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ON THE EXISTENCE
OF CRITICALLY n-CONNECTED GRAPHS

FERDINAND GLIVIAK

This paper deals with undirected, directed and mixed graphs, too. All
graphs will be finite, without loops and multiple edges. The vertex-connectivity
and the edge-connectivity of directed or mixed graphs will be used in the
sense of the strong connectivity. :

Let @ be a graph. Then we denote by V(() the vertex set of G, by E(G)
the edge set of @, by »(G) the vertex-connectivity of G, by A(G) the edge-
connectivity of G and by |4| the cardinality of a set 4. Let w € V(G). If G
is undirected, then Ng(u) denotes the set of vertices adjacent to » in G. If @ is
directed, then Og(u) denotes the set of vertices adjacent to by an edge going
from u and I¢(u) denotes the set of vertices adjacent to v by an edge going to u.
The definitions of the notions not presented here can be found in [8].

A graph G is called x—edge-criticasl, if #(G — x) < %(G) for every edge x of G
x-vertex-critical, if x v) < %(G) for every vertex v of G. Analogously one
can define A-edge- cmtwal cmd Z-vertex critical graphs.

One can see that every regular undirected graph of degree n > 2 and vertex-
connectivity » is x-edge, x-vertex, A-edge and A-vertex critical. Analogously
it can be verified that every directed regular graph of indegree and outdegree
n > 2, vertex-connectivity and edge-connectivity n is x-edge, x-vertex,
A-edge and A-vertex critical. These four classes of critical undirected or directed
graphs were studied in many papers, e. g. [1], [2], [4—7], [9—15]. We shall
prove the following theorem on the existence of critical graphs.

Theorem 1. Let n > p > 1 be given integers. To every undirected (directed)
graph G with p vertices there exists an undirected (directed ) graph of edge-(strong)
connectivity and vertex-(strong) comnectivity n that is x-edge, x-vertex, A-edge
and A-vertex critical and contains G as an induced subgraph.

The proof of Theorem 1 follows immediately from the following two lemmas

Lemma 1. To every undirected graph G with p vertices . there exists an un-
directed, regular graph of degree n, vertex-connectivity angd edge -connectivity n con-
taining G as an induced subgraph, where n > p > 1 are given integers. . .
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Lemrma, 2. To cvary directed graph G with p vertices there exists a directed
graph of indegree and outdegree m, vertex-strong-connectivity and edge-strong
connectivity n containing G as an induced subgraph, where n > p __ 1 are given
integers.

Proof of Lemma 1. Let ¢ be an undirected graph with p = 1 vertices
and let » > p. Let G be the graph that arises from G by adding = IM(&))
isolated vertices. Thus [V(Gh)| = n. Let G| be a copy of the graph ¢, and
let u’ be the vertex corresponding to a vertex « of G;. Let @ be a graph with
the vertex set V(Q) = V(G1) U V(@,) and the edge set E(Q) consisting of the
sets E(G1), E(G;) and moreover every vertex w ot ¢ is joined to any ver-
tex x € V(G;) — Ne¢. (u') by an unoriented edge (u, x).

From the described construction it follows that @ is » regular graph of
degree n containing ¢ as an induced suk graph. Now we prove that x() »
by finding » paths not having inner vertices in common that join any two
vertices of ¢) (see [8], p. 48).

Let @, b be different vertices of G; and let o', b’ € V((G;) be their copies.

Let us put M, = Ng,(a) N N¢,(b), M1 = Ne¢,(@) — (M, U {b}), M2 = Ng,(b)
— (Mo {a}), M3 = V(G1) — (M, My U M2 U {a, b}). The vertices @ and b
are joined by the following » paths not having inner vertices in common:
(@, z, b) for every x € M,; (a,z,a’,b) for every x € My; (b, x, 2, a) for every
x € Ms; (a, 2, b) for every x € M3 and finally either the paths (a, b), (@, @', b, b)
if (a, b) € E(Q) or the paths (a, a’, b), (@, V', b) if (a, b) ¢ E(Q).

The vertices a and b’ are joined by the following n paths not having inner

vertices in common:
(@, x, z', b") for every x € M,; (a,x,b") for every x € My; (a,2’,b") for every
x € Mz; (a,x',%,b") for every x € M3 and finally if (@, b) € E(Q), then the
paths (@, b, '), (@, &', b’) and if (a, b) ¢ E(Q), then the paths (@, b'), (@, @', b, b’).
One can find » paths not having inner vertices in common that join the vertices
a’ and b’ or the vertices ¢ and a’. Thus we have »(¢) = =, hence the equality
A(@) = n follows by the well-known inequalities »(Q) < (@) < n, where 7 is
the minimum degree of @, (see [8]). Lemma 1 follows.

Proof of Lemma 2. Let n > p > 1 be given integers. Let G be a graph
with p vertices. Let (; be the graph arisen from G by adding » — V(G)
isolated vertices to G. Let G, be a copy of Gq and let u’ be the vertex cor-
responding to the vertex w of G4. Let @ be a graph with the vertex set V(Q)
= V(G1) U V(G,) and the edge set E(Q)= E(G1) U E(G,) U A U B, where
A is the set of directed edges outgoing from any vertex w of G to a vertex
z € V(G,) — O¢ (u') and B is the set of directed edges outgoing from any
vertex v’ of G, to a vertex x € V(G1) — Og,(v).

Directly from the construction it follows that @ is a regular directed graph
of indegree and outdegree n containing ¢ as an induced subgraph. We shall
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prove that (@) = n by finding n oriented paths not having inner vertices
in common that join any ordered pair of vertices of Q.

Let a, b be different vertices of G1 and let a’, b’ € V(G,) be their copies. Let
us put M, = O¢/(a) N Ig (D), M= Og(a) — (M, {b}), Mz = I¢(b) —
— (Mo {a}), M3 = V(Gh) — (MyU My U Mz U {a, b}). The following = di-
rected paths not having inner vertices in common join the vertex a with the
vertex b in @:

(@, x, b) for every x € My; (@, z, 2, b) for every x € M1; (a, 2, x, b) for every
x € Ms; (a, 2, b) for every @ € M3 and finally either the paths (¢, b), (@, ¢’, b’, b)
if m) € E(Q) or the paths (a, b’, b) and (a, o', b) if (a, 15 ¢ E(Q).

The vertices @ and b’ are joined by the following » directed paths not having
inner vertices in common: (a, z, ', b’) for every x € M,; (a,z,b’) for every
x € My; (a.x',b’) for every x € Ma; (a,2’,x,b’) for every x € M3 and firally
if (a:b) € E(Q), then the paths (¢, b,d"), (¢, a’,b’) and if (a,_g) ¢ E(Q), then
the paths (@, ), (a, a’, b, b’). One can find » directed paths not having inner
vertices in common that join the pair of vertices [a, a’] or [a’, a] or [d’, b’]
or [b’, a] analogously as in the previous cases. Thus we have »(Q) = n. It
follows that 2(Q) = n by the inequalities »(Q) < A(Q) < min (ny, n2), where n;
and ng are the minimum indegree and the minimum outdegree of @, respec-
tively. The inequalities mentioned above can be proved for strong-connectivity
similarly as the same inequalities for undirected graphs (see [8], p. 43). This
completes the proof.

Corollary 1. Let n > p > 1 be given integers. To every mixed graph G with p
vertices there exists @ mized graph of edge-strong-connectivity and vertex-strong-
connectivity n that is x-edge, x-verter, A-edge and A-vertex critical and contains G
as an tnduced subgraph.

Proof. Let (¢ be a mixed graph baving p vertices. Let n > p. Let G* be
the graph arisen from @ by replacing every its undirected edge by the
pair of directed edges with opposite orientation. Let @* be the directed graph
constructed to G* and the integer » by Lemma 2. If we replace every pair
of upposite oriented edges of @* by an undirected edge, then we get a graph @
with the desired properties, which can be verified analogously as in Lemma 2.
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