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STRUCTURE MORPHISMS OF
PROLONGATION FUNCTORS

IVAN KOLAR

In differential geometry one meets frequently with such a prolongation proce-
dure that can be interpreted as a functor p of a category € into a category 9, i.e.
every €-morphism f: M — N is prolonged into a 2-morphism pf: pM—pN. As
a rule, there exists another functor q: 9 — € satisfying q op = id¢, which represents
a back projection related with the prolongation procedure p. Some general
properties of prolongation functors are studied in [11], [13], [15], [16]. In many
cases it is interesting to find certain necessary and sufficient conditions for an
arbitrary 2-morphism F: pM — pN over a €-morphism f =qF: M— N to be the
prolongation pf of f. We first give two simple examples of this kind.

Let # be the category of differentiable manifolds and mappings, #, </ the
subcategory of all diffeomorphisms, FA the category of fibered manifolds, B:
FM— M the base functor and Fllo= FM the subcategory B '(Mo), i.e. an
FM-morphism belongs to M, iff the induced base mapping is a diffeomorphism.

Example 1. If we assign to every manifold M the fibered manifold H'M of all
linear frames on M and to every diffeomorphism f: M— M the induced map H'f:
H'M —H'M, we get a functor H': #Mo— FMo. Consider the canonical R"-valued
form OH'M: TH'M —R", n=dim M. The following assertion is classical. If F:
H'M—>H'M is an %Mo-morphism over f=BF, then F=H'f iff OH'M =
(OH'M).TF. (Kobayashi and Nomizu, [7], p.226, assume that F is an
FM-isomorphism, but their proof holds even for our stronger assertion.)

Example 2. Consider a functor J' transforming a fibered manifold Y into its
first jet prolongation J'Y and an %#Mo-morphism f: Y— Y into the induced map
J'f: 1Y J'Y, jio—je(fooo(Bf)™"), where o is a local section of Y. Further,
denote by VY < TY the vertical tangent bundle of a fibered manifold Y and by Vf
the restriction Tf| VY of the tangent map of an %4{-morphism f: Y— Y. Hence V
is a functor of A into the category VA of differentiable vector bundles. Let 3:
J'Y—Y be the target jet projection. The so-called structure form OJ'Y:
TJ'Y — VY maps a vector A € ToJ'Y into the projection of TB(A)e T.Y into
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V.Y in the direction of the horizontal subspace AU of T.Y corresponding to 1-jet
U, u=BU, [4], [5].

Proposition 1. A mapping F: J'Y—>J'Y over an FMo-morphism f: Y — Y is of
the form F =J'f iff the following diagram commutes

vf

(1) VY — VY

eJ'y eI'y

'Y r 'Y
— S TI'Y

Proof. Denote by Oy: T.Y — V.Y the projection determined by AU, so that
hU =ker®y. For every UeJ 1Y, we have such a situation

0—>hUST.Y -2%5 v,y 0

T.f

0—>hFU—T.Y O, VY =0

where both rows are exact sequences of vector spaces. Obviously, V.f: V.Y — V.Y
commutes in this diagram iff T.f maps AU into hFU. The latter condition means
FU = (J'f)(U), QED.

We shall now specify the category in which the values of the functor J' lie. We

A
define a 2-fibered manifold as a quintuple Z—"»Y——»X , where Z, Y, X are
manifolds and u, A are surjective submersions; Z is called the total space, MZ =Y
(or the fibered manifold Y——X) is the middle space and BZ =Y is the base.

A 2-fibered morphism is a triple (f, Mf, Bf): (Z, Y, X) — (Z, Y, X) such that
the following diagram commutes

u A
V4 —>Y > X
lf le i l Bf
i )
Z —Y —s X

We get a category 2% M and two functors M: 2FM — FM and B: 2F M — M. Let
2% M, be the subcategory of all 2% -morphisms f satisfying Bf € #,. Clearly, J' is
a functor FMo— 2F Mo, the back projection being the middle projection M, and
Proposition 1 gives a necessary and sufficient condition for a 2%#{.-morphism F:
J'Y—>J'Y over f=MF: Y- Y to be of the form F=1J'f.
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1. Structure morphisms

The above examples (as well as those given below) can be expressed in terms of
the following general scheme. Let € and 9 be two categories, p a (prolongation)
functor p: € —>2 and q a (back projection) functor q: 2 — € satisfying q op = id.
Consider an auxiliary category € and two auxiliary functors ¢: € —% and y:
9 — €. We shall say that €-morphisms OpM: Y (pM)— @M defined for all
M € Ob% are structure morphisms of functor p with respect to the pair (¢, y) if
the following two conditions are equivalent for every M, M € Ob¥€:

a) a @-morphism F: pM —pM over f=qF: M—M is of the form F = pf,

b) the diagram

of 3
oM —— oM
2) OpM WF ) @GpM
Y (pM) v (pM)

is commutative.

Clearly it is useful to study geometrically interesting structure morphisms only, as
id,m are trivial structure morphisms of any functor p with respect to the pair
(p, id2). In differential geometry, € is usually (i.e. in all examples we know)
a subcategory of #, & is a subcategory of FM, q is the base functor and the whole
category J( can be mostly taken as €. (On the other hand, the specification of & is
significant, since it determines for how large a class of mappings the commutativity
of (2) implies F = pf.)

In Example 1, we have y =T, while @ is a trivial functor I defined by
IM =R*™™ If =id. We now present some further examples.

Example 3. We first discuss two special cases of Proposition 1.

a) Consider the restriction J'|V®,, where ¥V Bo= VB NFM,. For every vector
bundle E, there is a canonical projection 7: VE — E translating any vertical vector
into the tangent space at the zero vector. This projection transforms ©J'E into
a mapping @J'E: TJ'E — E. By Proposition 1, we deduce

Corollary 1. ©J'E are structure morphisms of J'| VB, with respect to (idya,, T).

b) Let A be the category of principal fiber bundles and their homomorphisms
and PBo= PBNFMo. We have a functor [ of PA into the category of Lie algebras
that assigns to every principal fiber bundle P(X, G) the Lie algebra I[P =® of its
structure group and to every PR -morphism f: P— P the induced Lie algebra
homomorphism If: IP—IP. Every V.P, u €P, is canonically identified with [P.
Using these identifications, we can modify ®@J'P into a mapping @J'P: TJ'P —[P.
By Proposition 1 we find directly

Corollary 2. 6J 'P are structure morphisms of J'|PRB, with respect to (I, T).
Example 4. Let J': FMo—2F Mo be the functor transforming a fibered
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manifold Y — X into its r-th jet prolongation J'Y —_Y — X and an %.#{,-morphi-
sm f: Y—Y into the induced map Jf: J'Y -»J Y. The canonical form @JY:
TJ'Y — VJ'7'Y is defined by means of the inclusion J'Y cJ'(J''Y).

Proposition 2. OJ'Y are structure morphisms of functor J° with respect to
(VI T), i.e. a 2FMo-morphism F: J'Y —J Y over f = MF: Y — Y is of the form
F=JFiff (VI"'f)e(OJY) = (OJY).TF.

Proof. It is well known that an arbitrary mapping of a fibered manifold into
another is locally an F#(-morphism iff its tangent map transforms the vertical
tangent bundle of the first fibered manifold into the vertical tangent bundle of the
second one. By the definition of @J'Y this form maps every (J'Y —J ™' Y)-vertical
vector into zero. Conversely, if A is an (J'Y — X)-vertical vector on J'Y satisfying
(BJ'Y)(A)=0, then A is (J'Y —J" ~'Y)-vertical. Thus, if TF commutes with the
canonical forms as assumed in Proposition 2, then TF maps the vertical tangent
bundle of JY—J 'Y into the vertical tangent bundle of J'Y —J" ~'Y. Hence
there exists a local map Fo of J'_'Y into J”~'Y under F and we can use induction.
For r=1, Proposition 2 coincides with Proposition 1; assume that it holds for
r — 1. Since the jet projections commute with the canonical forms on the successive
jet prolongations, F, satisfies the assumptions of Proposition 2. Hence Fj is locally
of the form J"~'f by the induction hypothesis. By Proposition 1 we now deduce that
F is the restriction of J'(J"7'f) to J'Y, but the latter restriction coincides with J'f,
QED.

Example 5. In [8] we introduced the r-th prolongation W'P(X, G.) of any
principal fiber bundle P(X, G), n =dim X. Any ?%®,-morphism f: P — P induces
naturally a map W'f: W'P— W'P, so that W’ is a functor of ?%,. We first discuss
the case r =1. Every Ue W'P, BU =u € P, determines a linear isomorphism U:
R"@IP > T.P, [8]. The canonical form of W'P is a mapping OW'P: TW'P —
R"@IP, AU (TB(A)) for all A e Tu]W'P.

Proposition 3. ©W'P are structure morphisms of W' with respect to (I®!, T),
i.e. a 2% Mo-morphism F: W'P— W'P over a PBo-morphism f = MF: P— P is of
the form F=W'f iff I@1).(OW'P) = (OW'P).TF.

Proof. A linear isomorphism R” @®IP — T.P will be said to be admissible if its
restriction to [P is the canonical identification of [P and V,P. From the decomposi-
tion W'P=H'X®J'P, [8], we deduce that the admissible isomorphisms are in
a one-to-one correspondence with the elements of W.P. Then we easily verify that
the diagram

U
R"®IP T.P
d®If l v l T.f
R @ 1P T,.P

UeW.P, VeW,P, commutes iff V=(W'f)(U), QED.
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For r>1, the inclusion WP « W'(W’"~'P) defines the canonical form OW'P:
TW'P—>R"@®®, ', where &, ' is the Lie algebra of the structure group of W ™'P.
Every Lie algebra homomorphism m: & — & is prolonged into m, ': &, > &, ",
Denote by I@®!" ™" the functor P—>R"@ (IP).”", f—>I@(f)." for any P € ObP%R
and any ?%,-morphism f: P— P. Using the same procedure as in the proof of
Proposition 2, we deduce by Proposition 3

Corollary 3. ©W'P are structure morphisms of W' with respect to I®!"™", T),
i.e. a 2FMo-morphism F: W' P— W'P over a- PBo-morphism f = MF: P— P is of
the form F=W'f iff I )(OW'P) = (OW'P).TF.

Example 6. The functor H" assigns to a manifold M the fibered manifold H'M
of all r-th order frames on M and to a diffeomorphlism f: M — M the induced map
H'f: HM—H'M. Consider the canonical form @H'M: THM—R"@®L.”,
n =dim M, "' = the Lie algebra of the structure group L., " of H ~'M, [6]. Let I,
be the trivial functor LM =R"@K.”", If = id. Every manifold M can be inter-
preted as a trivial principal fiber bundle M X {e} with a one-element structure
group {e}, which determines an injection i: #{ — P%. Since H = W’ oi, see [8], we
deduce by Corollary 3

Corollary 4. ®H'M are structure morphisms of H" with respect to (I,, T), i.e. an
FMo-morphism F: HM — H'M over f: M— M is of the form F = H'f iff ©H'M
= (GH'M).TF.

This is, in fact, the classical result by Guillemin and Sternberg, [6] (our
assumptions are somewhat modified).

Example 7. We shall study the tangent functor T: M — FA. We first recall that,
given a manifold M, there are two natural projections TTM — TM, namely the
bundle projection ;,: TTM — TM and the tangent map Tn: TTM — TM of the
bundle projection x: TM — M. Duc introduces the canonical form O©TM: TTM —
VTM, [2], that maps a vector A € TTM into the vertical translation (defined in
Example 3a)) of the vector Tt (A) into the point ;t;A. By a simple evaluation in
local coordinates we deduce that an FA(-morphism F: TM — TM over f: M— M is
of the form F = Tf iff (VIf)o(OTM) = (@TM).TF. (Theorem 10 on p. 378 in [2]
states one part of this equivalence only.) In other words, @TM are structure
morphisms of T with respect to (VT, T).

We give another simple construction of structure morphisms of T. Define ©TM:
VIM —-»TM, A —vA —TA, where v: VTM — TM is the bundle projection and 7
was defined in Example 3a. In local coordinates, one verifies easily that @TM are
structure morphisms of T with respect to (T, V).

Example 8. We find it worthwhile to present now an example of canonical
mappings that are not structure morphisms. Consider the functor T that assigns to
a manifold M the vector bundle x: T"M — M of all the tangent vectors of order r
on M and to a mapping f: M— M the induced map T'f: T'"M — T'M. Using the
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well-known inclusion TM < T'M, Duc constructs a canonical form x: TT'M —
VT'M, [2], p. 404, as follows. If A e TT'M, then Te(A)e TM = T'M and xA
means the vertical translation of the latter vector to the point £A € T'"M. These
forms are not structure morphisms of T°. However, we can define similarly
a mapping OT'M: T'T'"M— VT'M transforming a vector A €e T'T'M into the
vertical translation of T'x(A)e T'M to the point wA . Using local coordinates, we
deduce that an FM-morphism F: T'"M —T'M over f: M—M is of the form
F=Tf iff (VT')e(OT'M) = (OT'M).T'F, i.e. ©T'M are structure morphisms
of T" with respect to (VT", T").

Example 9. Another general type of a prolongation functor is the functor Tk:
M — FM of k-dimensional velocities of the order r. We shall construct structure
morphisms of Ti. Consider the jet projection 7,: TiM — TiM = TM, the bundie
projection t: TTiM — T:M and the injection i: TiM — TTM, joy+—jo(j+v), where
y is a curve on M. Define OTM: TTiM—TTM by A —Tn,(A)—i(7A). A
simple evaluation shows that an ##-morphism F: TM — TiM over f: M— M is
of the form F = Tif iff (TTf)o(OTM) = (OTiM).TF, i.e. OTiM are structure
morphisms of T} with respect to (TT, T).

Example 10. Finally, we construct structure morphisms for the prolongations
of differentiable groupoids in the sense of Ehresmann, [3]. To make some
considerations more clear, we first introduce certain auxiliary categories. A double
fibered manifold (an object of #2.4) is a quadruple Y, X = BX, a, b such that

Y.:=Y-5>X and Y,: = Y3 X are fibered manifolds. If Y, X, a, b is another

double fibered manifold, then an F2/-morphism is a pair (f, Bf): (Y, X)—
(Y, X) satisfying aof =Bfoa and bof=Bfob. We have a base functor B:
F2M— M and we define F2M,= B '(My). Moreover, we introduce another
category 2%2.4 whose objects are sixtuples (Z Y, X, 1,a,b)suchthatz: Z—>Y
is a surjective submersion and (Y, X, a, b) e ObF2.4. In particular, (Z, X, ar,
bm) is also an object of F2.4(. Similarly as in Example 2, we write Y =MZ,
X =BZ. 2%2M-morphisms are triples (f, Mf, Bf): (Z, Y, X)—(Z, Y, X)
commuting with the corresponding projections on both objects. We have two
functors M: 2%2M — F2M, B: 2F2M — M and we define 2F2.Mo= B~ ' (M,).

Let 2% be the category of differentiable groupoids and their homomorphisms,
[3], so that 9% is a subcategory of #2.4L. Set DG, = DG NF2Mo. Denote by E” the
Ehresmann functor that assigns to a differentiable groupoid G over x its r-th
prolongation E'G, which is another groupoid over X, and to every 9%,-morphism
f: G—G the induced map E'f: E'G—E’'G. We recall that E'G is an open
submanifold of J'G, of all elements A such that bA is an invertible r-jet of X into
X and E’f is the restriction of J'f: J'G,—J G, to E'G. We first construct structure
morphisms of E'.

The Lie algebroid LG — X of a differentiable groupoid G is the vector bundle of
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all a-vertical tangent vectors at the units of G, [12], [14]. Every fe 29, f: G—G
induces a ¥@-morphism Lf: LG — LG, so that L is a functor 29 — ¥'%A. Consider
the structure form OJ'G.: TJ'G.,— VG, of Example 2. Every g€ G, ag =x,
bg =y, determines a mapping R,: (G.)y,—(G.)x, g—g-g, the differential of
which maps V,_,G, into V.G, =(LG)., e. being the unit over x. In this way,
©J'G, is transformed into a mapping TJ'G.— LG, whose restriction to E'G will
be called the canonical form of E'G and will be denoted by ®E'G: TE'G —LG.
As a direct consequence of Proposition 1, we obtain

Proposition 4. OE' G are structure morphisms of E' with respect to (L, T), i.e.
a 2%2Mo-morphism F: E'G — E'G over a @9,-morphism f: G — G is of the form
F=E'f iff (Lf)o(@E'G) = (OE'G)oTF.

In higher orders, we use the inclusion E'G = E'(E"~'G), which gives a canonical
form @E'G: TE'G— L(E"™'G). Similarly as in Example 4 we deduce by Prop-
osition 4 that @E'G are structure morphisms of E” with respect to (LE" ™", T).

We remark that there is another approach to structure morphisms of E’
developped by Bossard for the special case of the groupoid IT'M of all invertible
r-jets of a manifold M into itself, [1]. Denote by ToG — X the vector bundle of all
tangent vectors of G at the units and extend T, naturally into a functor of 2% into
V®B. Every UeE'G over g= BU e G determines a linear isomorphism U:
T.G—>T,G, x =ag. Then we define ®E'G: TE'G—T,G, AU '(TB(A)).
Analogously to Bossard, [1], one deduces that @E'G are structure morphisms of
E' with respect to (To, T). In higher orders we define similarly ®E'G: TE'G —
ToE"~'G, which are structure morphisms of E” with respect to (ToE" ™", T). It will
be interesting to discuss the difference between the use of each of those forms in
further investigations.

2. Prolongations of vector fields

The prolongations of vector fields with respect to certain functors are studied in
[51, [9], [10], [16]. The prolongation procedure for vector fields is based on the use
of flows. As flows are defined locally, we have to postulate some additional
requirements in order to get a general theory.

Assume that p is a functor of subcategory € = # into a subcategory 2 = ## and
the back projection is the base functor 4 — #. We denote by niv: pM — M the
bundle projection of fibered manifold pM. We shall say that p is a prolongation
functor, if it satisfies the following locality and regularity conditions.

Locality condition. a) If M,, M, e Ob% and U is an open subset in both M, M,
then i (U) = 7ay(U) is the same fibered manifold, which will be denoted by pU.
b) If f e €(M,, N1) and g € €(M>, N) satisfy f|U = g|U and if there is an open

89



subset V in both N, N2 such that f(U) c V, then the restriction of both pf and pg to
pU is the same mapping of pU into pV.

A mapping f of a manifold U into a manifold V will be called a local
%-morphism if there are M, N € Ob¥€ and f € €(M, N) such that U or V is an open
subset of M or N, respectively, and f|U =f. By the locality condition, pf: = pf|pU
is a well-defined local Z-morphism of pU into pV.

Regularity condition (cf. [13]). If M, M. N are manifolds and f: M X N—M is
a differentiable mapping such that f(—, x): M— M is a local 6-morphism for all
x € N, then the mapping pf: pM X N — pM defined by (pf)(—,x) = p(f(—, x)) is
also differentiable.

A vector field on M € Ob¥€ will be called a 4-field if its flow is formed by local
€-morphisms. For example, a vector field on a fibered manifold is an A -field iff
it is projectable. A vector field on a principal fiber bundle is a 2% -field iff it is
right-invariant. Using flows, we deduce that, if &, n are €-field on M and k e R,
then & + 1, k& and [&, n] are also €-fields.

If & is a €-field on M, then its flow &, is prolonged into a flow p& on pM that
determines a @-field p& on pM called the prolongation of & with respect to p.
From the geometric properties of flows, we deduce

Proposition 5. a) For any €-fields E n on M and any k e R, we have

p(E+n)=pE§+pn, pkE)=kpE, p(&,nl)=[pE, pnl.

b) If 6-fields & on M and n on N are f-related, f e €(M, N), then the 9-fields p&
on pM and pn on pN are pf-related.

Consider now a @-field n on pM, so that n is a projectable vector field on
fibered manifold pM over a €-field & on M. A natural question is: under what
condition n =p& ? To answer this question we can use structure morphisms of p.
Assume that @ and vy are prolongation functors and that ©pM: ¢ (pM)— @M is an
FM-morphism over mm: pM — M. Assume further that the structure morphisms
have the following

Localization property. If U, is an open subset of M; e Ob€¢, Vi, is an open subset
of pM; over U; and F: V,— V, is a local @-morphism over a local €-morphism f:
U,— U,, then the commutativity of the diagram

of
eUi———oU:

ovi.| e | ov
YyVi——yV,

implies F =pf| V., provided OV, means the restriction of @pM; to ¢V, i=1, 2.
We now recall the general concept of the Lie derivative Z,.¢,f of an arbitrary
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differentiable mapping f: Q,— Q. with respect to a vector field £; on Q; and
a vector field £, on Q, [17]. This is a mapping Q,— TQ: formally determined by

3) (Zr, e )(x) = Tf(E1(x)) — Eo(f (x)).

In particular, £, and &, are f-related iff L, t,f =0. In the special case of a vector
space V and a V-valued 1-form on a manifold Q, w: TQ — V, the standard Lie
derivative L.w of w with respect to a vector field £ on Q is related to the above
general concept by

4) Zew =L 1z 000,
provided Ov means the zero vector field on V.

Proposition 6. If n is a 9-field on pM over a €6-field & on M, then n = p§ iff
(5) L wm. OPM = 0.

Proof. Since 7 is a projectable vector field over &, there exist, for every y € pM,
a neighbourhood V of y, an interval I=(—¢,e)cR and a local flow n;:
V x I—pM over a local flow &: U X I— M. Those local flows are prolonged into
local flows yn: (V)X I—-ypM and @&: (U)X I—- @M. If Lm,:)OpM =0,
the latter flows are ©pM-related, i.e. for every tel, we have a commutative
diagram

@&,
eU——qU,

ov I I oV,
Yn.
YyV—myV,

where U, =& (U), V., =n,(V). By the localization property, we obtain n, =p& |V,
which implies n =p&. The converse assertion is trivial, QED.

Proposition 6 can be applied directly to our Examples 2, 3a, 4, 7, 8, 9. For
instance, for the functor J' of Example 2, we obtain

Corollary 5. A vector field n on J'Y over a projectable vector field E on Y is of
the form n =J'E iff

(6) L, ve@J'Y =0.

This property of the prolonged vector fields on J'Y is close to the approach of
Garcia to the prolongation of a vector field on Y to J'Y, [4]. As ©J'Y has simple
coordinate expression, (6) can be also used for finding the coordinate expression of
the field J'E. The situation of Example 4 is quite similar.

In Examples 1, 3b, 5, 6, 10, the functor ¢ is not a prolongation functor.
Nevertheless, a formula like (5) can be deduced for each of those examples by
a simple additional consideration. In Example 1, construct another functor ¢
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transforming M into R" XM and f: M—M into id X f: R® X M—R" X M. The
canonical form ©@H'M: TH'M —R" can be naturally modified into a mapping
OH'M: TH'M —>R" x M. Even ®H'M are structure morphisms of H' and the
assumptions of Proposition 6 are now satisfied. One finds easily that, for any
projectable vector field 7 on H'M over € on M, $(T",¢§)@H1M=O iff
L, 0em@H'M =0. By (4), we deduce

Corollary 6. A projectable vector field n on H'M over a vector field E on M is of
the form n =H'E iff £,(OH'M)=0.

This corollary clarifies some further aspects of an assertion by Kobayashi and
Nomizu, [7], p. 229.

In Examples 3b, 5 and 6, we obtain similarly the following results.

Corollary 7. A projectable vector field non J 'Povera right-invariant vector field
E on P is of the form n =1J'E iff £,(©J'P)=0.

Corollary 8. A projectable vector field n on W'P over a right-invariant vector
field € on P is of the form n=W'E iff £,(@W'P)=0.

Corollary 9. A projectable vector field n on H'M over a vector field & on M is of
the form n=H'E iff £,(GH M) =0.

In Example 10, if § is a 2%-field on G, then & is a-projectable and determines
a prolonged field V& on VG,. This field is tangent to LG < VG, and its restriction
to LG will be denoted by LE. Considering the projection b: G— X, we can
construct the pull-back » 'LG. This is a vector bundle over G naturally isomorphic
to VG,. The canonical form ©E'G: TE'G— LG was derived from a mapping
@E'G: TE'G — VG, and these mappings are also structure morphisms of E'. By
Corollary 6, a projectable vector field n on E'G over a 29 -field € on G is of the
form n = E'E iff £, VE,(@EIG) = 0. Using standard pull-back manipulations, we
deduce that the latter equation holds iff $(T,,,L§)@E1G =(0. Hence we obtain

Corollary 10. In the above situation, n =E'E itf L1, 1e(OE'G)=0.
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CTPYKTYPHBIE MOP®U3MbI ITPOJOJLKAIOIINX $YHKTOPOB
MBan Konapx
Pesiome
CTpyKTypHble MOPdu3MBbI JIXO60ro npofosKaomero (yHKTopa nojiydalorcs Kak oGoblueHne
HECKOJIbKMX nocTpoeHuit auddeperHunanbhoii reomeTpun. OHU [alOT OOLMHA KPUTEPHH VISl TOTO,
4TOGBI 11000 MOphU3M MEXAY NPONOIKEHUAMH IBYX OO BEKTOB ObUI NPOAO/DKEHHEM HIDKEJIEXKaLIETO
Mopdmsma. HaxosTcss OCHOBHBIE CBOMCTBA ONEPALMK MPOAOJIKEHUS BEKTOPHBIX MOJIEH Nno obiuemMy

(PYHKTOPY M NOKA3bIBAETCS, YTO aHATIOTUYHOE COOTHOLUEHHE MEXY BEKTOPHBIMH IOJISIMH MIMEET MECTO
TOrAa ¥ TONBKO TOrja, KOrAa nmpou3BoaHas JIu cTpykTypHoro mopdusmMa oOpaiuaeTcs B HyJb.
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