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A PRINCIPAL CONGRUENCE IDENTITY 
CHARACTERIZING THE VARIETY OF DISTRIBUTIVE 

LATTICES WITH ZERO 

IVAN CHAJDA 

It is a well-known fact that the product of two congruences 09 <f> on an algebra 
A is a congruence on A if and only if they permute, i.e. 0.0 = 0.0. Hence, 
if A is a permutable algebra and x, y, z are elements of A9 then 

9(x9y)^e(x,z).6(y9z). (*) 

It is easy to prove that if (*) holds for each x, y9zeA and for every A of a variety 
ir

9 then if is permutable, thus the principal congruence identity (*) is equivalent 
to the permutability of f . 

Suppose now that an algebra A has a nullary operation 0. If A is permutable, 
then (*) implies the validity of the principal congruence identity 

0(x9y)^e(x9O).0()>9Q) . (**) 

in A. On the contrary, the identity (**) can be satisfied also in non-permutable 
varieties, see [1]. The aim of this short note is to prove the following 

Theorem.Let if be a variety of lattices with the least element 0. The following 
conditions are equivalent: 

(1) if is a variety of distributive lattices with 0; 
(2) if satisfies the identity (**). 

Proof. (1)=>(2): Let A be a distributive lattice with the least element 0. Then 
clearly 

<x,y>e<?(x, 0 ) . % , 0). 

Moreover, we have 

0 \ x v y> = <0 v y, x v y> e 0(x9 0) 

<x v y, x> = <x v y, x v 0> e % , 0), 

thus also 

< y , x > e £ ( x , 0 ) . % , G ) . 
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Since the relations t9(x, 0), #(y, 0) are reflexive and compatible, also the relation
al product 0(x9 0). 9(y3 0) has this property. Therefore, we infer 

(<p(x9 y), cp(y, x)> e 0(x, 0). 6><y, 0) 

for every algebraic function q> over A. It means 

T(x, y) cz #(*, 0 ) . % , 0), 

where jT(x, y) is the principal tolerance on A generated by the pair <x, y>. By 
[2], we have T(x, y) = #(x, y) in every distributive lattice which implies (2). 

(2) => (1): Let f be a variety of lattices with the least element 0 which is not 
distributive. Then i r contains either the pentagon N5 or the diamond M5 as its 
member, hence, f"" contains also either the lattice Lx or L2 in Fig. 1 or Fig. 2, 
respectively. The classes of #(x, 0) are in both figures denoted by dotted lines, 
those of 9(y, 0) by full lines. It is clear that <0, 1 > # $(x, 0). #(y, 0) in these cases 
but, on the contrary, <0, 1>G#(X, y). 
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ТЖДЕСТВО ГЛАВНЫХ КОНГРУЕНЦИЙ, ХАРАКТЕРИЗИРУЮЩЕЕ 
МНОГООБРАЗИЕ ДИСТИБУТИВНЫХ РЕШЕТОК С НУЛЕМ 

1уап СЬа1о!а 

Р е з ю м е 

Показывается, что многообразие решеток с нулем является многообразием дис-
тибутивных решеток тогда и только тогда, когда оно удовлетворяет тождеству 

в(х, у) Я 0(х< 0). % , 0). 
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