Mathematic Slovaca

Said R. Grace
Oscillatory behaviour of certain difference equations

Mathematica Slovaca, Vol. 50 (2000), No. 3, 345--355

Persistent URL: http://dml.cz/dmlcz/129154

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

OSCILLATORY BEHAVIOUR OF CERTAIN DIFFERENCE EQUATIONS

S. R. Grace
(Communicated by Milan Medved')

ABSTRACT. Some new criteria for the oscillation of second order difference equations of the form

$$
\Delta^{2} x_{n}+p_{n} \Delta x_{n-h}=q_{n}\left|x_{g_{n}}\right|^{c} \operatorname{sgn} x_{g_{n}},
$$

and

$$
\Delta^{2} x_{n}=p_{n} \Delta x_{n+h}+q_{n}\left|x_{g_{n}}\right|^{c} \operatorname{sgn} x_{g_{n}}
$$

are established.

1. Introduction

In this paper, we are concerned with the oscillation of the solutions of certain second order difference equations of the form

$$
\begin{equation*}
\Delta^{2} x_{n}+p_{n} \Delta x_{n-h}=q_{n}\left|x_{g_{n}}\right|^{c} \operatorname{sgn} x_{g_{n}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{2} x_{n}=p_{n} \Delta x_{n+h}+q_{n}\left|x_{g_{n}}\right|^{c} \operatorname{sgn} x_{g_{n}} \tag{2}
\end{equation*}
$$

where Δ is the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}$, $\left\{p_{n}\right\}_{n \geq 0}$ and $\left\{q_{n}\right\}_{n \geq 0}$ are sequences of nonnegative real numbers, $\left\{g_{n}\right\}_{n \geq 0}$ is a nondecreasing sequence of nonnegative integers with $g_{n} \rightarrow \infty$ as $n \rightarrow \infty, h$ is a positive integer and c is a positive real number.

A nontrivial solution $\left\{x_{k}\right\}_{k \geq 0}$ of $\left(\mathrm{E}_{1}\right)$ (or $\left(\mathrm{E}_{2}\right)$) is said to be oscillatory if for every positive integer N, there exists an $n \geq N$ such that $x_{n} x_{n+1} \leq 0$ and nonoscillatory otherwise.

Equation (E_{i}), $i=1,2$, is said to be almost oscillatory if for every solution $\left\{x_{n}\right\}$ of $\left(\mathrm{E}_{i}\right)$, either $\left\{x_{n}\right\}$ is oscillatory or $\left\{\Delta x_{n}\right\}$ is oscillatory.

[^0]There is an extensive literature on the topic of oscillation criteria for the generalized Emden-Fowler functional differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t)|x(g(t))|^{c} \operatorname{sgn} x(g(t))=0, \quad c>0 \tag{F}
\end{equation*}
$$

where $g, q:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are continuous and $g(t) \rightarrow \infty$ as $t \rightarrow \infty$. Few results are known regarding the oscillatory behaviour of the continuous analogues of equations (E_{i}), $i=1,2$, namely the functional differential equations

$$
\begin{equation*}
x^{\prime \prime}(t)+p(t) x^{\prime}(t-h)=q(t)|x(g(t))|^{c} \operatorname{sgn} x(g(t)) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime \prime}(t)=p(t) x^{\prime}(t+h)+q(t)|x(g(t))|^{c} \operatorname{sgn} x(g(t)) \tag{2}
\end{equation*}
$$

where c and h are positive constants, $p, q:\left[t_{0}, \infty\right) \rightarrow[0, \infty)$ are continuous and the function $g(t)$ is defined as in (F). For recent contributions we refer to the papers [1]-[4] and the references cited therein.

Oscillation criteria for the discrete analogue of (F), namely the difference equation

$$
\begin{equation*}
\Delta^{2} x_{n}+q_{n}\left|x_{g_{n}}\right|^{c} \operatorname{sgn} x_{g_{n}}=0, \quad c>0 \tag{E}
\end{equation*}
$$

have been investigated by a number of authors in recent years (see for example [5] - [10] and the reference cited therein), but the literature is relatively limited. It seems that nothing is known about the oscillation of $\left(\mathrm{E}_{i}\right), i=1,2$. Therefore, the purpose of this paper is to establish some new criteria for the oscillation of $\left(\mathrm{E}_{i}\right), i=1,2$. We also mention that the results of this paper are not applicable to equations of type $\left(\mathrm{E}_{i}\right), i=1,2$, with either $h=0$ or $p_{n}=0$.

The following properties of Δ are needed. For every $N, n \geq N$
(i) $\Delta u_{i}=u_{i+1}-u_{i}$,
(ii) $\sum_{i=N}^{n} u_{i} \Delta v_{i}=u_{n+1} v_{n+1}-u_{N} v_{N}-\sum_{i=N}^{n} v_{i+1} \Delta u_{i}$,
(iii) $\Delta\left(u_{n} v_{n}\right)=v_{n+1} \Delta u_{n}+u_{n} \Delta v_{n}=u_{n+1} \Delta v_{n}+v_{n} \Delta u_{n}$.

2. Almost oscillatory character of $\left(E_{1}\right)$

The following result concerns the almost oscillatory character of $\left(\mathrm{E}_{1}\right)$ when $c>1$.

THEOREM 1. Suppose that $\Delta p_{n} \geq 0,0<p_{n}<1$ and $g_{n} \geq n+1$ for $n \geq n_{0} \geq 0$. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\frac{1}{h} \sum_{k=n-h}^{n-1} p_{n}\right)>\frac{h^{h}}{(1+h)^{(1+h)}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k \geq n_{0}}^{\infty} P_{k+1, g_{k}-1} q_{k}=\infty, \quad n_{0} \geq 0 \tag{2}
\end{equation*}
$$

where

$$
P_{k+1, g_{k}-1}=\sum_{j=k+1}^{g_{k}-1}\left(\prod_{i=n_{0}}^{j} \frac{1}{1-p_{i}}\right)^{1-c}
$$

then $\left(\mathrm{E}_{1}\right)$ is almost oscillatory.
Proof. Assume for the purpose of contradiction that (E_{1}) has a nonoscillatory solution $\left\{x_{n}\right\}$, which we may (and do) assume to be eventually positive. There exists $n_{1} \geq n_{0}+h+1$ such that $x_{n}>0$ and $x_{g_{n}}>0$ for $n \geq n_{1}$. Next, we consider the following two cases:
(a) $\Delta x_{n}<0$ eventually,
(b) $\Delta x_{n}>0$ eventually.
(a) Assume $\Delta x_{n}<0$ eventually. From (E_{1}), we see that

$$
\Delta^{2} x_{n}+p_{n} \Delta x_{n-h}=q_{n} x_{g_{n}}^{c} \geq 0 \quad \text { eventually }
$$

Set $y_{n}=\Delta x_{n}<0$ eventually. Then

$$
\Delta y_{n}+p_{n} y_{n-h} \geq 0 \quad \text { eventually }
$$

Now, by a result similar to [8; Lemma 1.1 (a)], we see that the equation

$$
\begin{equation*}
\Delta y_{n}+p_{n} y_{n-h}=0 \tag{3}
\end{equation*}
$$

has an eventually negative solution. But, in view of [10; Theorem 3] and condition (1), equation (3) is oscillatory, which is a contradiction.
(b) Assume $\Delta x_{n}>0$ for $n \geq N \geq n_{2}+h$. From (E_{1}), we obtain

$$
\Delta x_{n}-\Delta x_{N}+\sum_{k=N}^{n-1} p_{k} \Delta x_{k-h}=\sum_{k=N}^{n-1} q_{k} x_{g_{k}}^{c}
$$

and since

$$
\begin{aligned}
\sum_{k=N}^{n-1} p_{k} \Delta x_{k-h} & =p_{n} x_{n-h}-p_{N} x_{N-h}-\sum_{k=N}^{n-1} x_{k-h} \Delta p_{k} \\
& \leq p_{n} x_{n-h} \leq p_{n} x_{n}
\end{aligned}
$$

we have

$$
\begin{equation*}
\Delta x_{n}+p_{n} x_{n} \geq \sum_{k=N}^{n-1} q_{k} x_{g_{k}}^{c}, \quad n \geq N \tag{4}
\end{equation*}
$$

S. R. GRACE

Define the sequence $\left\{r_{n}\right\}, n \geq 0$, by the recurrence relation

$$
\begin{equation*}
r_{n+1}=\frac{r_{n}}{1-p_{n}}, \quad n=0,1,2, \ldots, \quad r_{0}>0 \tag{5}
\end{equation*}
$$

Next, multiply (4) by r_{n+1}. We get

$$
\begin{equation*}
\Delta\left(r_{n} x_{n}\right) \geq r_{n+1} \sum_{k=N}^{n-1} q_{k} x_{g_{k}}^{c} \quad \text { for } \quad n \geq N \tag{6}
\end{equation*}
$$

Choose $N_{1} \geq N$ and define $m=\max \left\{N_{1}, \max _{N \leq n \leq N_{1}} g_{n}\right\}$. Dividing (6) by $\left(r_{n+1} x_{n+1}\right)^{c}$ and summing from $N+1$ to m, we obtain

$$
\begin{aligned}
\sum_{n=N+1}^{m} \frac{\Delta\left(r_{n} x_{n}\right)}{\left(r_{n+1} x_{n+1}\right)^{c}} & \geq \sum_{n=N+1}^{m}\left(r_{n+1}\right)^{1-c} \sum_{k=N}^{n-1} q_{k}\left(x_{g_{k}} / x_{n+1}\right)^{c} \\
& \geq \sum_{k=N}^{m} q_{k} \sum_{n=k+1}^{g_{k}-1}\left(r_{n+1}\right)^{1-c}\left(x_{g_{k}} / x_{n+1}\right)^{c}
\end{aligned}
$$

Since $x_{g_{k}} \geq x_{n+1}$ for $k+1<n<g_{k}-1$, we have

$$
\begin{equation*}
\sum_{n=N+1}^{m} \Delta\left(r_{n} x_{n}\right) /\left(r_{n+1} x_{n+1}\right)^{c} \geq \sum_{k=N}^{m} q_{k}\left(\sum_{n=k+1}^{g_{k}-1}\left(\prod_{j \geq n_{0} \geq 0}^{n} r_{n_{0}} /\left(1-p_{n}\right)\right)^{1-c}\right) \tag{7}
\end{equation*}
$$

Now, from the proof of Theorem 4.1 in [7], it follows that

$$
\sum^{\infty} \Delta z_{i} / z_{i+1}^{c}<\infty
$$

which is a contradiction. This completes the proof.
The following theorem is concerned with the almost oscillatory character of $\left(\mathrm{E}_{1}\right)$ when $c=1$.

THEOREM 2. Suppose that $\Delta p_{n} \geq 0, g_{n} \geq n+1$ and $0<p_{n}<1$ for $n \geq n_{0} \geq 0$. If condition (1) holds and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{k=n}^{g_{n}-1} B_{k, g_{n}-1} q_{k}>1 \tag{8}
\end{equation*}
$$

where

$$
B_{k, g_{n}-1}=\sum_{s=k}^{g_{n}-1}\left(\prod_{j=s+1}^{g_{n}-1}\left(1-p_{j}\right)\right)
$$

then $\left(\mathrm{E}_{1}\right)$ is almost oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of (E_{1}), say $x_{n}>0$ and $x_{g_{n}}>0$ for $n \geq n_{1} \geq n_{0} \geq 0$. As in the proof of Theorem 1 , we consider the following two cases:
(a) $\Delta x_{n}<0$ eventually,
(b) $\Delta x_{n}>0$ eventually.
(a) Assume $\Delta x_{n}<0$ eventually. The proof of this case is similar to that of Theorem 1 (a) and hence is omitted.
(b) Assume $\Delta x_{n}>0$ for $n \geq N \geq n_{2}+h$. Proceeding as in the proof of Theorem 1 (b) and defining the sequence $\left\{r_{n}\right\}$ as in (5) we obtain

$$
\begin{equation*}
\Delta\left(r_{s} x_{s}\right) \geq r_{s+1} \sum_{k=n}^{s-1} q_{k} x_{g_{n}} \quad \text { for } \quad s \geq n \geq N \tag{9}
\end{equation*}
$$

Summing both sides of (9) from n to g_{n-1}, we have

$$
r_{g_{n}} x_{g_{n}} \geq r_{g_{n}} x_{g_{n}}-r_{n} x_{n} \geq \sum_{s=n}^{g_{n}-1} r_{s+1} \sum_{k=n}^{s-1} q_{k} x_{g_{k}}
$$

or

$$
\begin{aligned}
1 & \geq \sum_{s=n}^{g_{n}-1}\left(r_{s+1} / r_{g_{n}}\right) \sum_{k=n}^{s-1} q_{k}\left(x_{g_{k}} / x_{g_{n}}\right) \\
& \geq \sum_{k=n}^{g_{n}-1} q_{k}\left(x_{g_{k}} / x_{g_{n}}\right)\left(\sum_{s=k}^{g_{n}-1} r_{s+1} / r_{g_{n}}\right)
\end{aligned}
$$

Since $x_{g_{k}} \geq x_{g_{n}}$ for $n \leq k \leq g_{n}-1$, we obtain

$$
1 \geq \sum_{k=n}^{g_{n}-1} q_{k}\left(\sum_{s=k}^{g_{n}-1} \prod_{j=s+1}^{g_{n}-1}\left(1-p_{j}\right)\right)
$$

which contradicts (8). This completes the proof.
The following criterion deals with the almost oscillation of all bounded solutions of $\left(E_{1}\right)$ for any $c>0$.

THEOREM 3. Suppose that $\Delta p_{n} \geq 0, g_{n} \geq n+1$ and $0<p_{n}<1$ for $n \geq n_{0} \geq 0$. If condition (1) holds and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{s=n_{1}}^{n}\left(\prod_{i=s+1}^{n}\left(1-p_{i}\right)^{-1}\right) \sum_{k=n_{1}}^{s-1} q_{k}=\infty, \quad n_{1} \geq n_{0} \tag{10}
\end{equation*}
$$

then every bounded solution $\left\{x_{n}\right\}$ of $\left(\mathrm{E}_{1}\right)$ is oscillatory or $\left\{\Delta x_{n}\right\}$ is oscillatory.

Proof. Let $\left\{x_{n}\right\}$ be a bounded and eventually positive solution of $\left(\mathrm{E}_{1}\right)$, say $x_{n}>0$ and $x_{g_{n}}>0$ for $n \geq n_{1} \geq n_{0} \geq 0$. Proceeding as in the proof of Theorem 1, we see that the case (a) is impossible. Next, we consider:
(b) $\Delta x_{n}>0$ for $n \geq n_{2}$. There exists a constant $c_{1}>0$ and $N \geq n_{2}+h$ such that

$$
\begin{equation*}
x_{g_{n}} \geq c_{1} \quad \text { for } \quad n \geq N \tag{11}
\end{equation*}
$$

As in the proof of Theorem 1(b) we obtain (4) and then define the sequence $\left\{r_{n}\right\}$ as in (5) and obtain (6) which takes the form

$$
\begin{equation*}
\Delta\left(r_{n} x_{n}\right) \geq c_{1}^{c} r_{n+1} \sum_{k=N}^{n-1} q_{k} \quad \text { for } \quad n \geq N \tag{12}
\end{equation*}
$$

Summing both sides of (12) from N to $m \geq N$, we have

$$
r_{m+1} x_{m+1} \geq r_{m+1} x_{m+1}-r_{N} x_{N} \geq c_{1}^{c} \sum_{n=N}^{m} r_{n+1} \sum_{k=N}^{n-1} q_{k}
$$

or

$$
\begin{aligned}
x_{m+1} & \geq c_{1}^{c} \sum_{n=N}^{m}\left(r_{n+1} / r_{m+1}\right) \sum_{k=N}^{n-1} q_{k} \\
& =c_{1}^{c} \sum_{n=N}^{m}\left(\prod_{i=n+1}^{m}\left(1-p_{i}\right)^{-1}\right) \sum_{k=N}^{n-1} q_{k} \rightarrow \infty \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

which contradicts the fact that $\left\{x_{n}\right\}$ is bounded. This completes the proof.

3. Almost oscillatory character of $\left(\mathrm{E}_{2}\right)$

In this section, we present two criteria for the almost oscillation of $\left(\mathrm{E}_{2}\right)$ when $0<c \leq 1$.

THEOREM 4. Suppose that $c=1, g_{n} \leq n$ and $\Delta p_{n} \leq 0$ for $n \geq n_{0} \geq 0$. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\frac{1}{h-1} \sum_{k=n+1}^{n+h-1} p_{k}\right)>\frac{(h-1)^{(h-1)}}{h^{h}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{k=g_{n}}^{n-1} C_{g_{n}, k} q_{k}>1 \tag{14}
\end{equation*}
$$

where

$$
C_{g_{n}, k}=\sum_{s=g_{n}}^{k}\left[\prod_{j=g_{n}+1}^{s}\left(1+p_{j}\right)^{-1}\right],
$$

then $\left(\mathrm{E}_{2}\right)$ is almost oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of (E_{2}), say $x_{n}>0$ and $x_{g_{n}}>0$ for $n \geq n_{1} \geq n_{0} \geq 0$. Now, there are two cases to consider:
(a) $\Delta x_{n}>0$ eventually,
(b) $\Delta x_{n}<0$ eventually.
(a) Suppose $\Delta x_{n}>0$ eventually. From $\left(E_{2}\right)$ we see that

$$
\Delta y_{n}-p_{n} y_{n+h}=q_{n} x_{g_{n}} \geq 0 \quad \text { eventually }
$$

where $y_{n}=\Delta x_{n}>0$ eventually. Now, by [8; Lemma $\left.1.1(\mathrm{~b})\right]$, the equation

$$
\begin{equation*}
\Delta y_{n}-p_{n} y_{n+h}=0 \tag{15}
\end{equation*}
$$

has an eventually positive solution. But, in view of [10; Theorem 3 '] and condition (13), equation (15) is oscillatory, which is a contradiction.
(b) Suppose $\Delta x_{n}<0$ for $n \geq N \geq n_{2}+1$. Then from (E_{2}), we have

$$
\begin{equation*}
\Delta x_{n}-\Delta x_{s}=\sum_{k=s}^{n-1} p_{k} \Delta x_{k+h}+\sum_{k=s}^{n-1} q_{k} x_{g_{k}} \quad \text { for } \quad n \geq s \geq N \tag{16}
\end{equation*}
$$

Since

$$
\sum_{k=s}^{n-1} p_{k} \Delta x_{k+h}=p_{n} x_{n+h}-p_{s} x_{s+h}-\sum_{k=s}^{n-1} x_{k+h} \Delta p_{k}
$$

and $\Delta p_{n} \leq 0$ and $\left\{x_{n}\right\}$ is nonincreasing, $n \geq N$, we have

$$
\sum_{k=s}^{n-1} p_{k} \Delta x_{k+h} \geq-p_{s} x_{s} \quad \text { for } \quad n \geq s \geq N
$$

Now, (16) takes the form

$$
\begin{equation*}
-\left(\Delta x_{s}-p_{s} x_{s}\right) \geq \sum_{k=s}^{n-1} q_{k} x_{g_{k}} \quad \text { for } \quad n \geq s \geq N \tag{17}
\end{equation*}
$$

Define the sequence $\left\{r_{n}\right\}$ by

$$
\begin{equation*}
r_{n+1}=r_{n} /\left(1+p_{n}\right), \quad n=0,1,2, \ldots \quad \text { and } \quad r_{n_{0}}>0 \quad \text { for } n_{0} \geq 0 \tag{18}
\end{equation*}
$$

and multiply (17) by r_{s+1}. Then we have

$$
\begin{equation*}
-\Delta\left(r_{s} x_{s}\right) \geq r_{s+1} \sum_{k=s}^{n-1} q_{k} x_{g_{k}} \quad \text { for } \quad n \geq s \geq N \tag{19}
\end{equation*}
$$

Summing both sides of (19) from $g_{n} \geq N$ to $n-1 \geq g_{n}$, we have

$$
r_{g_{n}} x_{g_{n}} \geq r_{g_{n}} x_{g_{n}}-r_{n} x_{n} \geq \sum_{s=g_{n}}^{n-1} r_{s+1} \sum_{k=s}^{n-1} q_{k} x_{g_{k}}
$$

Now,

$$
\begin{aligned}
1 & \geq \sum_{s=g_{n}}^{n-1}\left(r_{s+1} / r_{g_{n}}\right) \sum_{k=s}^{n-1} q_{k}\left(x_{g_{k}} / x_{g_{n}}\right) \\
& \geq \sum_{k=g_{n}}^{n-1} q_{k}\left(x_{g_{k}} / x_{g_{n}}\right) \sum_{s=g_{n}}^{k}\left(r_{s+1} / r_{g_{n}}\right) .
\end{aligned}
$$

Since $x_{g_{k}} \geq x_{g_{n}}$ for $g_{n} \leq k \leq n-1 \leq n$, we see that

$$
\begin{aligned}
1 & \geq \sum_{k=g_{n}}^{n-1} q_{k} \sum_{s=g_{n}}^{k}\left(r_{s+1} / r_{g_{n}}\right) \\
& =\sum_{k=g_{n}}^{n-1}\left(\sum_{s=g_{n}}^{k} \prod_{j=g_{n}+1}^{s}\left(1+p_{j}\right)^{-1}\right) q_{k}
\end{aligned}
$$

Taking limsup of both sides of the above inequality as $n \rightarrow \infty$, we obtain a contradiction to (14). This completes the proof.

Theorem 5. Suppose that $0<c<1, \Delta p_{n} \leq 0$ and $g_{n}<n$ for $n \geq n_{0} \geq 0$, and let condition (13) hold. If

$$
\begin{equation*}
\sum_{k=n_{0}}^{\infty} A_{g_{k}, k} q_{k}=\infty \tag{20}
\end{equation*}
$$

where

$$
A_{g_{k}, k}=\sum_{s=g_{k}}^{k}\left(1+p_{s}\right)^{-1}\left(\prod_{j=1}^{s-1}\left(1+p_{j}\right)^{-1}\right)^{1-c}
$$

then $\left(\mathrm{E}_{2}\right)$ is almost oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of $\left(\mathrm{E}_{2}\right), x_{n}>0$ and let $x_{g_{n}}>0$ for $n \geq n_{1} \geq n_{0} \geq 0$. As in the proof of Theorem 4 , we see that case (a) is impossible. Next we consider:
(b) Suppose $\Delta x_{n}<0$ for $n \geq N \geq n_{2}+1$. Define the sequence $\left\{r_{n}\right\}$ as in (18) and proceed as in the proof of Theorem 4(b) to obtain (19) which takes the form

$$
\begin{equation*}
-\Delta\left(r_{s} x_{s}\right) \geq r_{s+1} \sum_{k=s}^{n-1} q_{k} x_{g_{k}}^{c} \quad \text { for } \quad n \geq s \geq N \tag{21}
\end{equation*}
$$

Choose $N^{*}>N$ such that $g_{s} \geq N$ for $s \geq N^{*}$ and let $m>N^{*}$ be fixed. We see that

$$
\begin{equation*}
-\Delta\left(r_{s} x_{s}\right) \geq r_{s+1} \sum_{k=s}^{m} q_{k} x_{g_{k}}^{c} \quad \text { for } \quad m \geq s \geq N \tag{22}
\end{equation*}
$$

Dividing (22) by $\left(r_{s} x_{s}\right)^{c}$ and summing from N to m, we obtain

$$
\begin{aligned}
\sum_{s=N}^{m}-\Delta\left(r_{s} x_{s}\right) /\left(r_{s} x_{s}\right)^{c} & \geq \sum_{s=N}^{m}\left(r_{s+1} / r_{s}^{c}\right) \sum_{k=s}^{m} q_{k}\left(x_{g_{k}} / x_{s}\right)^{c} \\
& =\sum_{s=N}^{m} r_{s}^{1-c} /\left(1+p_{s}\right) \sum_{k=s}^{m} q_{k}\left(x_{g_{k}} / x_{s}\right)^{c} \\
& \geq \sum_{k=N^{*}}^{m} q_{k} \sum_{s=g_{k}}^{k} r_{s}^{1-c} /\left(1+p_{s}\right)\left(x_{g_{k}} / x_{s}\right)^{c}, \quad N^{*} \geq N
\end{aligned}
$$

Since $x_{g_{k}}>x_{s}$ for $g_{k} \leq s \leq k, m \geq k \geq N^{*}$, we have

$$
\sum_{s=N}^{m}-\Delta\left(r_{s} x_{s}\right) /\left(r_{s} x_{s}\right)^{c} \geq \sum_{k=N^{*}}^{m} q_{k} \sum_{s=g_{k}}^{k} r_{s}^{1-c} /\left(1+p_{s}\right)
$$

It follows from the proof of Theorem 4.3 in [7], that

$$
\sum_{s=N}^{m}-\Delta z_{s} / z_{s}^{c} \text { is bounded below, } \quad m \geq \lambda^{c}
$$

which contradicts condition (20). This completes the proof.

As an application of Theorems 2 and 4, we consider the special cases of (E_{i}), $i=1,2$, namely, the constant coefficients equations:

$$
\begin{equation*}
\Delta^{2} x_{n}+p x_{n-h}=q x_{n+g} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{2} x_{n}=p x_{n+h}+q x_{n-g} \tag{2}
\end{equation*}
$$

where p and q are positive real numbers and h and k are positive integers.
Now, we have the following two oscillation results for $\left(\mathrm{L}_{i}\right), i=1,2$.
COROLLARY 1. Let $g \geq 1$ and $0<p<1$. If

$$
\begin{equation*}
p>\frac{h^{h}}{(1+h)^{1+h}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
(q / p)\left[g+\frac{1-p}{p}\left((1-p)^{g}-1\right)\right]>1 \tag{24}
\end{equation*}
$$

then $\left(\mathrm{L}_{1}\right)$ is almost oscillatory.
Corollary 2. If

$$
\begin{equation*}
p>\frac{(h-1)^{h-1}}{h^{h}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
(q / p)(1+p)\left[g-\frac{1}{p}\left(1-(1+p)^{-g}\right)\right]>1 \tag{26}
\end{equation*}
$$

then $\left(\mathrm{L}_{2}\right)$ is almost oscillatory.
As an illustration, we see that the difference equations

$$
\begin{equation*}
\Delta^{2} x_{n}+\frac{1}{2} \Delta x_{n-3}=q_{1} x_{n+3} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{2} x_{n}=\Delta x_{n+4}+q_{2} x_{n-4} \tag{28}
\end{equation*}
$$

are almost oscillatory if $q_{1}>4 / 17$ and $q_{2}>8 / 49$ by Corollaries 1 and 2 respectively.

Remarks.

1. If we let $p_{n}=0$ in the results presented in this paper, the remaining conditions in our results are not enough to describe the oscillatory character of the equation

$$
\begin{equation*}
\Delta^{2} x_{n}=q_{n}\left|x_{g_{n}}\right|^{c} \operatorname{sgn} x_{g_{n}}, \quad c>0 \tag{*}
\end{equation*}
$$

and hence our results are not applicable to $\left(\mathrm{E}^{*}\right)$.
2. It would be interesting to study the oscillatory character of $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$ instead of almost oscillation and to obtain results similar to these presented here for (E_{1}) with $c<1$ and for $\left(\mathrm{E}_{2}\right)$ with $c>1$.

OSCILLATORY BEHAVIOUR OF CERTAIN DIFFERENCE EQUATIONS

REFERENCES

[1] GRACE, S. R.: Oscillation theorems for damped functional differential equations, Funkcial. Ekvac. 35 (1992), 261-278.
[2] GRACE, S. R.: Oscillatory and asymptotic behaviour of damped functional differential equations, Math. Nachr. 142 (1989), 279-305.
[3] GRACE, S. R.-LALLI, B. S. : Oscillation theorems for second order nonlinear functional differential equations with damping, Comput. Math. Appl. 25 (1993), 107-113.
[4] GRACE, S. R.-HAMEDANI, G. G.-LALLI, B. S.: Oscillation of damped-forced functional differential equations, Dynam. Systems Appl. 4 (1995), 391-404.
[5] GRACE, S. R.-LALLI, B. S.: Oscillation theorems for second order delay and neutral difference equations, Utilitas Math. 45 (1994), 197-211.
[6] GRACE, S. R.-LALLI, B. S. : Oscillation theorems for forced neutral difference equations, J. Math. Anal. Appl. 187 (1994), 91-106.
[7] HOOKER, J. W.-PATULA, W. T.: A second order nonlinear difference equations: Oscillation and asymptotic behaviour, J. Math. Anal. Appl. 91 (1983), 9-29.
[8] LADAS, G.: Explicit conditions for the oscillation of difference equations, J. Math. Anal. Appl. 153 (1990), 276-287.
[9] PATULA, W. T.: Growth and oscillation properties of second order linear difference equations, SIAM J. Math. Anal. 10 (1979), 55-61.
[10] PHILOS, CH. G. : On oscillation of some difference equations, Funkcial. Ekvac. 34 (1991), 157-172.

Received September 10, 1997
Department of Engin. Mathematics Faculty of Engineering
Cairo University
Orman, Giza 12211
A. R. of EGYPT

[^0]: 2000 Mathematics Subject Classification: Primary 39A10.
 Key words: oscillation, almost oscillation, difference equations.

