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OSCILLATORY BEHAVIOUR 
OF CERTAIN DIFFERENCE EQUATIONS 

S. R. G R A C E 

(Communicated by Milan Medved') 

ABSTRACT. Some new criteria for the oscillation of second order difference 
equations of the form 

A 2 x n +PnAxn-h = n\xgn\
C^ПX 

9n 

and 

are established. 

A^Xn = PnAxn+h + Яn\xgn ľ
 SêП *, 

1. Introduction 

In this paper, we are concerned with the oscillation of the solutions of certain 
second order difference equations of the form 

&2xn+PnAxn-h = Qn\Xgn\
C *g*Xgn ' (El) 

and 

A ^ n = PnAxn+h + %\X gn T S S n X

9n > ( E

2 ) 

where A is the forward difference operator defined by Axn = xn+1 — xn, 
{pn}n>0 and {qn}n>0 are sequences of nonnegative real numbers, {gn}n>0 is a 
nondecreasing sequence of nonnegative integers with gn —> co as n —> oc:, h is 
a positive integer and c is a positive real number. 

A nontrivial solution {xk}k>0 of (E x ) (or (E 2 ) ) is said to be oscillatory if 
for every positive integer JV, there exists an n > N such that xnxn+1 < 0 and 
nonosdilatory otherwise. 

Equation ( E J , i — 1, 2, is said to be almost oscillatory if for every solution 
{xn} of ( E J , either {xn} is oscillatory or {Ax n } is oscillatory. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 39A10. 
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There is an extensive literature on the topic of oscillation criteria for the 
generalized Emden-Fowler functional differential equation 

x"(t) + q(t)\x(g(t))\csgnx(g(t)) = 0 , c > 0, (F) 

where g,q: [£0,oo) -» M are continuous and g(t) -> oo as t —> oo. Few results 
are known regarding the oscillatory behaviour of the continuous analogues of 
equations (E f) , i = 1,2, namely the functional differential equations 

x"(t) +p(t)x'(t -h) = q(t)\x(g(t))\csgnx(g(t)), ( F J 

and 

.r"(t) =p ( i )x ' ( t + /l) + ^ ) | x ( ^ ) ) | c s g n a ; ( 5 ( 0 ) , (F2) 

where c and /i are positive constants, p,q: [£0, oo) -» [0, oo) are continuous and 
the function g(t) is defined as in (F). For recent contributions we refer to the 
papers [1] - [4] and the references cited therein. 

Oscillation criteria for the discrete analogue of (F), namely the difference 
equation 

A ^ n + 9n\X
9n\

CS&x
9n = °> C > 0 > (E) 

have been investigated by a number of authors in recent years (see for example 
[5] - [10] and the reference cited therein), but the literature is relatively limited. It 
seems that nothing is known about the oscillation of (E f) , i = 1,2. Therefore, 
the purpose of this paper is to establish some new criteria for the oscillation 
of (E{), i = 1,2. We also mention that the results of this paper are not applicable 
to equations of type (E{), i = 1,2, with either h = 0 or pn = 0. 

The following properties of A are needed. For every N: n > N 
(i) A ^ = w . + 1 - ^ , 

n n 
(ii) £ utAv{ = un^vn+1 - uNvN - £ V i A ^ > 

i=N i=N 
(iii) A(un t ;n) - vn+1 Aun + unAt;n = un+1 Avn + v n A u n . 

2. Almost oscillatory character of (Ex) 

The following result concerns the almost oscillatory character of (E-J when 
c > 1. 

THEOREM 1. Suppose that Apn > 0, 0 < p n < 1 and gn > n + 1 for 

n>n0>0. If 
n- l \ ^ 

(1) Hminf(ì £ ->»)>(Г + /.)(l+ft) 
^ fe=П-rt 
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and 
oo 

SP*+l,9»-l«fc = 0 0 ' " O ^ 0 ' (2) 
k>no 

where 

Pk+l 
/ 1 

^fc-1 ~ .2_/ l 1 1 л—r) 
A—Uлt \ A —«_ ґ% 

1 - C 

tten (Ex) is almost oscillatory. 

P r o o f . Assume for the purpose of contradiction that (E-J has a nonoscil-
latory solution {xn}, which we may (and do) assume to be eventually positive. 
There exists nx > n0 + h + 1 such that xn > 0 and x > 0 for n > n 1 . Next, 
we consider the following two cases: 

(a) Axn < 0 eventually, (b) Axn > 0 eventually. 

(a) Assume Axn < 0 eventually. From (E-J, we see that 

A<2xn + PnAxn-h = ? n ^ n - ° eventually. 

Set yn = Axn < 0 eventually. Then 

Ayn + Pnyn-h - ° eventually. 

Now, by a result similar to [8; Lemma 1.1(a)], we see that the equation 

*yn+Pnvn-h = o (3) 

has an eventually negative solution. But, in view of [10; Theorem 3] and condi
tion (1), equation (3) is oscillatory, which is a contradiction. 

(b) Assume Axn > 0 for n > N > n2 + h. From (E 1 ), we obtain 

n—1 n—1 

Axn - AxN + J^ PkAxk-h = 5Z qkxl^ 

and since 

we have 

k=N k=N 

n—l n—1 

I ] PkAxk-h = Pnxn-h - PNXN-Һ - ] C Xк-hAPk 
k=N k=N 

< Pnxn-h < Pnxn , 

rг-1 

Axn + pnxn > ] Г qкx
c

gк n>N. (4) 
fc=Л 
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Define the sequence {r n }, n > 0, by the recurrence relation 

rn+i = T - 3 - " . n = 0 , l , 2 , . . . , r 0 > 0 . (5) 
Pn 

Next, multiply (4) by r n + 1 . We get 

n - l 

A(rna.n) > r n + 1 ] T qkx
c
gk for n > N. (6) 

k=N 

Choose Nx > N and define m = maxjiVj, max g\. Dividing (6) by 

( rn+ixn+i)c a n ( i summing from _V+ 1 to m, we obtain 

n - l in A / \ in n—i 

£ fr f )c -- E W^Eft^/V,)' 
n = j V + l ^ " + 1 n+l) n = 7 V + l A.=jV 

rn _/fc —1 

>E<l* E (rn+J-^Jtn+lY-
k=N n=fc+l 

Since xgk > x n + 1 for k + 1 < n < gk - 1, we have 

m m I gfc-1 , n . l _ c \ 

E A(rnxn)/(rn+1xn+iy > E .* E IT *•«,/(--?»)) • 
n= jV+l fc=jV \ n = / c + l V j > n o > 0 ' / 

(7) 
Now, from the proof of Theorem 4.1 in [7], it follows that 

oo 

J ] A z . / 2 : c
+ 1 < 0 0 , 

which is a contradiction. This completes the proof. • 

The following theorem is concerned with the almost oscillatory character 
of (Ej) when c = 1. 

THEOREM 2. Suppose that Apn > 0. gn > n + 1 and 0 < pn < 1 /Or 
^ > n0 > 0. / / condition (1) ftoWs and 

_ 7 n - l 

limsup J ] Bktgn_iqk > 1 , (8) 
n ^ ° ° fe=n 
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where 
9n-i / gn-i \ 

fi**.-i = E IK1-*) • 
s=k \ j = s + l / 

then (Ex) is almost oscillatory. 

P r o o f . Let {xn} be an eventually positive solution of (E-J, say xn > 0 
and x > 0 for n > nY > nQ > 0. As in the proof of Theorem 1, we consider 

the following two cases: 

(a) Axn < 0 eventually, (b) Axn > 0 eventually. 

(a) Assume Axn < 0 eventually. The proof of this case is similar to that of 
Theorem 1 (a) and hence is omitted. 

(b) Assume Axn > 0 for n > N > n2 + h. Proceeding as in the proof of 
Theorem 1(b) and defining the sequence {rn} as in (5) we obtain 

5-1 
A( rA)>ViE«^n for 5 > n > i V . (9) 

k=n 

Summing both sides of (9) from n to gn_1, we have 

gn-l s-l 

rn x„ > Tn xn — rx„ > > ^ r , - > ^ 0 t .r„ , 
9n 9n — 9n 9n n n — / J 5+1 / > ^k gu ' 

s=n k=n 
or 

gn-l 5 -1 

1> Y,{r,+ilrgn)Y,%{?gJ*gn) 
s=n k=n 

gn-l / gn-i \ 

-- E ^ K d ^ J I _lr'+i/r9»)-
k=n \ s=k / 

Since xn > x„ for n < k < q„ — 1, we obtain 

9k — 9n — — &n ' 

gn-l / g n - l gn-l \ 

^ £ < M £ IK1-*) • 
fc=n \ 5=k j=5+l / 

which contradicts (8). This completes the proof. • 
The following criterion deals with the almost oscillation of all bounded solu

tions of (Ex) for any c > 0. 
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THEOREM 3. Suppose that Apn > 0 ; gn > n -h 1 and 0 < pn < 1 for 
n — no — 0- V condition (1) holds and 

n / n \ s — l 

limsup 5 3 П ^1 ~pJ ^ 5 3 qk ~ °° > n i > "o ' ( 1 0 ) 
n—»co \ • , i / i 

s=ni \ 2=5+1 / k=n 

then every bounded solution {xn} of (Ex) is oscillatory or {Axn} is oscillatory. 

P r o o f . Let {xn} be a bounded and eventually positive solution of (E x ), 
say xn > 0 and x > 0 for n > nx > n0 > 0. Proceeding as in the proof of 
Theorem 1, we see that the case (a) is impossible. Next, we consider: 

(b) Axn > 0 for n > n2. There exists a constant c1 > 0 and N >n2-\- h 
such that 

xn > c, for n>N. (11) 

As in the proof of Theorem 1 (b) we obtain (4) and then define the sequence 
{rn} as in (5) and obtain (6) which takes the form 

n - l 

A ( r n x J > c J r n + 1 J ] ^ for n>N. (12) 
k=N 

Summing both sides of (12) from N to m > JV, we have 

m n—1 

- rm+lXm+l ~ rNXN -- C l L Tn+1 Z-v % > 
Г m + l X m + l 

n=N k=N 

or 

m n—1 

Xm+1 >clJ2 (rn+l/rm+l) J2 % 
n=N k=N 

m / m \ n—1 

= ci 53 ( I I (x - Pi)-1) 53 ^ -* °° a s m -*• °° -
n=N \i=n+l / k=N 

which contradicts the fact that {xn} is bounded. This completes the proof. • 
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3. Almost oscillatory character of (E2) 

In this section, we present two criteria for the almost oscillation of (E2) when 
0 < c < 1. 

THEOREM 4. Suppose that c—\, gn <n and Apn < 0 for n > n0 > 0. If 

1 » + £ ^ \ ( f t _ i ) ( h - i ) 
lim inf 

and 

where 

k=n+l 

n - 1 

ï E Ф ^ Ь - («' 

\ìmsuvY^Cgnkqk>l, (14) 
n—:ЮO . 

k=gn 

C9n,k ~ Y^ 
s=9n 

n o+Pi)-1 

.j=gn+l 

then (E 2 ) is almost oscillatory. 

P r o o f . Let {xn} be an eventually positive solution of ( E 2 ) , say xn > 0 
and x > 0 for n > nx > nQ > 0. Now, there are two cases to consider: 

(a) Axn > 0 eventually, (b) Axn < 0 eventually. 

(a) Suppose Axn > 0 eventually. From (E 2 ) we see that 

Ayn ~ Pnyn+h = (inx

9n > ° eventually, 

where yn = Axn > 0 eventually. Now, by [8; Lemma 1.1(b)], the equation 

Ayn-Pnyn+h = ° ( 1 5 ) 

has an eventually positive solution. But, in view of [10; Theorem 31] and condi
tion (13), equation (15) is oscillatory, which is a contradiction. 

(b) Suppose Axn < 0 for n > N > n2 -f-1. Then from ( E 2 ) , we have 

n—1 n—1 
A x n - A x s = J2PkAxk+h + Y,Qkx

gk

 f or n>s>N. (16) 
k=s k=s 

Since 
n—1 n—1 
Y,PkAxk+h = PnXn+h ~ PsXs+h ~ 5Z Xk+hAPk » 
k=s k=s 

and Apn < 0 and {xn} is nonincreasing, n > N, we have 

n - l 

J2pkAxk+h > ~Psxs f o r n>s>N. 
k=s 
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Now, (16) takes the form 

n - l 

-{Axs-psxs)>Y^Qkx
9k

 for n>s>N. (17) 
k=s 

Define the sequence {r n } by 

rn+i=rJ(l+pn), n = 0 , l , 2 , . . . and rn o > 0 f o r n 0 > 0 , (18) 

and multiply (17) by r 5 + 1 . Then we have 

n - l 

--w>f,+iE^ for n>s>N- (19) 
k=s 

Summing both sides of (19) from gn > N to n — 1 > gn, we have 

n—1 n—1 

Vgn >- rgn
Xg„ ~ TnXn > E r

S +l E ?*S ' gn~gn — ' gn~gn ' n~n — z_v ' *+- Z—e ^^xgfe 
5 = gn k = S 

Now, 

n—1 n—1 

i> E( r .+i l rJE«*(xffJxJ 
5 = gn fc = S 

n - l fc 

> E «k(xgJxgn) Yl(rs+Jrgn)' 
k=gn s=gn 

Since ;r > a: for a < fc < n — 1 < n , wre see that 
gk — gn *n — — — 

n—1 k 

i> E <!* E (r*+i/rJ 
k=grl s=gn 

n —1 / k s \ 

= E E n d+^-k-
/C = grx \ S = 0n j = gn + l / 

Taking lim sup of both sides of the above inequality as n —> co, we obtain a 
contradiction to (14). This completes the proof. • 

THEOREM 5. Suppose that 0 < c < 1. Apn < 0 and gn < n for n > n0 > 0. 
and let condition (13) hold. If 

oo 

E A ^ = °°>
 (20) 

k=no 
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where 
k / s — 1 \ 1~~c 

^.,*=E( i+p-)~ i(i i( i +- j i)~ i) . 
s=9k \j = l / 

then (E2) is almost oscillatory. 

P r o o f . Let {xn} be an eventually positive solution of (E 2 ) , xn > 0 and 
let x > 0 for n > nx > nQ > 0. As in the proof of Theorem 4, we see that 
case (a) is impossible. Next we consider: 

(b) Suppose Axn < 0 for n > N > n2 -f 1 . Define the sequence { r n } as 
in (18) and proceed as in the proof of Theorem 4(b) to obtain (19) which takes 
the form 

n - l 

-A(rsxs)>rs+1Y,QkXC
9k for n>s>N. (21) 
k=s 

Choose N* > N such that gs > N for s > iV* and let m > N* be fixed. We 
see that 

m 

-A(rsxs)>rs+1J2qkx9k for m>s>N. (22) 
k=s 

Dividing (22) by (rsxs)
c and summing from N to m. we obtain 

m m m 

£ -A(rsxs)/(rsxsy > "T (rs+1/rs
c) E<!*(V*JC 

S = jV fc = S 

772 771 

= Errc/(1+^)E^Kd^)c 

S = jV S = jV fc = S 

s=jV k=s 
m k 

> E «* E »-rei(i+p.,)Kfc/^)c- A" > *• 
fc = jV* S=£fc 

Since x > x5 for gfc < ,s < k, m> k > N*, we have 

m m k 

E -*(*vOK'vOe > E % E »-i-e/(i+pj. 
s=7V fc=jV* s=gk 

It follows from the proof of Theorem 4.3 in [7], that 
m 

y ^ —Azsjz
c
s is bounded below, m > A", 

5 = iV 

which contradicts condition (20). This completes the proof. • 
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P > 77TTTÏ+T (23) 

ш ^+V^1-^-1) > 1, (24) 

S. R. GRACE 

As an application of Theorems 2 and 4, we consider the special cases of ( E J , 
i = 1,2, namely, the constant coefficients equations: 

A2Xn+PXn-h=QXn+9i ( L l ) 

and 
A2xn=PXn+h + QXn-g> ( L

2 ) 
where p and q are positive real numbers and h and k are positive integers. 

Now, we have the following two oscillation results for ( L J , i = 1, 2. 

C O R O L L A R Y l . Let g > l and 0 <p < l . If 

(1 + *) 
and 

l _ - p 

P 
^ e n (L x) is almost oscillatory. 

COROLLARY 2. If 

and 

(?/p)(l+P) 5-^(l-(l+P)- f f)] >1, (26) 

tten (L2) is almost oscillatory. 

As an illustration, we see that the difference equations 

A2xn + | A z n _ 3 = g i x n + 3 , (27) 

and 

^ 2 ^ n = A a ? n + 4 + ? 2 ^ n - 4 ( 2 8 ) 

are almost oscillatory if q1 > 4/17 and q2 > 8/49 by Corollaries 1 and 2 
respectively. 

Remarks . 
1. If we let pn = 0 in the results presented in this paper, the remaining 

conditions in our results are not enough to describe the oscillatory character of 
the equation 

A2xn = qn\xgn \c sgaxgn , c > 0, (E*) 

and hence our results are not applicable to (E*). 

2. It would be interesting to study the oscillatory character of (E 1 ) and (E 2 ) 
instead of almost oscillation and to obtain results similar to these presented here 
for (E x ) with c < 1 and for (E 2 ) with c > 1. 
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