 0 = > (x) ( n ) - { 0 } . 

P r o o f . (For n = 2) Assume x (2 ) = 0. We have (x) (2 ) = {y G Rad.4 : 
H < a(2) , a G (x)} . If y < a(2) with a < nx + u^ . r + x ^ i i + u ^ x ^ i t , then, by 
the previous lemma, a G U2, so y < a(2) = 0, i.e. y = 0. D 

DEFINITION 4 . 1 . A •-ideal P ^ Rad.4 is *-prime (resp. completely *-prime) 
if / • J C P ==> I C P or J C P (resp. x*y e P => x e P or y e P) for 
a n y / , J eld A (resp. x j G R a d / 4 ) . 

R e m a r k 4.2. Any •-prime •-ideal is irreducible since / • J C I fi J. 

PROPOSITION 4 . 1 . For anu *-ideal P of an f-algebra A the following are 
equivalent: 

(i) P is completely • -prime; 
(ii) P zs • -prime; 

(iii) A / P zs a totally-ordered • -domain. 

P r o o f . 
(i) = > (ii): 

Assume J • J C P and there is y e P — J. Thus, for each x G I , x • H G I • J, 
so x e P, hence I C P. 

(ii) = > (iii): 
If P is •-prime, then P is irreducible, so, by Proposition 3.5, A/P is totall>-
ordered. We shall prove that A/P has no non-zero •-nilpotent •-ideal. If J is 
a •-ideal in A / P , then J = I/P for some •-ideal I in A and 

J<n) = {0} = > 7 ( n ) C P =-> J = I/P = {0 /P} . 
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By Corollary 4, A/P has no non-zero *-nilpotent element, hence, by 
Lemma 2.5, A/P is a ^-domain. 

(iii) =4> (i): 
Obvious. • 

PROPOSITION 4.2. Let P be a *-ideal of an f-algebra A. Then the following 
are equivalent: 

(1) P is completely *-prime; 
(2) D(P) is a completely prime ideal in D(A). 

P r o o f . 

(1) => (2): 
Assume [a, b] • [a', b'] G D(P) with a,a',b,b' G Rad.4. 

By Proposition 3.4(c) we have: 

[d(a, b) *d(a, b'),0] = [d(a *a' + b*b, a*b' + b*a'), 0] 

= \[a*a' + b*b', a*b' + b*a']\ 

= \{a,b]-[a',b']\eD(P), 

hence d(a,b)*d(a',b') G P. It follows that d(a,b) or d(a',b') G P, so \[a,b]\ = 
[d(a,b),0] € D(P) or |[a',6']| = [d(a',b'),0] G D(P), so [a,b] G D(P) or 
[a',b']eD(P). 

(2) ==> (1): 
Similarly. D 

R e m a r k 4 .3 . Since P h-> D( / ) is a quantale isomorphism between Xd^4 and 
IdD(A) it follows that a *-ideal P of .A is *-prime if and only if D(P) is 
prime in D(A). Thus Proposition 4.2 implies the equivalence (i) <==> (ii) of 
Proposition 4.1 and, conversely, Proposition 4.2 follows from Proposition 4.L 

Denote by Spec A the set of *-prime ideals in A and Spec .0(^4) the set of 
1-prime 1-ideals in the /-ring F>(,4). For I e Id A set d(I) = {P G Spec A : 
7 £ P } . 

In this way, Spec A becomes a topological space. 

COROLLARY 5. The map P i-» D(P) is a homeomorphism between Spec A 
and Spec D(A). 

Let A be an /-algebra and / a *-ideal. Denote \fl = {\{P G Spec A : 
I CP}. 

PROPOSITION 4 .3 . \/l = {x G RadA : x{k) G / for some integer k > l } . 

P r o o f . Denote by J the right member and assume x £ J, so x^ £ I 
for k = 1,2,. . . . Consider a *-ideal P maximal with respect to x^) ^ p 
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k = 1,2,. . . and I C P. We shall prove that P is *-prime. Assume there 
exist two *-ideals Kl, I\T2 such that Kx * K2 C P , Kx (/L P and K2 <£. P , so 
T[m) ^ p v Ifj and x ( a ) G P V I\"2 for some integers ra, n > 1. It follows that 

x{m+n) e(pyKx)*(PV K2) C P V (J^ * Iv~2) C P . 

Contradiction, hence x £ \fl. The converse inclusion is obvious. • 

COROLLARY 6. An f-algebra A is *-semiprime if and only if v ( 0 ) = {0}. 
A *-ideal I of an f-algebra A is * -semiprime if and only if \fl = I. 

PROPOSITION 4.4. If A is a *-algebra, then the following are equivalent: 

(1) A is a *-semiprime f-algebra; 
(2) A is a subdirect product of totally-ordered *-domains. 

P r o o f . By Propositions 3.2, 4.1 and Corollary 5. • 

PROPOSITION 4.5 . For a *-algebra A the following are equivalent: 

(1) A is a *-semiprime f-algebra. 
(2) For any a, b G Rad A, a A b = 0 if and only if a*b = 0. 
(3) Any P G MinA is a completely *-prime *-ideal. 

P r o o f . 

(1) = » (2): 
If a*b = 0, then (a A b)(2) < a*b = 0, so (a A b)(2) = 0, so a Ab = 0. The 
converse implication holds in any /-algebra. 

(2) = > (3): 
For any a,b,x G Rad A we have: 

a A b = 0 ==> a * b = 0 ==> a*(b ) = 0 ==> aA(b*.x) = 0, 

so A is an /-algebra. By Proposition 3.1, a 1 is a *-ideal for any a G Rad A. 
We shall prove that aL is *-semiprime. If x (2 ) G a1, then (x*x) A a = 0. so .r* 
x*a = 0. Thus x*(x*a) = (x*x)A(x*a) = 0 because (x*x)*(x*a) = 0, therefore 
x A x A a = 0, i.e. x G a1-. Thus a-1 is ^-semiprime. Consider now P G JMin A, 
so P is a *-ideal by Proposition 3.1 and P = ( J { a ± '• a £ P * a £ Rad A} 
The previous remark shows that P is ^-semiprime, so A/P is *-semiprime and 
totally-ordered. By Lemma 2.5, .A/P is a ^-domain for each P G Min.4, hence 
.4 is a subdirect product of totally-ordered ^-domains. 

(3) = > (1): 
By Propositions 3.2 and 4.4, .A is a *-semiprime /-algebra. • 
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PROPOSITION 4.6. If P is a • -ideal in an f-algebra A, then the following 
hold: 

(1) P k-prime => P is prime. 
(2) If A is *-semiprime, then P is • -prime if and only if P is prime. 
(3) The set of all • -ideals containing a • -prime • -ideal P forms a chain. 

P r o o f . 
(1) Assume P •-prime, so A/P is totally-ordered, hence P is prime. 
(2) If A is •-semiprime, then A/P is also •-semiprime, so one can apply 

Proposition 4.5(2) for any P prime: 

x*yeP ==> x/P + y/P = 0/P = > x/P A y/P = 0/P 

=> x A y G P => x G P or y G P, 
so P is •-prime. 

(3) By (1). D 

By this proposition, in a •-semiprime /-algebra, any •-prime •-ideal is in
cluded in a unique maximal •-ideal. 

PROPOSITION 4.7. For any *-ideal I, D(\fl) = \JD(I). 

P r o o f . By Proposition 2.8 and Corollary 5. • 

If N(A) = y/(0) and with the same notation in ^-groups, we have D(N(A)) 
= N(D(A)). 

5. ^-Semiprime and *-pseudoprime *-ideals in /-algebras 

A •-ideal I in a •-algebra A is • -pseudoprime if 

r • H = 0 & r,HG Rad A = > x G / or y G / . 

PROPOSITION 5 .1 . A k-ideal P of an f-algebra A is k-prime if and only if 
it is • -semiprime and • -pseudoprime. 

P r o o f . Assume P is •-semiprime and •-pseudoprime. Consider x*y G P , 
so (r A H)(2) G P since (x f\y)^ < x • y, therefore x Ay G \[P = P. We stress 
that 

x(x A y)* A y(x A y)* = (x A y)(x A y)* = 0 , 

so (r(rA?/)*)^(y(:rAy)*) = 0, A being an /-algebra. Since P is •-pseudoprime, 
x(r A y)* G P or T/(X A y)* G P . If r ( r Ay)* G P , then 

x = (xAy)Vx= ((x(x A y)*) + (x Ay)) £ P . 
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Thus P is *-prime. The converse implication is trivial. • 

In what follows we will assume that A is an /-algebra. 
In accordance to Proposition 4.7, P = \fP if and only if D(P) = yjD(P), 

so a *-ideal P is *-semiprime if and only if D(P) is semiprime in D(A). 

PROPOSITION 5.2. A *-ideal P is *-pseudoprime if and only if D(P) is 
pseudoprime in D(A). 

P r o o f . Assume P ^-pseudoprime and [x, y] • [u, v] = [0, 0]. Thus 

[d(x,y)*d(u,v),0] = [d(x,y),0] • [d(u,v),0] 

= \[x,y]\.\[u,v]\ = \[x,y]-[u,v]\ = [0,0] 

because D(A) is an /-ring. Thus d(x, y) * d(u, v) = 0, so d(x,y) G P or 
d(u,v) eP.lt follows that \[x,y]\ = [d(x,y),0] G D(P) or \[u,v]\ = [d(u,v),0] 
G D(P), i.e. [x,y] G D(P) or [u,v] G D(P). Then D(P) is pseudoprime. 

The converse implication is very similar. • 

LEMMA 5.1 . Assume A -k-semiprime and a, b G RadA. Then 

(i) a < b <=> a(2) < b(2) ; 
(ii) (a + 6 ) ( 2 ) < 2 ( a ( 2 ) + b ( 2 ) ) ; 

(iii) ( a*b ) ( 2 ) < ( b ( 2 ) * a ( 2 ) ) v ( a ( 2 ) * b ( 2 ) ) . 

P r o o f . 

(i) By [8; 2.3] we have, because F>(^4) is *-semiprime, 

a<b <=> [a ,0]<[6,0] <=> [a, 0]2 < [b, 0]2 

<=> [a ( 2 ) ,0]<[b ( 2) ,0] <=> a ( 2 ) < b ( 2 ) . 

(ii) By [8; 2.4] we also have 

[(G + b)(2),0]-[a + b,0]2-([a,0] + [b ,0] ) 2 <2([a ,0] 2 + [b,0]2) 

= [2(a ( 2 )+6 ( 2 ) ) ,0 ] , 

therefore (a + 6)(2) < 2(a(2) + 6 ( 2 )) . 

(iii) Similarly, using [8; 2.5]. • 

For a *-ideal J in A, denote 

S(I) = {a G Radv4 : a < x2 for some x G Rad_4 such that x{2) G / } . 
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LEMMA 5.2. S(I) is a *-ideal of A. 

P r o o f . For a,b G Rad A we have: 

a, be 5(7) ==-> a < x(2) el k b< y(2) e I 

=> a + b< x(2) + y(2) <(x + y)(2) < 2(x(2) = y(2)) 

(by Lemma 5.2(H)) 
= > o + 6 € 5 ( 7 ) . V " 

a e Rad A kbe 5(7) => b < x(2) e I 

= » a*b<a*x(2) < (a*x + x)(2) <2((a*x)(2) +x ( 2 ) ) 

< 2(x(2) + (a(2)*x(2)) V (x(2) *a
(2))) e I 

= > a*beS(I) 

in accordance to Lemma 5.2(ii) and (iii). • 

LEMMA 5.3. Fbr any *-ideal / , I(2) C 5(7) C 7 and 5(5(7)) = 5(7). 

P r o o f . By Proposition 2.11, we have 
I(2) = [ae Rad A : a < x2 for some x e 1} , 

therefore: a G / ( 2 ) = > a < x(2), x G / =!> a < x(2) e I => a e 5(7). 
We also have: 

a G 5(7) = > a < x(2) G / = > a < x(2) G 5(7) 

because 
x(2) < x(2) el => ae 5(5(7)). 

The rest of the proof is obvious. • 

Remark 5.1. If I is an ^-ideal in an ^-ring R, there exist two notations for 
the same notion 

7n = (In) = {aeR: \a\ < xn for some x G /+} 

In: in [5; p. 158] (we adopt this notation). 
(7»): in [4; 2.1]. 

LEMMA 5.4. We have D(S(I)) = S(D(I)). 

P r o o f . Consider u = [a,0] G D(S(I))+ with a G 5(7), so a < x(2) G I 
for some a: G Rad A, therefore v2 = [x(2),6] G D(I) and t/ < v(2). This yields 
u G 5(F>(/)). 

Conversely, assume u = [a, 0] G S(D(I)) , hence u < v2 e D(I), L; = [x, 0] 
with x G Rad.4. Thus ?;2 = [x(2),0] G /?(/) , hence x(2) G / , hence a < 
x^ e 7. Thus a G 5(7) and u G D(S(I)). • 
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PROPOSITION 5.3. For a *-ideal I in an f-algebra A the following are equiv
alent: 

(1) I is -k-semiprime; 
(2) N(A) C I and a G Rad .4, a(2) G I implies a(2) e I; 
(3) N(A) C I and S(I) = I(2). 

P r o o f . By [8; Theorem 3.2], Lemma 5.4 and other transfer properties. D 

PROPOSITION 5.4. If S(I) is *-semiprime, then I = S(I). 

P r o o f . By [8; Theorem 3.3] and Lemma 5.4. D 

A *-ideal I is • -square dominated if S(I) — I. I is called • -square-root 
closed if for any a G I there exists x G I such that x ( 2 ) = a. 

PROPOSITION 5.5. Let I be a *-ideal in A. 

(1) I is *-square dominated in A <=> D(I) is square dominated in D(A) 

([15])-
(2) I is * -square-root closed in A <=> D(I) is square-root closed in D(A) 

([15]). 

P r o o f . 
(i) By Lemma 5.4. 
(ii) Assume I is ^-square-root closed and [a, b] G -D(I), so a, b G I and 

d(a,b) G I. Thus d(a,b) = x ( 2 ) for some x G I, hence |[a,b]| = [d(a,b),0] = 
[.r(2),0] = [x,0]2 and [x, 0] G D(I). Thus F>(I) is square-root closed. 

Assume now D(I) is square-root closed and a G I. Thus [a, 0] G D(I), so 
[tt,0] = [x,0]2 = [x (2),0] with [x,0] G F>(I), therefore .x G I and a = x ( 2 ) , i.e. 
I is ^-square-root closed. 

If x[ = x2 = a, £-_,x2 G Rad^4 in a *-semiprime /-algebra, then xx = x2 

by Lemma 5.1 (i). The unique solution of x ( 2 ) = a will be denoted by a (1 / /2). 
It is clear that [a1//2,0] = [a,0] (1 / /2) with usual notation in /-rings (see [8; 

p. 404]). • 

PROPOSITION 5.6. Let I be a *-ideal in a *-semiprime f-algebra A. 

(i) I = I(2) if and only if I is *-semiprime and *-square dominated. 

(ii) If I is * -square-root closed, then 

I(2) = { a G R a d A : a (1/2) G I} 

= {a e RdidA : a = b* c for some b,c e 1} . 

(iii) If I is • -square-root closed, then I = I(2) if and only if I is * -semi-
prime. 
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P r o o f . 
(i) By [8; Theorem 3.4(a)] and Proposition 5.5 (i) using some other well-

known fact. 
(ii) Assume a^/2) G J , so [a,0]1'2 = [a^/2 ,0] G D(I) and D(I) is square-

root closed. By [8; Theorem 3.4(b)] there are u, v G D(I) such that [a, 0] = uoy. 
But A is an /-algebra, so D(A) is an /-ring, hence [a, 0] = \u o v\ = \u\ o |O|, 
so one can assume that u,v > 0. Thus w = [b, 0], U -= |c, 0|, b,c e Radyl and 
[a, 0] = [b * c, 0], so a = bkc with b,c e I. 

Conversely, assume a = bkc, b,c G J , hence [a, 0] = [b, 0] • [c, 0], [b, 0], [c, 0] G 
D(I), hence, by [8; Theorem 3.4(b)], [a^2\0] = [a,0]1 / 2 G D(I). 

It follows that a^W e l . 
We have proved the equality of the last sets in (ii). 
If a G J ( 2 ) , then a < x ( 2 ) , x G J , hence a^/2 ) < x G J , by Lemma 5.1 (i), 

therefore a (1/2) G I. It is clear that the third set in (ii) is included in J ( 2 ) . 
(iii) By (i) and (ii), because any *-square-root closed *-ideal is ^-square 

dominated. • 
oo 

PROPOSITION 5.7. If I is a k-idealin a k-semiprime f-algebra, then f] J ( n ) 

is k-semiprime. n=l 

( OO \ oo 

f) / (") ) = f| (D(I)) and by [8; The-
?i=l ' n=l 

oo 
orein 3.5] this is semiprime in D(A), so f] J ( n ) is *-semiprime in 4 . • 

n=l 

Assume A is a ^-commutative /-algebra. If M C Rad^l , then 

Md = {x GRad_4 : x*m = 0 for m G M} 

is a *-idcal. 

LEMMA 5.5. D(Md) = D(M)d for each k-ideal M in A. 
P r o o f . Assume u = [a, 0] G D(Md)+, s o a * r a = 0 , r a G M . Take 

[x,y] G D(M), so x,y G M and d(x,y) G M . Since J>(A) is an /-ring, we have 
\u.[x,y]\=u.\[x,y]\ = [a,0]. [d(x,y),0] = [akd(x,y),0] = [ 0 , 0 ] , 

hence u o [x,H] = [0,0]. This shows that u G D(M)d. The converse inclusion is 
similar. • 
COROLLARY 7. £>({a}d) = {[a,0]}d /or any a G Rad.4 . 

P r o o f . D({a}d) = F>«a)rf) = F>((a))d = ([a,0])d ^ {[a,0]}d in accor
dance to Lemma 2.2 and Lemma 5.5. • 

A (commutative) /-algebra A is k-normal if Rad.A = {ab*}d V {a*b}d for 
any a, b G Rad A. 
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PROPOSITION 5.8. The following are equivalent: 

(1) A is *-normal; 
(2) D(A) is a normal f-ring (in the sense of [11; p. 686]). 

P r o o f . 

(1) = > (2): 
Consider [a, 6] G D(A). Wc have in D(A): 

{[a,b]+}dv{[a,b)-}d 

= {[ab*, 0]}d V {[ba*, 0]}d = D({ab*}d) V D({ba*}d) 

= D({ab*}dV{ba*}d) = D(RndA) = D(A), 

so D(A) is normal. 

(2) = > (1): 
Similarly. • 

PROPOSITION 5.9. For a k-commutative f-algebra A the following are equiv
alent: 

(1) A is k-norm,al. 
(2) For a, be Rad A, a A 6 = 0 tmp/ies {a}d V {b}d = Rad A. 

P r o o f . 

(2) ==> (1): 
Obvious. 

(1) =--=> (2): 
Assume a A b = 0, so [a, 0] A [6,0] = [0,0]. Since D(A) is normal, {[a, 0]} V 
{[6,0]}rf = Z?(A) = F>(RadA) (see [11; p. 686]). By Corollary 7 we have 

D{{a}d V {b}d) = D({a}d) V D({b}d) = {[a, 0 ] } % {[6,0]}" = D(R*dA). 

By the injectivity of D on ^-ideals, {a}d V {b}d = Rad .4. • 

PROPOSITION 5.10. Consider a k-commutative k-sem,iprime f-algebra A. 

(1) A k-semiprime k-ideal I in A is k-square dominated if any k-prime 
k-ideal minimal with respect to containing I is k-square dominated. 

(2) Every minimal k-prime • -ideal of A is k-square dominated if and only 
if for any a G Rad A. {a}d is k-square dominated. 

P r o o f . This is a translation of [11; Lemma 2.1] using the above transfer 
properties. • 

If I, J are two ^-ideals in A, then I : J = {a G Rad^4 : x G J => 
akx G I} is a *-ideal in A. 
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LEMMA 5.6. We have D(I : J) = D(I) : D(J). 

P r o o f . Assume [a, 0] G D(I : J ) + , so a G / : J , so a • b = / , so a • 6 = / 
for b € J. Consider [#,?/] G D(J), so re,y G J , so d(x,y) G J , hence ak 
d ( x . H ) G / . T h u s | [a ,0]o[x ,y] |= [a^d(x,H),0] G £>(/), so [a, 0] o [x, y] G £>(/), 
i.e. [a, 0]o £>( / ) :£>(J) . 

Conversely, assume [a,0] G (/?(/) : D(J)) and x e J, therefore [ a , 0 ]* 
[x,0] G F>(/), so akx G / , i.e. ae I : J. Thus [a,0] G D ( / : J ) . D 

PROPOSITION 5.11. Lei A be a • -commutative and k-semiprime f-algebra 
with k-identity element and in which every minimal • -prime • -ideal is • -square 
dominated. For any • -ideal I the following are equivalent: 

(1) I is k-pseudoprime; 
oo 

(2) f] / ( n ) is k-prime; 

(3) Iky/I is k-pseudoprime; 
(4) / = \ /7 Z5 k-pseudoprime and I : y/I C y/11 or y/I C / : v/7 and -\/7 

75 • -prime. 

P r o o f . By [11; Theorem 2.2] and some transfer properties. D 

For a •-prime •-ideal P in a •-commutative /-algebra A denote 

0P = {a G Rad A : a • b = 0 for some b £ P} . 

A similar notation will be used for /-rings. 

LEMMA 5.7. Op is a -k-ideal and D(Op) = 0D,P). 

P r o o f . If [a, 0] G L>(Op)+, then a G 0P, so a • b = 0 for some b £ P. 
Thus [a, 0] • [6,0] = [0,0] and [6, 0] $ D(P), i.e. [a, 0] G 0D{P). 

Conversely, assume [a,0] G 0D,p), so [a, 0] • [x,y] = [0,0] for some [x,y] fi 

D(P). Thus [a,0]-\[x,y]\ = [0,0] and \[x,y]\ £ D(P). But |[x,H]|= [d(x,H),0], 
so a • d(.x, H) = 0 and d(x, y) <£ P. Thus a £ Op and [a, 0] G D(Op). D 

PROPOSITION 5.12. / / .A Z5 a k-commutative and k-semiprim,e f-algebra 

with k-identity element, then the follovnng are equivalent: 

(1) A is k-normal; 
(2) for any • -prime k-ideal P in A, 0P is • -prime; 
(3) for any maximal k-ideal P in A, Op is • -prime. 

P r o o f . By [11; Theorem 2.4], Proposition 5.8, Lemma 5.7 and some other 
transfer properties. D 
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PROPOSITION 5.13. Let A be a *-commutative, *-semiprime and *-normal 
f-algebra with ^-identity element. For a *-ideal I the following are equivalent: 

(1) I is *-pseudoprime; 
(2) the *-prime *-ideals containing I form a chain; 
(3) \fl is *-prime. 

P r o o f . We apply [11; Theorem 2.6] and Propositions 4.7, 5.2, 5.8 and other 
transfer properties. • 

A *-ideal I in a (^-commutative) /-algebra A is -k-pnmary if for a,b £ 
RadA, a*b G I and a $. I imply f/n) G I for some n > 1. For the definition of 
primary ^-ideal in /-rings, see e.g. [10; p. 106]. 

PROPOSITION 5.14. The following are equivalent: 

(1) I is -k-primary in A; 
(2) D(I) is primary in D(A). 

P r o o f . 

(1) = * (2): 
For [a, 6], [x, y] G D(I) we shall prove that 

[a, 6] • [x, y] G £>(I) & [a, 6] g £>(/) = > [x, y]n G D(I) for some n > 1. 

If [a, 6] • [x,H] G D(I), then we have (because I}(A) is an /-ring): 

[d(a,6)*d(x,7/),0] = [d(a,6),0] • [d(a,,j/),0] 

= |[a,m-|[x,y]| = |[a,6]-[x,y]|G.D(/), 

so d(a,b)*d(x,y) G £>(I).From [a, 6] <£ I we get [d(a,6),0] = |[a,b]| £ D(I), so 
d(a, 6) ^ I. Thus d(x,y) (n^ G I for some n > 1, since I is •-primary, therefore 
\[x,y]\n = [d(x,y) ( n ) ,0] G £>(I), hence [x,7/]n G D(I). Then £>(I) is primary. 

(2) => (1): 
If a * 6 e I, a (£ I, then [a,0]-[6,0] = [a* 6,0] G £>(I) and [a, 0] £ I)(I), so 
[b(^),0] = [b,0]n G .D(I) for some n > 1, hence &<n> G I. D 

PROPOSITION 5.15. Let A be a *-commutative and *-semiprime f-algebra 
with -k-identity elem,ent and, I, a • -ideal in A. 

(1) If I is * -pseudoprime and it is an intersection of *-primary -k-^deals, 
then I is itself. 

(2) If I = I * v I or I = I : VI , t/ien I is an intersechon of *-pmmary 
k-ideals. 

(3) If I is a * -pseudoprime ideal satisfying I = I*\fl or I = I : I\/I. then 
I is * -primary. 
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P r o o f . 
(1) By [10; 3.6] and Propositions 5.2, 5.14. 
(2) and (3) By [10; 3.5, 3.6], Propositions 2.2, 4.7, 5.2, 5.14, and Lemma 5.6. 

D 

PROPOSITION 5.16. Let A be an f-algebra. 

(1) The join of a *-semiprime *-ideal and a *-square dominated and 
• -semiprime *-ideal is *-semiprime. 

(2) Assume that any minimal *-prime *-ideal in A is *-square dominated. 
Then the join of any two *-prime (resp. *-semiprime) *-ideals in A is 
* -prime (resp. *-semiprime). 

P r o o f . By [13; 2.1, 2.2, 2.3] and the fact that these properties are trans
ferable from £-rings in •-algebras and vice-versa. D 

An (arbitrary) /-algebra A has the left nth-convexity property if for any 
a, 6 G Rad A we have 

a < b ( n ) => ( 3 c G R a d A ) ( a = c * 6 ) . 

Similarly, one can define the right and nth-convexity property. 

PROPOSITION 5.17. The following are equivalent: 

(1) A has the left nth-convexity property. 
(2) D(A) has the left nth-convexity property (in sense o/[10]). 

P r o o f . 

(1) = » (2): 
Assume 0 < u < vn, v > 0 in D(A), so u = [a, 0], v = [b, 0], so [a, 0] < [b, 0]n = 
[b ( n ) ,0] , i.e. a < b(n). Thus there is c G Radyl, a = c * b , hence u = w • v for 
w = [c, 0]. 

(2) = > (1): 
Assume a < b(n), so [a, 0] < [b(n), 0] = [b, 0 ] n , hence there is [x, y] G D(A) such 
that [a, 0] = [x,y] • [b, 0]. D(A) is an /-ring, hence 

[a,0] = \[x,y] - [b,0]| = \[x,y]\ • [6,0] - [d(x,y),0] • [6,0] 

= [d(x,y)*b,0] . 

Thus a = d(x, y) * b, d(x, y) G Rad A. D 

COROLLARY 8. Assume A has the left nth-convexity property. Thus any ho
rn amorphic image of A has the nth-convexity property. 

P r o o f . By [10; 2.3] and Proposition 5.17. D 
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COROLLARY 9. If A satisfies the left nth-convexity property, then for any 
a,b G Rad .4 th.ere exist x,y G Rad .A such that 

a+ (y* d(a, b)) = b + (x * d(a, b)) , 

d(a, b) + (x*b) + (y*a) = (x*a) + (y*b). 

Particularly, for any a G Rad A there is x G Rad A such that a = x*b. 

P r o o f . By [10; Theorem 2.4(1)] and Proposition 5.17 there exist x,y G 
Rad A such that 

[a, b] = [x, y] • |[a, b]| = [x, y] • [d(a, b), 0] = [x * d(a, b), y * d(a, b)] , 

[d(a,b),0] = \[a,b]\ = [x,y] -[a,b] = [x * a + y * b, x * b + y * a]. 

From these one gets the desired properties. • 

Let A be an /-algebra. An n-convexity cover of A is an /-algebra B such 
that there is an embedding A < B and B has the nth-convexity property. 

PROPOSITION 5.18. Let A be a *-commutative and *-semiprim,e f-algebra. 
Then there is a unique *-commutative and *-semiprime f-algebra Kn(A) such 
that 

(a) Kn(A) is an n-convexity cover of A. 
(b) For any embedding (resp. *-morphism) f: A —> B with B a *-semi-

prime f-algebra satisfying the nth-convexity property, there is an em
bedding (resp. a *-morphism) / : Kn(A) -» B such that / | ^ = / . 

P r o o f . We apply [12; Theorem 2.4] for D(A), so one can take the minimal 
n-convexity cover I\~n(F>(,4)) of D(A). Thus A(Kn(D(A))) satisfies the above 
conditions (a), (b). • 

6. Chain conditions in /-algebras 

Let A be an /-algebra. Recall that for S C Rad.4, S1- is a •-ideal. 
A polar *-ideal is a •-ideal I such that I1-1- = I. It is easy to see that the 

set Po\(A) of polar •-ideals of A is a complete Boolean algebra with respect to: 

nIA = nIA and uIA = (uIA)xx = (nIAx)±-

A polar £-ideal in an /-ring I? is an £-ideal K such that K^1- = K in It. 
In [1] the polar ^-ideals are known under the name of closed ^-ideals. Simi

larly, the set Pol(IZ) of polar ^-ideals in I? is a complete Boolean algebra. 
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LEMMA 6 .1 . For any k-ideal I in an f-algebra A, D(IL) = D(I)1. 

P r o o f . Straightforward. D 

LEMMA 6.2. The map I H-> D(I) is an isomorphism between Po\(A) and 
Po\(D(A)). 

P r o o f . By Lemma 6.1. D 

LEMMA 6.3. For any *-ideal I, I is totally-ordered if and only if D(I) is 
totally-ordered. 

LEMMA 6.4. For any non-zero *-ideal I in A the following are equivalent: 

(1) I is totally-ordered; 
(2) I1 is a maximal polar -k-ideal; 
(3) A/IL is totally-ordered *-algebra. 

P r o o f . By [1; Lemma 1] and the previous lemmas. D 

We shall write ACC for "ascending chain condition" and DCC for "descending 
chain condition". 

LEMMA 6.5. For an f-algebra A the following are equivalent: 

(1) A has ACC (resp. DCC) for polar *-ideal; 
(2) D(A) has ACC (resp. DCC) for polar (.-ideal. 

P r o o f . By the boolean isomorphism Pol(.A) —t Pol(D(A)). D 

For an /-algebra A denote by MA the maximal polar •-ideals in A. Simi
larly, for an /-ring R denote by MR the maximal polar ^-ideals in R. 

LEMMA 6.6. For an f-algebra A, f]MA = {0} if and only if f] MD^A) = {0} . 

P r o o f . The map / H-> D(I) is an order-preserving bijection between MA 

and MD{A). D 

PROPOSITION 6 .1 . For an f-algebra A the following are equivalent: 

(1) A has ACC for polar * -ideals; 
(2) A has DCC for polar *-ideals; 
(3) A is isomorphic to a subdirect product of a finite family of totally-ordered 

*-algebras. 

P r o o f . 
(1) 4=» (2): 

By [1; Theorem 1] and Lemma 6.6. 

(3) = » (1): 
Obvious, because any totally-ordered •-algebra has ACC for polar •-ideals. 
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(1) = » (3): 
By Lemma 6.6 and [1; Lemma 4] we have H-^ .4 — {0} and MA is finite. Thus 
A <-» H{A/P : P € MA] is the desired representation of A in accordance to 
Lemma 6.4. • 

PROPOSITION 6.2. For a *-semiprime f-algebra the following are equivalent: 

(1) A has ACC for polar *-ideals; 
(2) A has DCC for polar * -ideals; 
(3) A is isomorphic to a subdirect product of a finite family of totally-ordered 

*-domains. 

P r o o f . By [1; Theorem 2], Proposition 6.1 and the ^-version of [1; 
Lemma 5]. • 

7. Reticulations of an /-algebra 

Denote by If Spec A the set of irreducible *-ideals in an /-algebra ,4. If 
R is an /-ring, If Spec It will be the set of irreducible ^-ideals in It (Keimel 
spectrum). 

For any *-ideal I in A denote d(I) = dA(I) = {P G K Spec A: I <£ P]. It is 
easy to see that d(lnJ) = d(I)nd(J); d(\f Ix) ={J d(Ix); d(aWb) = d(a)Ud(b) • 
d(a A b) = d(a) n d(b). K Spec A becomes a topological space. 

LEMMA 7 .1 . The map P i-» D(P) is a homeomorphism between If Spec _4 
and K Spec D(A). 

P r o o f . For any *-ideal I we have D(dA(I)) = dD(A^ (D(I)). • 

It is easy to see that D(dA(a)) = dD,A^ ([.A, 0]), so any dA(a) is a compact set 
in If Spec-4. An element a ^ 0 in Rad .4 is a, formal *-unit if d(a) = If Spec/I . 
An element a is a formal *-unit if and only if [a, 0] is a formal unit in D(A) 
(see [9]). If Spec _4 is compact if and only if A has a formal *-unit. 

Consider the following equivalence relation: x ~ y <=> d(x) = d(y) on 
Rad A. 

Denote *y(A) = Rad Aj ~ and let ^y(x) be the equivalence class of x G Rad A. 
Setting 

7(x) V7(H) = *y(x + y) 
for x , H G R a d A , 

7(x) A 7(H) = *y(x AH) 

(7(A), V, A, 7(0), 7(1)) becomes a bounded distributive lattice. For a *-ideal I 
of A, 7(I) = J7(x) : x G I} is an ideal of the lattice 7(A). For any ideal J in 
7(A), 7 - 1 (J ) is a *-ideal in A. 
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LEMMA 7.2. The maps I *-» 7 ( I ) , J »-> 7~ 1 (J) establish a lattice isomorphism 
between XdA and the lattice ld^(A) of the ideals in 7(-4). 

P r o o f . For I G Xd A we have: 

7 _ 1
 ( T ( - 0 ) = {a € R a d - 4 : d(a) ~ d(x) f o r s o m e x e 1} = I 

in accordance to Proposition 2.11. For J G Id 7(-4) it is easy to see that 

7 7 - 1 ( ^ ) = .I- • 

COROLLARY 10. K Spec A and Spec 7(-4) are homeomorphic. 

Consider an /-ring It and D2(R) the lattice constructed in [9; p. 210]. A 
construction of D2(R) can also be done in B e l l u c e ' s style [2]. Consider the 
equivalence relation on I?+: x ~ y <£=> d(x) = d(y) for x,y G It+ (here 
d(T) - { F G If Spec A : x g P } ) . Denote J D 2 ( P ) = Ii+/~ and Z)2(.T) the class 
of x G It+ . We define the operations of D2(A): D2(x) V D2(y) = D2(xWy) and 
D2(x)AD2(y) — D2(x*y) for x,y G It+. Thus D2(R) is abounded distributive 
lattice. 

PROPOSITION 7 .1 . I/,4 is an f-algebra, then the lattices j(A) and D2(D(A)) 
are isomorphic. 

P r o o f . For any x, y G Rad A we have: 

7 (x ) = 7(7/) 4=-> d ^ x ) = dA(y) 

dD(A)([xi°}) =dD(A)([y>°}) 

D2([x,0])=D2([y,0]). 

Thus one can prove that 7(re) »-> I)2([x,0]) is a lattice isomorphism. • 

COROLLARY 1 1 . j(A) is a normal lattice. 

P r o o f . By [9; p. 213] and Proposition 7.1. • 

Recall that a •-identity element is an element e G Rad A such that e • x = 
x • e = x for x G Rad .4. The •-identity element is unique. It is clear that e is 
the •-identity element of A if and only if [e, 0] is the identity element of D(A). 

PROPOSITION 7.2. For an f-algebra A with the • -identity e the following 
are equivalent: 

(1) For any a G RadA there exist b,c G Rad A, (a • b) V c > e and 
(a*b) A c = 0. 

(2) For am/ a G Rad ^ , (a) V a x = Rad .4. 
(3) 7(A) is a Boolean algebra. 
(4) If Spec A is a Boolean space. 
(5) Any irreducible • -ideal is a maximal • -ideal. 
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P r o o f . We shall prove that (1) is equivalent to 

(i) for u G D(A)+ there exist v,w G D(A)+ such that 

(u • v) V w > [e, 0] and (wv) Aw = [0,0] . 

(1) => (i): 
Consider u G D(A)+, so u = [a, 0], a G Rad A, hence (a * b) V c > e and 
( a i b ) A c = 0 for some 6, c G Rad A. Thus for i> = [6,0], iu = [c, 0] we obtain 
the relations in (i). 

0) => (-) = 
Similarly. 

The condition (2) is equivalent to 

(ii) for u G D(A)+ we have (u) V uL = D(A). 

This follows by F>((a)) = ([a,0]), F^a1-) = [a.0]-1 for a G Rad A and the 
lattice isomorphism / »-> -0(7) between I d A and IdF ) (A) . 

Thus our proposition follows from [9; p . 217, Proposition 4.10] and Proposi
tion 7.1. • 

LEMMA 7.3. If I is a *-ideal in A and J an ideal of the lattice 7(A), then 

(7(/))X =7(IX) and ̂ V ) ) " " = 7_1U) • 
P r o o f . Straightforward. • 

An /-algebra is locally stonian (resp. locally strongly stonian) if xL V x 1 1 = 
Rad A (resp. I1- V I^L = Rad A) for each x G Rad A (resp. I G I d A) . 

PROPOSITION 7.3. For an f-algebra A the following are equivalent: 

(1) A is locally stonian (resp. locally strongly stonian); 
(2) 7(A) is a stonian (resp. strongly stonian) lattice. 

P r o o f . By Lemmas 7.2 and 7.3. rj 

Now we shall define the second reticulation of an /-algebra. Denote by E(A) 
the set of *-ideals having the form: 

n 

* = V K > *•••*(*.„(,)>' ZyGRadA. 
i = l 

Consider the following equivalence relation on E(A): 

KX=K2 *=> 7K\ = V ^ -

Denote 5(K) the class of K G E(A) and define 

S(KX) V S(K2) = S(KX V K2) and S(KX) A S(K2) = S(KX * If , 
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for K1,K2 G E(A). Thus S(A) — E(A)/= has a structure of distributive lattice. 
For a G RadA denote S(a) = S((a)). Thus 

S(a + b) = S(a V b) = 6(a) V S(b) and <5(a • 6) < 5(a) A S(b) 

because (a + b) — (a V 6) = (a) V (b) and (a • 6) C (a) * (6). 

For 7 G I d A, /* = {O'(iv') : K G .0(4), K C / } is an ideal of 5(A). 
For an ideal J of 5(A), J* = {a G RadA : S(a) e J} is a •-ideal in A. 

The maps 7 H-> /* , J h-» J^ are order-preserving and 7 C (I*)+, J C (J+)*. 
The following result can be proved as in [2]. 

PROPOSITION 7.4. P G Spec A => P = (P*)^ and P* G Spec 5(A). 

PROPOSITION 7.5. T/ie following are equivalent: 

(1) For anH idea/ J of 6(A), J = ( J J * . 
(2) J G Spec 5(A) = > J^GSpecA. 

PROPOSITION 7.6. If the equivalent conditions of Proposition 7.5 are fulfilled, 
then Spec A and Spec 5(A) are homeomorphic. 
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