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COMPACTNESS IN THE SENSE 
OF THE CONVERGENCE WITH RESPECT 

TO A SMALL SYSTEM 

JACEK HEJDUK- ELIZA WAJCH 

The purpose of the paper is to generalize Frechet's theorem characterizing 
the compactness of families of measurable real functions in the sense of the 
convergence with respect to a finite measure (cf [1, 3, 4]). Some necessary and 
sufficient conditions (analogous to those from [1, 3, 4]) for a family of measur­
able real functions to be compact in the sense of the convergence with respect 
to a small system will be proved. 

Before proceeding to the body of the article, let us introduce some notation 
and establish some useful facts. 

Let X be a nonempty abstract set and Sf- a a-field of subsets of X. Suppose 
that we are given a sequence (Sn) of subfamilies of Sf which satisfies the 
following conditions: 

(I) QeSn for each neN; 
(II) for any neN, there exists a sequence (k,) of positive integers such that 

if AteSk for ie V, then [J AfeSn; 
/ = i 

(III) for any ne V, AeSn and BeSf such that B cz A, we have BeSn; 
oc 

(IV) for any neTV, A eSn and Be f) Sm, we have AuBeSn; 
m = 1 

(V) Sn^Sn+] for each neN. 
The sequence (Sn) is said to be a small system on Sf (cf. [2, 6, 7]). If, in addition, 
(Sn) has the following property: 

(VI) if (An) is a nonincreasing sequence of ^-measurable sets for which there 
X X 

exists meN such that An$Sm for any neN, then f] An$ f] Sn, 
n = 1 n= 1 

then it is called an upper semicontinuous small system (cf. [6, Definition 2]). In 
the sequel, we shall assume that (Sn) fulfils (I)—(V). If it proves necessary, we 
shall in addition insist that (Sn) is upper semicontinuous. 

00 

Let us observe that the family f = (~) Sn forms a cr-ideal on Sf (cf. [6]). Of 
n= 1 
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course, for any a-ideal f* on Sf, there exists a small system (Sn) such that 
X 

f* = P | S*; however, there are a-ideals which are not the intersections of any 

upper semicontinuous small systems (cf. [6, Corollary 5]). 
One says that a property holds ^-almost everywhere (abbr. ^-a.e.) on X if 

the set of points not having this property belongs to f'. The family of all ./-a.e. 
finite ^-measurable real functions defined on X will be denoted by M \Sf\ J]. 

In [8] E. Wagner introduced the definition of the convergence with respect to 
a a-ideal. We will recall the notion of the convergence with respect to a small 
system, which was investigated in [6]. 

Definition 1. A sequence (fn) cz M \Sf, f] converges with respect to the small 
system (Sn) to a function fe M\Sfy(f] if for any 5 > 0 and any me N, there exists 
n0eN such that {xeX: \fn(x) — f(x)\ > 5 } ^ ^ w whenever n ^ n0. 

Definition 2. A family <I> <= M\Sf, f] is called: 
(a) compact in the sense of the convergence with respect to the small system 

(Sn) (abbr. (S n)-compact) if each sequence of functions from <I> contains a subse­
quence converging with respect to (Sn) to some function from M \Sf, f]\ 

(b) compact in the sense of the convergencse with respect to the a-ideal f 
(abbr. f -compact) if each sequence of functions from <E> contains a subsequence 
converging f-a.e. to some function from M \Sf, f]. 

It follows from [6, Theorem 1] that (<?w)-compactness implies /-compact­
ness; however, the converse holds if and only if the small system (Sn) is upper 
semicontinuous (cf [6, Corollary 1 and Remark 2]). Some characterization of 
^-compactness was given in [5]. Here, we shall be primarily concerned with the 
(Sn )-compactness. 

Definition 3. An Sf-measurable real function f defined on X is (Sn)-bounded if 
for each neN, there exists a positive integer tn such that {xeX: \f(x)\ > tn}eSn. 
Denote by M \Sf\ (Sn)] the family of all (Sn)-bounded functions. 

Proposition 1. (a) The inclusion M \Sf, (Sn)] cz M \Sf, / ] always holds. 
(b) The equality M \Sf\ (Sn)] = M \Sf, f] holds if and only if(Sn) is upper 

semicontinuous. 
Proof, (a) Consider any fe M \Sf, (Sn)]. Let (tn) be a sequence of positive 

integers such that the sets An = {xeX: \f(x)\ > tn) belong to Sn. It follows from 
oo oo 

(III) that p) A e / . Since {xeX: | /(x)| = +00} c= f ) An, we obtain that 

/ £ M [ y , / ] . 
(b) Suppose that (S„) is upper semicontinuous and let g e M [ y , / ] . If 

? ^ M [ y , (Sn)\, then there exists keN such that {x6X: \g(x)\ >n}$gk for each 
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ne N. If follows from (VI) that f) {xeX: \g(x)\ > # . } £ / , which is impossible; 

hence geM [.9>, (S„)] and, consequently, M [<f, (S„)] = M [ST, / ] . 
Conversely, suppose that (S„) is not upper semicontinuous. There exist a 

positive integer m and a strictly nonincreasing sequence (B„) of members of Sf 
x 

such that P) B„ef and B„$Sm for each neN. Let us define 

1 for дrєXVS,, 

n for JГЄB„\B И + | , 

+ 00 for.vєf) -V 

i. = ! 

( +00 for *€ 
^ / / = i 

The function h is / - a . e . finite but not (<^,7)-bounded. 

Definition 4. A family O cz M [«9*\ / ] /s Ctf//ed: 
(a) (S„ )-equibounded if for any neN. there exists a positive integer t„ such that 

{x e X: \f(x)\ > t„} e Sn whenever fe O; 
(b) f-equibounded if there exists a sequence (tn) of positive integers such that 

X X 

P) \J {xeX: |f(x)l > t„}ef for every sequence (f„) of functions from O. 
n = mi = 1 

Proposition 2. (a) (S„)-equiboundedness implies f-equiboundedness. 
(b) f-equiboundedness implies (S„)-equiboundedness if and only if the small 

system (S„) is upper semicontinuous. 
Proof, (a) Lemma 1 of [6] implies the existence of a sequence (k,) of 

x 

positive integers such that if A} e Sk, then [J Ate S„ for each n e N. Suppose that 
/ = n 

O c M [Sf, f] is (<?,7)-equibounded. There exists a sequence (/,) of positive 
integers such that {xeX: \f(x)\ > tf}eSk for any feO and ieN. If <I> is not 

X X 

^/-equibounded, then there is a sequence (f) cz O such that p | ( J {xeX: 
n = 1 /' = // 

|f(x)| > t,}<£/, which contradicts (III). 
(b) Assume that (S„) is upper semicontinuous, and <3) cz M [<9% f] is f-eq-

uibounded. There is a sequence (r,) of positive integers such that, for any 
X X 

sequence (g.) cz O, P) ( J {„xeX: |g,(x)| > r(}ef. If O is not (<?J-equibounded, 
n = 1 /' = « 

then we can find meN such that, for each ieN, there exists gfeQ> for which 

{xeX: \gi(x)\ > r,.}$Sm. By virtue of (III), the sets A„ = (j {xeX: |g,(x)| > r,} 
i = // 

form a nonincreasing sequence such that A„<£Sm for any neN. According to 
X 

(VI), Pj A„<£f — a contradiction; hence <I> is (S„) — equibounded. 
« = i 
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If (Sn) is not upper semicontinuous, then the family {/t}, where h is the 
function constructed in the proof of Proposition 1 (b), is /-equibounded and 
not (cf„)-equibounded. 

For a function fe M [£f, f \ finite on a set A cz X, let us denote osc(f, 
A) = sup{|f(x) — f(y)|: x, VGA}\ of course, if A = 0, then osc(/; A) = — oo. 

By a partition of X we shall mean a finite subfamily 0> of £f such that u {P: 
Pe.Z>} = X. 

Definition 5. A family 0> cz M [<f, f] is called: 
(a) (Sn)-equimeasurahle if for any 8 > 0 and neN, there exist a partition 8? 

ofX and a collection {Af:fe<S>} of members of Sn such that osc(f P\Af) ^ 8 
whenever feO and Pe2P\ 

(b) f -equimeasurable if for any 8 > 0, there exist a sequence (0>n) of par­
titions ofX and a collection {A" :fe O, n e N} of £f-measurable sets such that, for 

x x 

any sequence (fn) of functions from <D, we have P) [J A"ef and, moreover, 

osc(f P\Af/) ^ 8 for anyfe®, neN and Pe2?n. 

Proposition 3. (a) Iffe M [£f, (£„)], then the family {f} is (Sn)-equimeasurable. 
(b) If fe M [if, f \ then the family {f} is f-equimeasurable. 
(c) The small system (Sn) is upper semicontinuous if and only if, for any 

fe M [y , f], the family {f} is (Sn)-equimeasurable. 
P r o o f (a) Let us fix8 > 0 and n0eN. I f f e M [ y \ (Sn)], then there exists 

/ > 0 such that the set A = {xeX: \f(x)\ > t} is a member of S%. Let ^ * be a 
partition of [ — t, t] which consists of intervals of diameter less than 8. If 
.^ = {/-'(/>*): p*e&*}v{A}> then osc(f P\A) ^ 8 for each Pe3P. 

X 

(b) I f f e M [ ^ , / ] then f] {xeX: \f(x)\>n}ef. Putting A„ = {xeX: 
n = 1 

\f(x)\ > n} for n e N and arguing as in the proof of (a), we obtain a sequence (0>„) 
of partitions of X such that osc(f P\A„) ^ 8 for a fixed 8 > 0, any neN and 
Pe#n. 

(c) If (Sn) is upper semicontinuous, then M [if, f] = M[if, (Sn)] by 
Proposition 1 (b), thus, to complete the proof, it suffices to suppose that (Sn) is 
not upper semicontinuous and to show that {h} is not (<?„)-equimeasurable, 
where h is the function constructed in the proof of Proposition 1 (b) 

Let 2P be an arbitrary partition of X and let CeSm. We may assume that 
X 

P) Bn cz C (cf proof of Proposition 1 (b)). It is easily seen that Bn\C ^ 0 for 
n= 1 

each neN (otherwise, Bn would belong to Sm for some n). As the family 0> is 
finite, there exists Pe0> such that (P\C) n (Bn\Bn + l) ^ 0 for infinitely many n. 
This implies that osc(/l, P\C) = +oo, which concludes the proof 
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Proposition 4. (a) (Sn)-equimeasurability implies f-equimeasurability. 
(b) f-equimeasurability implies (S n)-equimeasur ability if and only if(Sn) is 

upper semicontinuous. 
P r o o f (a) First of all, let us take a sequence (Ac,) of positive integers such 

X 

that if A{eSk,, then [J A{eSn for any neN (cf. [6, Lemma 1]). Suppose that 
/ = n 

$ c M [Sf, f] is ((?„)-equimeasurable. For a fixed 5 > 0, there exist a sequence 
(^) of partitions of X and a collection {Al

f:feQ>, ieN} of ^-measurable sets 
such that A\eSki and osc(f P\A}) ^ 8 for anyfeO, PeSP{ and ieN. By virtue 

X X 

of (III), P | [J Aj-ef for any sequence (f) c O, so $ is ^/-equimeasurable. 
n ~ \ / = // 

(b) Assume that (Sn) is upper semicontinuous and <$> cz M [Sf,,/] is / -equi-
measurable. Suppose that, for some 8 > 0 and m e N, the condition of the 
(^J-equimeasurability of O is not satisfied. For this 8, take a sequence (SPn) of 
partitions of X and a collection {A" :fe O, n e N} of ^-measurable sets, fulfilling 
the conditions of Definition 5 (b). For each neN, we can find feO such that 

X X 

if A eSm, then there exists ? e ^ , for which osc{f„, P\A) > 5. Since (~) ( J A£e 
/ = 1 n — i 

x 

ef, it follows from (VI) that A; = [J A"eSm for some ieN; moreover, osc(f, 
n = / 

P\Af) ^ 8 whenever PetPj — a contradiction. This, together with Proposition 
3 (c), completes the proof. 

To prove the main theorems of the paper, we need two more lemmas. 

Lemma 1. Let (f) be a sequence of functions from M [Sf, (Sn)]. If(f„) conver­
ges with respect to (Sn) to a function f thenfeM [Sf,(Sn)]. 

Proof. Suppose that f£M [Sf, (Sn)]. There exists meN such that {xeX: 
\f(x)\ > n}£Sm for all neN. Properties (II) and (V) of (Sn) imply the existence 
of keN such that A\J BeSm for any A, BeSk. Let us fix 8 > 0. There exists 
n0eN such that {xeX: \f(x) — fn(x)\ > 8}eSk whenever n ^ n0. Moreover, we 
can find t > 0 such that {xeX: \fn (x)\ > t}eSk. Let us take a positive integer 
n > t + 8. Then C - {xeX: |f(x)| > n}\{xeX: |fo(x)| > t}$Sk (otherwise, the 
set {xeX: |f(x)| > n} would belong to Sm). On the other hand, C cz {xeX: 
\f(x) —f0(x)l > 8}eSk; hence, by (HI), CeSk — a contradiction. 

Lemma 2. A sequence (f) of functions from M [Sf, f] converges with respect 
to (Sn) to some function fe M [Sf, f] if and only if, for each ieN and any 8 > 0, 
there exists n0eN such that {xeX: | f(x) — f„(x)| > 8}e<f, whenever n, m ^ n0. 

Proof. Necessity is obvious. 
Sufficiency. Let (k,) be a sequence of positive integers such that if A{eSki, 
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then Q A,eS„ for each n e N (cf. [6, Lemma 1]). Consider any subsequence (/.„) 

on (/„). For each ieN, there exists »,eJV such that \xeX: \h„(x) - h„,(x)\ > 

> — >eSk whenever n, m >- n,. We may assume that nj+, > «, for each ieN. 

Denote g,, = h,h, A, = \xeX: \gl+x{x) - g,(x)\> ]-\ and A = p) (J A,.. Of 

course, A e f. If x e X\A, then there exists /0 e N such that x $ A,- whenever / ^ /0; 
. • - 1 

hence, for each / >j ^ /0, we have that \gf(x) - gj(x)\ ^ £ \gr+\(x) - gr(x)\ < 

< 
)/-! 

; this implies that (gf(x)) is a Cauchy sequence. Define g(x) = limg,(x) 

for xeX\A and g(x) = 0 for xeA. We shall show that (g,) converges with 
respect to (S„) to the function gV 

Let us fix 5 > 0 and n e N. Take a positive integer m > n such that — < 8, and 
2m 

suppose that {xeX: |g,(x) — g(x)\ > 8}<£Sn for somej ^ m + 2. Consider any 
x e X\_4 such that |g,(x) - g(x)\ > 5. There exists / > j such that |g,(x) -

~S(x)\<—rr Let us observe that —<\gj(x)-g(x)\^\gi(x)-g(x)\ + 

•i. J X 

+ Z l£,•+ \(x) - gr(x)\; hence —— < £ \gr+\(x) - gr(x)|. This yields that xe 
r=/ 2m r=j 
y 

e[J Ar. Consequently, by virtue of (IV) and (V), {xeX: |g,(x) — g(x)| > 5}e 
' = . / 

eSn — a contradiction. Therefore (g,) converges with respect to (Sn) to g. To 
conclude the proof, it suffices to apply Lemma 2 of [6]. 

Theorem 1. (cf. [1, 3, 4]). A family $ c M [ y , (Sn)] is (Snycompact if and only 
if it is (Sn)-equibounded and (Snyequimeasurable. 

Proof. To begin with, let us fix 5 > 0 and n0eN. It follows from (II) and 
4 

(V) that there is k0e1V such that [J AkeS„ whenever AfeSko for i = 1, 2, 3, 4. 
/ = i 

Necessi ty . Suppose that, for each ne/V, we can find a function feO 
such that {xeX: |f?(x)| > n}$S„. The sequence (f„) contains a subsequence 
converging with respect to (Sn) to some fe M [ ^ , / ] . By Lemma 1, fe 
6 M [ y , (Sn)], so there exists t > 0 such that {x e X: |f(x)| > t}e SkQ. Moreover, 
there exists n > t + 5 such that {xeX: \fn(x) -f(x)\ >b}eSkQ. Then the set 
A = {xeX: | f(x) | > n and |f(x)| ^ t} does not belong to Sk(). On the other 
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hand, arguing similarly as in the proof of Lemma 1, we can show that A eSk . 
The contradiction obtained proves that <3> is (Sn) — equibounded. 

Now suppose that <X> is not (<?„)-equimeasurable. Let 8 and n0 be such that the 
condition of Definition 5 (a) is not satisfied. Consider any function g^eO. By 
virtue of Proposition 3 (a), there exist a partition 0} of X and a set C1 e SkQ such 

that osc(g l5 P\C{) ^ - whenever Pe0x. Assume that, for each /e{l,..., n}, we 
3 

have already defined functions ^ , G O , sets CteSkQ and partitions 0f of X, such 

that \xeX: \gt(x) - gj(x)\ > -HSk() whenever 1 ^i<j^n and, moreover, 

osc(g,, P\Ct) ^ - for any PG0J and 1 ^ i ^ j ^ n. The choice of 8 and n0 

implies the existence of gn + leQ> such that, for any CeSnQ, there is Pe0n for 

which osc (gn + „ P\C) > 8. Let us observe that Di-, = \x e X: \gt(x) - gn +, (x)| > 

> -\iSk for each /G{1,. . . , n}. Indeed, if/e{l,...,«}, P e ^ a n d x, yeP^C/U 
3J ° 

uA)» then \gn + x(x) - g„ + 1(y) | ^ |g„+i(x) - gt(x)\ + |g,(x) - gt(y)\ + 
+ \gt(y) - gn+ IOOI) < 5; thus osc(g„ +,, P\(C,v D,)) ^ 8 and, consequently, 
CiUDi$S„Q; this implies that D4SkQ. 

By Proposition 3 (a), there exist a partition 0*+ x of X and a set CM + 1 eS k Q 

Ő 
such that osc(g„+ „ P\Cn +,) < - whenever Pe0*+,. Denote ^ + , = { P n r : 

3 

Pe0*+! and Te^.} . In this way, we have inductively defined a sequence (g„) of 

functions from <D such that < x e Z : |g,(x) - gj(x)\ > ~H^k(j whenever / < j 
(iJeN). This, together with Lemma 2, implies that no subsequence of (gn) is 
convergent with respect to (Sn), which is impossible. 

Sufficiency. Let us consider any sequence (hn) of functions from O. 
First of all, we shall prove that 

(*) (hn) contains a subsequence (/*„.) such that there exists /0e1V for which 

{xeX: \hn(x) - hn{x)\ > 6}eSnQ whenever ij ^ i0. 

By the assumptions we can find t > 0, a partition 0> of Xand the sets Ane SkQ, 

such that Bn = {xeX: \h„(x)\ > t}eSk and osc(hM, P\An) ^ -for any neiVand 
3 

Pe0>. Let us fix Pe0> and, for neN, define 
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sup {/*„(*): *eP \(A„u5„)} if P\(A„u B„) * 0, 
0 ifP\(A„u5„) = 0. 

Without any difficulties one can check that IxeP: \h„(x) — a„\ > - i c: A„\J B„ 

for every neJV. As \a„\ ^ t for neN, the sequence (a„) contains a Cauchy 

- — K ) . - e e X l s t s ; ^ S U c h t h a H , - , , . f W h e n e v e , , , . , 

Let us observe th.. „6 i>: | « , W - *„,(*>, > 8, = ( { « F : |A„,W - „„,| > f } u 

u j x e P : |a„. - h„.(x)| > - [ ) c : (An^ Bnju Anju B^eS^ whenever i, J> /0. 

Since the family ^ is finite, the proof of (*) has been completed. 
According to (*), we can inductively define subsequences (hk) of (hn) such 

that, for each keN, (hk + l) is a subsequence of (hk) and, moreover, there exists 

>** eN such that jxeX : |h*(x) - hk
m(x)\ > ~ l e # , whenever n, m ^ n*. It is 

easily seen that the diagonal sequence (hn) satisfies all assumptions of Lemma 
2, which concludes the proof 

Propositions 1(b) and 3(c) point out that the assumption that <J> consists of 
(#„)-bounded functions cannot be omitted in the above theorem. 

An immediate consequence of Propositions 2, 4 and Theorem 1 is the 
following. 

Theorem 2. Suppose that a a-ideal f is the intersection of an upper semicon-
tinuous small system. A family <I> c M [&*,/] is f-compact if and only if it is 
f-equibounded ad f-equimeasurable. 

In connection with the last theorem, the following question can be posed: 
Does Theorem 2 remain true for an arbitrary a-ideal?. We do not know the 
answer to this question. 
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КОМПАКТНОСТЬ ПО СПОДИМОСТИ ПО МАЛОМ СИСТЕМЕ 

^асек Не1с1ик—ЕИха \Уа]сп 

Р е з ю м е 

Главной целью этой работы является обобщение теоремы Фреше, характеризующей 
компактность множеств измеримых функций по сходимости по конечной мере. В статье 
рассматривается сходимость по малым системам измеримых множеств. Доказаны самые 
необходимые и достаточные условия для того, чтобы множество измеримых функций было 
компактно по сходимости по малой системе. 
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