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A CLASS OF POLYNOMIALS 
ANDRZEJ SCHINZEL 

ABSTRACT. We characterize the polynomials (p(x) 6 Z[x] such tha t for any 
f(x) e Z[x] from inclusion { /(a); a = Jfc, k + 1,... } C {<p(b); 6 = 0, ± 1 , ± 2 , . . . } 
follows f(x) = (p(h(x)) for some h(x) € Z[x]. 

Call a polynomial <p(x) good if it has the following property: 

For every polynomial f(x) G Z[x] such that for every sufficiently large integer 
a G Z there is b G Z such that f(a) = <p(b) there is a polynomial h(x) G Z[x] 
such that f(x) = <p(h(x)). 

I. K o r e c suggested to study good polynomials in connection with his results 
concerning palindromic squares in [1]. 

In this note we prove the following criterion: 

T h e o r e m . A polynomial <p G Z[x] is good if and only if <p (-^) ^ Z[x] for 
all m > 1. 

To prove this result we need the 

L e m m a . Let for a polynomial F with algebraic coefficients C(F) denote 
the content of F, i.e. the ideal generated by the coefficients of F. If p G Z[x], 
q G Q[x] and p(0) = 0 , then v 

o(9(p))lo(9)o(p)deg'. 

P r o o f . We have 
d e g g 

q(x) = QO n ( x ~ ^ ) ' 
i = l 

and by the generalized Gauss lemma 

deg q deg q 

c(q)=(go) n °(x - ^)=(9o) n o> *) • 
t= i t= i 
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Similarly 

deg q deg q 

C(q(p)) = (90) n CWX) ~ ^) = (9o) A (C(P)> ei), 
t = l t = l 

and since C(p) is integral, the lemma follows. D 

P r o o f of t h e T h e o r e m . We shall prove first that the condition is 
necessary. If for an m > 1 tp ( ~ ) £ Z[x], we have 

/ ( * ) = y > ( ( m - l ) ! ( * ) ) e Z [ * ] . 

Also for every x* £ Z there exists a y* £ Z such that 

f(x') = <p(y'). 

If, however, we had f(x) = <p(g(x)), g £ Z[x], it would follow that 

v > ( ( ™ - i ) ! ( * ) ) = ¥ > ( < / ( * ) ) , 

which gives a contradiction, since the leading coefficient of the left hand side is 
smaller than the leading coefficient of the right hand side. 

In order to prove that the condition is sufficient, let a be the leading coeffi­
cient of if and assume, that for an / £ Z[x] we have / (x*) = <p(y*) for every 
x* £ Z , x > K and a suitable y* £ Z . Let 

n 

Vp(y)-/(x) = n I r ^ y ) . (i) 
t = l 

where the polynomials Fi £ Z[x,y] are irreducible and Ft viewed as a polyno­
mial in y has the leading coefficient ai(x). Clearly 

o. = JJa.(x), 
t = i 

hence a;(x) £ Z for all i < n. Without loss of generality we may assume that 

Fi(y) = a{y - ftt(x) for i < m , 

degy Fi > 1 for i > m. 
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By Hilbert's irreducibility theorem there exists an integer t* such that at* > K , 
Ft(at*,y) is irreducible for all i > m and hence 

Fi(at*,y) = 0 

has no rational root. Since by the assumption 

<p(y*) - f(at*) = 0 for a y* £ Z , 

by (1) there is a j < m such that 

Fj(at*,y*) = 0, 

which gives 
ajy* - hj(at*) = 0, 

and since aj | a 
hj(0) = hj(at*) = 0 (mod aj) . (2) 

Let 
C(hJ(x)-hj(0)) = (c), 

and take in the lemma 

(c,aj) \aj/(c,aj) aj 

We obtain 

C(q(P)) | C(q)C(pf^ = C(q) • ( j ^ ) ^ " , 

and since by (1) <?(p) = / G Z[„] 

/ r \ deg g 

c ( " - ( ( ^ ) ) c z -

However by (2) 
degg 

^•Ш cz-
and since 

f _ i __") = 
V( c >«j ) ' (c,a i )/ 

the two inclusion give 
C(q) CZ; 
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q Є Z þ , ip 

By the condition on tp: 

hence aj\c and by (2) 

aj/faaj) 
q(x-hj{Ъ)(c,aj)) Є Z[x] 

l«il/(c,ai) = 1, 

Since by (1) 

Ч*) = Ҷҳ) - Дj(o) + MPІ є Z м 

^ - е т -

the proof is complete. B 

R E F E R E N C E S 

[1] K O R E C , I . : Palindromic squares for various number system bases. (To appear.) 
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