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MATHEMATICA SLOVACA 

VOLUME 28 1978 NUMBER 2 

ON CHARACTERIZATION OF SUMMABILITY 
FIELDS BY INTEGRAL 

JOZEF ANTONI 

In paper [3] J. R. Edwards and S. G. Wayment defined a summability method 
using the technique of the integration theory. By this method the characterization 
of convergence fields of the (C, 1) method and some strongly regular matrix 
methods are given. A summability integral defined by J. R. Edwards and 
S. G. Wayment was obtained by a non-negative set function defined on a logic of 
a set (see [4]). 

This paper shows that for the characterization of the above mentioned converg
ence fields a usual integral is sufficient defined by an additive measure on an 
algebra of a subset of the set IV (IV means the set of all positive integers), which is in 
a certain sense maximal. Also the characterization of convergence fields of some 
matrix summability methods (not only strongly regular) is given. In paper X 
denotes a Banach space and sequences consist of elements of X. 

1. 

In paper [1] R. C. Buck used the new measure theoretic approach to the density 
of sets of positive integers. There is defined a system of measurables sets, which 
have the characteristic functions (C, 1) summable (also a generalization for matrix 
summability methods, which are not weaker than the (C, 1) method, is given). 

Buck's approach to density is used for a regular matrix summability method, but 
the extension is made in another way. 

The generalised density 6T(A) of a set A aN (in the following only density of 
A) given by the regular non-negative matrix T = (anm) we shall call the limit 

lim ^ QmnX*(n) ^ this limit exists. A set A for which 6T(A ) exists, is called the set 
m — * ° ° n = 1 

with the <5T density. If T equals the matrix of the (C, 1) method, we have the usual 
asymptotic density. 
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Let D be an algebra of a set with the dT density, i.e., a system of a set A czN 
satisfying the following conditions: 

(i) if AeD, then N-AeD 
(ii) if A, BeD, then AuBeD 

(Hi) if A eD, then dT(A) exists. 
Let Sf denote the set of all algebras D of set with the dT density. Then exist 

maximal elements in Sf with respect to the ordering given by the inclusion. By the 
Kuratowski—Zorn maximum principle it is sufficient to show that every chain 
SfxczSf has the upper boundary in Sf. Let SfxczSf be a chain. Let us put 
D* = {D: D e Sfx}. It is easy to see that D* is an algebra of sets with the dT density 
and D* the upper boundary of Sfx in Sf. 

Remark 1. An example of such an algebra (see [1]) is the system D of sets, 
which are finite unions of aritmetical progresions of positive integers or which 
differ from these by finite sets (T is the matrix of the (C, 1) method). An 
arithmetical progresion is a sequence of positive integers of the form {an +b}„ = i, 
where a, b are positive integers and b can be equal to zero. The characteristic 
function of the arithmetical progresion {an+b}"=i is (C, 1) summable to the 

number — . 
a 

The algebra D of remark 1 was extended by the Caratheodory method to the 
system D/iT of all sets measurable with respect to the outer measure \i f defined in 
the following way: 

/iT(A) = inf {dT(B):B eD and B± A} for AczN. 

The symbol ±> means that if a finite set is deleted from A, we have B z> A. 

Theorem 1. Let Sf be the system of all the algebras of sets with the dT density 
ordered by inclusion. D means a maximal element in Sf and D\iT means the system 
of all measurable sets in the Caratheodory sense with respect to the outer measure 
\i^, where 

liT(A) = 'ml{dT(B):BeD,B±>A} for AczN. 

Then DjUTc=D. 
Proof. It is sufficient to show that 8T(A) exists for every A eD{iT (since D is 

a maximal element in Sf, we have D\iTczD). Let there be AeD\iT. Then 
[i%(E) = \i%(Er\A) + nf(EnA') holds for every EczN. Let there be e>0. To 
every e > 0 there exists (from the definition of \i f) a set B e D such that B ±> A and 
\lif(B)-fiT(A)\<e. 

Since A e D/iT and B ±> A, the following is valid 

liT(B) = iif(A) + iif(BnA'), 

\lif(B)-tiT(A)\=iiT(B-A) and fif(B-A)<s. 
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The last inequality yields that for every e>0 there exists a set C e D such that 
C±>B—A and dT(C)<e. Then we have 

dT(B-A)=\im j^amnxB-A(n)^ 
m - ° ° n = \ 

^ l i m Y,amnXc(n) = dT(C)<e. 
m—*°° n = \ 

Since e > 0 is arbitrary, there holds 6T(B — A) = u.f(B — A) = 0 and therefore we 
have (iiT(B) = dT(B)) 

\^f(A)-dT(A)\^\tif(A)-^f(B)\+\im f,amn(xB(n)-

-X*(n))=\iiT(A)-iif(B)\ + dT(B-A)<e. 

The last relation gives rise to the existence of the 6T(A). 
In the rest of the paper D denotes a maximal element of &>. The density dT is an 

additive measure on D (shall be denoted also \iT or shortly //). 

Let (X, || ||) be a Banach space, T a regular matrix method given by 
a non-negative matrix and D a maximal element of Sf. (N, D, /uT) is a measurable 
space. Let there be the set of all simple measurable functions denoted by $0. An 

n 

xe$0 iff there exist xu x2, ..., xneX and Bl9 B2, . . . , B „ e D such that \jBi=N; 
i = l 

n 

BinBj = 0 for /=£/ and x = 2*<ZBI-
i = 1 

The validity of the following theorem can be easily verified. $0 can be 

accompanied by the sup norm |f-||, M|JC|U = S U P IMII f°r xe$0) . 

Theorem 2. (#0, || • ||oo) is a normed linear space. 

n 

Definition. Suppose xe#0,x = 2*<*-».• Then we define the integral of x by the 
i = l 

formula 

\x diiT = Z,XiiiT(Bi). 
J i = l 

It is easy to see that ||J"* dfiT|| ^ |MU- $0 is a not complete normed space. 
A completion of $0 with respect to the sup norm will be denoted (/-, || • |U). The $x 
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is the uniform hull of the $0. The integral can be extended to $x in a natural way, 
i.e. suppose x e$x,x = lim xn,xn e^ 0 and {xn}n=x form a Cauchy sequence, then 

I x djUT = lim xn áiiT. 

The following theorem gives the necessary and sufficient condition for x e$x. 

Theorem 3. Letx = {xn} be a sequence of elements ofX. H(x) denotes the set of 
all the limit points of the sequence x. Then xe$x iff the following condition is 
fulfilled: 

For every e>0 there exists a finite e-net {ax,a2, ...,ar} in H(x) and such a finite 
n 

system of sets {BX,B2, ...,Br} e D that \jBi=NandBicz {n eN: \\xn - a(\\ < e}. 

The proof immediately follows from the fact that $0 is dense in | , . 
R e m a r k 2. The compactness of H(x) is a necessary condition for x e$x. 
From Theorem 3 it follows that the operator defined by the integral is 

a generalized limit. This generalized limit is the same as the usual limit for every 
convergent sequence. 

In this section there will be shown the relation between the summability field 
W(T) of the regular summability method given by the non-negative matrix and $x. 

In paper [3] a charakterization of the summability fields of the (C, 1) method 
and strongly regular methods which are not weaker than the (C, 1) method is 
given. This characterization is given by the integral constructed for this purpose. 
We can show that the mentioned summability fields can be characterized by the 
above mentioned integral on $x. Proofs are done in the same way as in [3]. 

Let D denote a maximal element of 5^ which contains all arithmetical progres
sions. Let x = {xn} be a sequence of elements of X. We can define the sequence 
Jcmodm = |Jcrnodm^ w here xT*m = *n for l^n^m and xn

odm = Xi for l ^ i ^ m , 

n =i mod m, for every positive integer m. The sequence *modm can be written in 
the form 

m 

j " " * " " = 2 > . * B , . where B, = {mk + i: k = 0, 1, 2, -..} 
i = 1 

and thus x
modm belongs to $x for every m. 

The following theorem characterizes W((C, 1)) by the integral on $x. 

Theorem 4. A sequence x belongs to W((C, 1)) iff lim \ x
tnodm d^ ( c X) exists. 
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Then there holds 

(C, l ) - l i m j c = lim f jtmodm dju(c,i). 
m—oo J 

m 

Frooi. Let be xmodm = ̂ XiXBi, Bi = {mk + i: k = 0, 1, . . . } . Then we have 
i = l 

r m 1 m 

* — " dji(C. „=2*rf*(c .>(-*.)=- 2 * . • 
J i = i m i=\ 

Therefore the following holds 

(C, l ) - l i m JC = lim — Y JC, = lim f Jcmodm dji (c ,,. 
m—co m i=X

 m—°° J 

An example of a regular transformation which is not strongly regular and for 

which the summability field can be characterized by integral, is a summability 

method given by a matrix D = (d^). The matrix D arises from the matrix of the 

(C, 1) method putting (r - 1) columns consisting of zeros between two neighbour

ing columns of the (C, 1) method, i.e. dmn =—for n =rk + 1 (k = 0, 1, ..., m - 1) 

and d™ = 0 for other n. 

Lemma 1. Let Bt = {rkm+i: k = 0, 1, ..., 1 ^ / ^ r m } . Then tiD(Bi) = — for 

i = rs + 1, 0 ^ 5 < m and ruD(Bl) = 0 for other i. 
Proof. The set B, can be written in the form B,, = {k: k = i mod rm}. In the first 

n n 

place we determine the sum X X B . O ) - It *s e a s Y t o s e e t n a t w e obtain X X B . O )
 = 0 for 

y=i ' i - i 
n 

n <i and S X B . O ) = fc + 1 for krm + i ^ n<(k + \)rm + /. It can be simply written 
; = i 

^ <\ [n+rm- /"| 

([a] denotes the integral part of a). Since dnj=— for / = / m o d r m , / = rs + l, 

0 ^ s < m, we have 
r(n-l)+l j r(n-l)+l \ 

M B . ) = lim 2 dniXBi(j) = \\m- 2 z (/) = — . 
n-« j = 1 „̂ =o n / = 1 m 

For other / and / = / mod rm there holds dnj = 0 and therefore fiD(BI) = 0. 

Theorem 5. A sequence x belongs to W(D) iff lim \x
modrm d/xD exists. Then 

m-*oo J 

D - lim JC = lim | xmodrm d\iD. 
m—oo J 
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Proof. Since Jcmodrm belongs to / 0 , we have 

j™"" diiD = ZxnHD({k:k = n mod rm})^ -xrs+i J n=1

 s=0m 

( d - n n = ~ for rz=rk + l , O ^ k ^ m - l ) . 

For the D limit of x there holds 

r(m~i )-n m - l г 1 т - 1 ) + 1 т - 1 -. 

^ - Н т . г = Ит ^ <*тпХп = Нт 2 — *.,+. 

апо! 1Ьегек>ге 
О - Нт * = Нт \х

тоёгт дц0. 
т—»» ^ 

К е т а г к 3. \Уе сап 1акеп а 8сЬиг таШх Ш51еас1 оГ а ге§и1аг поп-пе§а11Уе 
та(пх. ТЬеп 1пе 8у8*ет У Ьаз ехас11у опе тахш1а1 е1етеп! (*Ье 8у81ет о! а11 
8иЬ5е(8 о! 1Ье 8е1 IV). 1п 1Ы8 са8е 1пе зиттаЫШу НеЫ сап Ье сЬагас1епгео! 
апа1о§ои81у 1о гЬа* т ТЬеогет 4. 

ТЬе 8е1 о[ а11 т1е§гаЫе 8ециепсе8 \укЬ ге8рес( 1о 1Ье теа8иге \1Т саппо! Ье шее! 
1ог 1Ье сЬ.агас(еп.га(10п о! 1Ье 8иттаЬШ(у йеЫ т [Ье 8ате \уау а8 т ТЬеогет 4 
(8ее [3] ра^е 87). 
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О ХАРАКТЕРИЗОВАНИИ ПОЛЯ СХОДИМОСТИ ПРИ ПОМОЩИ ИНТЕГРАЛА 

Йозеф А н т о н и 

Р е з ю м е 

В работе [4] определен «интеграл суммирования» при помощи меры определенной на логике 
подмножеств множества всех натуральных чисел а также характеризованы поля сходимости для 
некоторых сильно регулярных методов суммирования. 

В настоящей работе показано, что обыкновенное определение интеграла на алгебре подм

ножество множества всех натуральных чисел тоже допускает характеризовать поля сходимости 

тем самым образом как в [4], но, не только для сильно регулярных методов суммирования. 
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