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COMPACTNESS IN THE SENSE
OF THE CONVERGENCE WITH RESPECT
TO A SMALL SYSTEM

JACEK HEJDUK—ELIZA WAIJCH

The purpose of the paper is to generalize Fréchet’s theorem characterizing
the compactness of families of measurable real functions in the sense of the
convergence with respect to a finite measure (cf. [1, 3, 4]). Some necessary and
sufficient conditions (analogous to those from [1, 3, 4]) for a family of measur-
able real functions to be compact in the sense of the convergence with respect
to a small system will be proved.

Before proceeding to the body of the article, let us introduce some notation
and establish some useful facts.

Let X be a nonempty abstract set and - a o-field of subsets of X. Suppose
that we are given a sequence (&,) of subfamilies of &% which satisfies the
following conditions:

(I) 0eé&, for each ne N, )
(I1) for any ne N, there exists a sequence (k;) of positive integers such that

if 4,€ &) for ie N, then ) 4,€6,;

no
i=1

(IT1) for any ne N, Aeé, and Be ¥ such that B < 4, we have Beé,;
(IV) for any neN, Aeé, and Be ﬂ é,. we have AU Beé,;

m=1
(V) 6,06, for each neN.
The sequence (&,) is said to be a small system on & (cf. [2, 6, 7)). If, in addition,
(¢,) has the following property:
(VD) if (4,) is a nonincreasing sequence of &-measurable sets for which there

exists me N such that 4,¢ 6, for any neN, then () 4,¢ () &,

n=1 n=1
then it is called an upper semicontinuous small system (cf. [6, Definition 2]). In
the sequel, we shall assume that (&,) fulfils (I)—(V). If it proves necessary, we

shall in addition insist that (&,) is upper semicontinuous.
[ee]

Let us observe that the family ¢ = () &, forms a o-ideal on & (cf. [6]). Of
n=1
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course. for any o-ideal #* on ., there exists a small system (&%) such that

ﬂ &¥: however, there are o-ideals which are not the intersections of any

n=1

upper semicontinuous small systems (cf. [6, Corollary 5]).

One says that a property holds #-almost everywhere (abbr. #-a.e.) on X if
the set of points not having this property belongs to #. The family of all #-a.e.
finite ¥-measurable real functions defined on X will be denoted by M [, ¢#].

In [8] E. Wagner introduced the definition of the convergence with respect to
a o-ideal. We will recall the notion of the convergence with respect to a small
system, which was investigated in [6].

Definition 1. 4 sequence (f,) =« M [, #] converges with respect to the small
system (&,) to a function fe M [, #]if for any & > 0 and any me N, there exists
ny€ N such that {xe X: |f,(x) — f(x)| > d}€ &,, whenever n = n,.

Definition 2. A family ® < M|, #] is called:

(a) compact in the sense of the convergence with respect to the small system
(&,) (abbr. (&,)-compact) if each sequence of functions from ® contains a subse-
quence converging with respect to (8,) to some function from M &, 71;

(b) compact in the sense of the convergencse with respect to the c-ideal ¢
(abbr. §-compact) if each sequence of functions from ® contains a subsequence
converging ¢-a.e. to some function from M [&, #].

It follows from [6, Theorem 1] that (&,)-compactness implies _#-compact-
ness; however, the converse holds if and only if the small system (&,) is upper
semicontinuous (cf. [6, Corollary 1 and Remark 2]). Some characterization of
J-compactness was given in [5]. Here, we shall be primarily concerned with the
(&,)-compactness.

Definition 3. An .¥-measurable real function f defined on X is (&,)-bounded if,
for each ne N, there exists a positive integer t, such that {xe X: |f(x)| > t,}€&,.
Denote by M [, (&,)] the family of all (&,)-bounded functions.

Proposition 1. (a) The inclusion M <, (€,)] =« M [, #] always holds.

(b) The equality M[¥, (&,)] = M[S, #] holds if and only if (&,) is upper
semicontinuous.

Proof. (a) Consider any fe M[¥, (&,)]. Let (¢,) be a sequence of positive
integers such that the sets 4, = {xe X: |f(x)| > t,} belong to &,. It follows from

(TII) that ﬂ A,e #. Since {xeX: |f(x)| = +oo} c ﬂ A,, we obtain that

feM[Z, f 1
(b) Suppose that (&,) is upper semicontinuous and let ge M [, #]. If
g¢MI[Z, (€,)], then there exists ke N such that {xe X: |g(x)| > n}¢ &, for each
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ne N. If follows from (VI) that (") {xe X: |g(x)| > n}¢ ¢, which is impossible;

n=1
hence ge M [, (&,)] and, consequently, M [, (£,)] = M [¥, 7]
Conversely, suppose that (&,) is not upper semicontinuous. There exist a
positive mteger m and a strictly nonincreasing sequence (B,) of members of .’

such that ﬂ B,e ¢ and B,¢6&,, for each ne N. Let us define

n=1

1 for xe X\B,,
hix) =<™" for xe B\B, ., ,,

+ o0 for xeﬂ B,.

n=1

The function /1 is #-a.e. finite but not (&,)-bounded.

Definition 4. 4 family ® <« M[&, #] is called:

(a) (&,)-equibounded if, for any n€ N. there exists a positive integer t, such that
{xe X: |f(x)| > t,} €&, whenever feD;

(b) f#-equibounded if there exists a sequence (t,) of positive integers such that

ﬁ () {xeX: |f,(x)| > t,}€ ¢ for every sequence (f,) of functions from ®.

n=m=1

Proposition 2. (a) (&,)-equiboundedness implies §-equiboundedness.

(b) #-equiboundedness implies (&,)-equiboundedness if and only if the small
system (&) is upper semicontinuous.

Proof. (a) Lemma 1 of [6] implies the existence of a sequence (k;) of

positive integers such that if 4,€ &, , then U A;e &, for each ne N. Suppose that
O c MY, #]is (6,)-equibounded. There exists a sequence (1;) of positive
integers such that {xe X: |f(x)| > t,}€ &, for any fe® and ieN. If @ is not

J-equibounded, then there is a sequence (f;) = ® such that ﬂ U {xeX:

n=1i=n
Lfi(x)| > t;} ¢ #, which contradicts (III).
(b) Assume that (&,) is upper semicontinuous, and ® « M [, #]is #-eq-
uibounded. There is a sequence (r;) of positive integers such that, for any
sequence (g;) = @, () | {xeX:|g,(x)| > r;}e #.1f ® is not (&,)-equibounded,

n=1i=n

then we can find me N such that, for each ie N, there exists g;e ® for which

{xeX:|g(x)| > r;}¢é8,,. By virtue of (I11), the sets 4, = U {xeX:|g,(x)| > r;}

i=n

form a nonincreasing sequence such that 4,¢¢&,, for any ne N. According to

(VI), () A,¢ ¢ — a contradiction; hence @ is (§,) — equibounded.

n=1
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If (&,) is not upper semicontinuous, then the family {i}, where 4 is the
function constructed in the proof of Proposition 1 (b), is #-equibounded and
not (&,)-equibounded.

For a function fe M[%, #]. finite on a set 4 = X, let us denote osc(f,
A) = sup{|f(x) — f(»)|: x, ye A}; of course, if 4 =0, then osc(f, 4) = — 0.

By a partition of X we shall mean a finite subfamily £ of & such that U {P:
Pe?} =X.

Definition 5. A4 family ® < M [¥, ] is called:

(a) (&,)-equimeasurable if, for any & > 0 and ne N, there exist a partition P
of X and a collection {A,:fe ®} of members of &, such that osc(f, P\A;) <&
whenever fe® and Pe .?;

(b) #-equimeasurable if, for any & > 0, there exist a sequence (#,) of par-
titions of X and a collection {A;: fe ®, ne N} of &-measurable sets such that, for

x A
any sequence (f,) of functions from ®, we have () | ) Af € # and, moreover,
i=ln=i

osc(f, P\A') < & for any fe®, ne N and PeZ,.

Proposition 3. (a) If fe M [, (&,)]. then the family {f} is (&, )-equimeasurable.

(b) If fe M [F, # ). then the family {f} is ¢-equimeasurable.

(c) The small system (&,) is upper semicontinuous if and only if, for any
feM [, #1. the family {f} is (&,)-equimeasurable.

Proof. (a) Let us fixd > 0 and nye N. If fe M[¥, (&,)], then there exists
t > 0 such that the set 4 = {xe X: | f(x)| > t} is a member of &, Let 2* be a

partition of [—z, 7] which consists of intervals of diameter less than &. If
2 ={f""(P*): P*e 2%} U{A}, then osc(f, P\A) < § for each Pe 2.

(b) If feM[¥, #] then {xeX: |f(x)| > n}e ¢. Putting 4, = {xeX:

n=1

[/ (x)| > n} for ne N and arguing as in the proof of (a), we obtain a sequence (%)
of partitions of X such that osc(f, P\4,) < 6 for a fixed 6 > 0, any ne N and
Pe 2,

(c) If (&,) is upper semicontinuous, then M[¥, #]= M[¥, (§,)] by
Proposition 1 (b), thus, to complete the proof, it suffices to suppose that (&,) is
not upper semicontinuous and to show that {A} is not (&,)-equimeasurable,
where /1 is the function constructed in the proof of Proposition 1 (b)

Let 2 be an arbitrary partition of X and let Ce&,,. We may assume that

xT

() B, = C (cf. proof of Proposition 1 (b)). It is easily seen that B,\C # 0 for

n=1

each ne N (otherwise, B, would belong to &,, for some n). As the family 2 is
finite, there exists Pe 2 such that (P\C) n (B\B, ) # 0 for infinitely many n.
This implies that osc (h, P\C) = + oo, which concludes the proof.
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Proposition 4. (a) (&,)-equimeasurability implies #-equimeasurability.

(b) #-equimeasurability implies (&,)-equimeasurability if and only if (£,) is
upper semicontinuous.

Proof. (a) First of all, let us take a sequence (k;) of positive integers such

that if 4,e &, then U A;eé&, for any ne N (cf. [6, Lemma 1]). Suppose that

O M[Y, £lis (8, ) equxmeasurable For a fixed 8 > 0, there exist a sequence
() of partitions of X and a collection {A4}:fe®, ie N} of &-measurable sets
such that 4/€ &, and osc (f, P\A4}) < é for any fe ®, Pe#,and ie N. By virtue

of (II1), ﬂ U A,’;_ej for any sequence (f;) = @, so ® is #-equimeasurable.

n=1i=n

(b) Assume that (&,) is upper semicontinuous and ® =« M [, #]is #-equi-
measurable. Suppose that, for some 6 > 0 and me N, the condition of the
(&,)-equimeasurability of @ is not satisfied. For this 8, take a sequence (2,) of
partitions of X and a collection {4 : fe ®, ne N} of ¥-measurable sets, fulfilling
the conditions of Definition 5 (b). For each ne N, we can find £, e(D such that

if Aeé&,,. then there exists Pe 2, for which osc(f,, P\4) > &. Since ﬂ U A e

j=1ln=i

€ ¢, it follows from (VI) that 4, = U Af €&, for some ie N; moreover, osc (f;,

n=1i

P\A4,) < & whenever Pe # — a contradiction. This, together with Proposition
3 (c¢), completes the proof.
To prove the main theorems of the paper, we need two mere lemmas.

Lemma 1. Let (f,) be a sequence of functions from M ¥, (&,)]. If (f,) conver-
ges with respect to (8,) to a function f, then fe M [¥,(&,)].

Proof. Suppose that f¢ M[¥,(&,)]. There exists me N such that {xe X:
|f(x)] > n}¢é&,, for all ne N. Properties (II) and (V) of (&,) imply the existence
of ke N such that 4 U Beé,, for any 4, Be &,. Let us fix & > 0. There exists
ny€ N such that {xe X: | f(x) — f,(x)| > 0} €&, whenever n < n,. Moreover, we
can find 7 > 0 such that {xe X: |f, (x)| > t}€&,. Let us take a positive integer
n>t+90. Then C = {xeX:|f(x)] > n}\{xeX: |/, ()| > 1} ¢ & (otherwise, the

set {xeX: |f(x)| > n} would belong to &,,). On the other hand, C < {xve X:
|f(x) =/, ()] > 8} €&, ; hence, by (III), Ce & — a contradiction.

Lemma 2. 4 sequence (f,) of functions from M [, #] converges with respect
to (&,) to some function fe M &, #]if and only if, for each i€ N and any & > 0,
there exists nye N such that {xe X: |f,(x) — f,,(x)| > 8} &, whenever n, m = n,.

Proof. Necessity is obvious.

Sufficiency. Let (k) be a sequence of positive integers such that if 4,€ Ers
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then U A;e &, for each ne N (cf. [6, Lemma 1]). Consider any subsequence (4,)

i=n

on (f,). For each ie N, there exists n,e N such that {XEXI |h,(x) — h,, (x)] >

1 .
> Y €&, whenever n, m = n;. We may assume that »n,,, > n; for each ie N.
i i

Denote g = h,. A, = {xeX: 18,1 (0) — g,(¥)] > %} and 4= () ) 4,. of

n=11i=n

course, 4 € #. If xe X'\A4, then there exists i€ N such that x ¢ 4, whenever i > i,;

i—1
hence, for each i > j > i,. we have that [g;(x) — g;(x)| < )} lg,, (%) — & (X)| <
r=j

< #; this implies that (g;(x)) is a Cauchy sequence. Define g(x) = lim g,(x)

for xe X\A4 and g(x) = 0 for xe A. We shall show that (g;) converges with
respect to (&£,) to the function g7

Let us fix 6 > 0 and ne N. Take a positive integer m > n such thatzln < 6, and

suppose that {xe X: |g;(x) — g(x)| > 8}¢ &, for some j > m + 2. Consider any
x € X\A4 such that |g;(x) — g(x)| > 6. There exists i > j such that |g;,(x) —

—g¥)| < 5’}? Let us observe that 51,; <|gi(x) — g(x) < gi(x) — g(x)| +

1
+ Y 18+ 1(x) — g,(¥); hence

2m+l

< Y lg, (%) — g,(x)]. This yields that xe
r=j

€ U A,. Consequently, by virtue of (IV) and (V), {xe X: |g,(x) — g(x)| > d}€
r=j

€&, — a contradiction. Therefore (g;) converges with respect to (£,) to g. To
conclude the proof, it suffices to apply Lemma 2 of [6].

Theorem 1. (cf. [1, 3, 4]). A family ® =« M [, (&,)] is (§,)-compact if and only
if it is (&,)-equibounded and (&, )-equimeasurable.
Proof. To begin with, let us fix 8 > 0 and n,e N. It follows from (II) and
4
(V) that there is kye N such that ( ) 4,e8, whenever 4,eé, fori=1,2,3,4.

i=1

Necessity. Suppose that, for each ne N, we can find a function f,e®
such that {xe X: |f,(x)| > n}¢¢&,. The sequence (f,) contains a subsequence

converging with respect to (&,) to some fe M[¥, #]. By Lemma 1, fe
eMI[¥,(6,)], so there exists ¢ > 0 such that {xe X: |f(x)| > t}€ &, . Moreover,
there exists n > ¢ + § such that {xe X: |f,(x) — f(x)| > 8}€ &), . Then the set
A ={xeX: |f,(x)) >n and |f(x)| < 1} does not belong to &, . On the other
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hand, arguing similarly as in the proof of Lemma 1, we can show that 4 €8y,

The contradiction obtained proves that @ is (§,) — equibounded.

Now suppose that @ is not (&, )-equimeasurable. Let 6 and n, be such that the
condition of Definition 5 (a) is not satisfied. Consider any function g,e ®. By
virtue of Proposition 3 (a), there exist a partition &, of X and a set C, € &, such

that osc(g,, P\C)) < g whenever PeZ,. Assume that, for each ie{l,..., n}, we
have already defined functions g;,e ®@, sets C;e &, and partitions Z, of X, such

that {xeX :1gi(x) — gi(x)] > g}qté”kn whenever 1 < i <j<n and, moreover,

osc(g;, P\C) Sg for any Pe%, and 1 <i<j< n. The choice of § and n,
implies the existence of g, ,€® such that, for any Ceé,, there is PeZ, for

which osc (g, , 1, P\C) > 3. Let us observe that D, = {xeX: |g:(x) — g, 1 ()] >
> %}q&é”ko for each ie{l, ..., n}. Indeed, if ie{l,...,n}, Pe#, and x, ye P\(C;u

u D), then |g,,1(X) — g 1V < Igs1(x) — &) + lg:(x) — g +
+ 1g:(¥) — &, 1 (WD) < 8; thus osc(g, ., P\(C;u D;)) <& and, consequently,
C;v D;¢ &, ; this implies that D;¢ &) .

By Proposition 3 (a), there exist a partition 25, , of X apd aset C,, €6y,
such that osc(g,,, P\C,,) < —2— whenever Pe 2, . Denote 2, , ={PnT:
Pe2* | and TeZ,}. In this way, we have inductively defined a sequence (g,) of
functions from ® such that {XEX :lgi(x) — g;(x)| > g}*fé" x, Whenever i <j

(i,je N). This, together with Lemma 2, implies that no subsequence of (g,) is
convergent with respect to (&£,), which is impossible.

Sufficiency. Let us consider any sequence (h,) of functions from ®.
First of all, we shall prove that

(*) (h,) contains a subsequence (h,) such that there exists ipe N for which

{xeX: |h,(x) — h,,j(x)l > 8}ed, whenever i, j = .

By the assumptions we can find ¢ > 0, a partition 2 of X and the sets 4,€ &,

such that B, = {xe X: |h,(x)| > t}e &, and osc(h,, P\4,) < g for any ne N and

Pe?. Let us fix Pe? and, for ne N, define
273



{sup {h,(x): xe P\(4,u B,)} if P\(4,u B,) #0,
0 if P\(4,UB,)=0.

a,

. . : )
Without any difficulties one can check that {xeP: lh,(x) — a,| > 5} c A,U B,
for every neN. As |a,| <t for ne N, the sequence (a,) contains a Cauchy

subsequence (g, ). There exists i e N such that |a, — a,,/_l < 2 whenever i, j > i,
Let us observe that {xe P: |h, (x) — h,,j(x)] >9d}c ({xeP: |h, (x) —a,| > g} U

V] {xeP: Ia,,,_ — h,,j(x)l > g}) < (4, v B, v A,,j U B,,/)eé’,,0 whenever i, j = i,.

Since the family £ is finite, the proof of () has been completed.
According to (*), we can inductively define subsequences (4}) of (h,) such
that, for each ke N, (h**") is a subsequence of (h}) and, moreover, there exists

n,€ N such that {xeX: |hk(x) — A% (x)] > %}eé”k whenever n, m = n;. It is

easily seen that the diagonal sequence (h)) satisfies all assumptions of Lemma
2, which concludes the proof.

Propositions 1(b) and 3(c) point out that the assumption that ®@ consists of
(&,)-bounded functions cannot be omitted in the above theorem.

An immediate consequence of Propositions 2, 4 and Theorem 1 is the
following.

Theorem 2. Suppose that a o-ideal ¢ is the intersection of an upper semicon-
tinuous small system. A family ® ¢ M [, #] is #-compact if and only if it is
F-equibounded ad ¢-equimeasurable.

In connection with the last theorem, the following question can be posed:
Does Theorem 2 remain true for an arbitrary o-ideal?. We do not know the
answer to this question.
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POLAND.

KOMITAKTHOCTbB 10 CITOAMMOCTH IO MAJIOM CUCTEME

Jacek Hejduk—Eliza Wajch

Pe3omMme

I'naBHOI nenbio 3TOH pabGoThl sABNsAeTCH 0000MLIEHHE TeopeMbl dpelle, XxapaKTepH3yrOLEH
KOMIMAaKTHOCTb MHOXECTB H3MEPUMBIX (YHKLHMiA MO CXOJMMOCTH MO KOHE4YHOH Mepe. B cratbe
paccMaTpHBaeTCs CXOAMMOCTDb IO MaJIbIM CUCTEMaM H3MEPHUMBIX MHOXeCTB. Jloka3zaHbl camble
HEoOXOoaMMbIe H JOCTATOYHbIE YCIIOBUS AJIS TOTO, YTOObI MHOXECTBO H3MEPHMBIX (YHKLMIA ObLIO
KOMIIAaKTHO 1O CXOAMMOCTHU IO MaJjoi CHCTEME.
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