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ON EXTENSION OF SUBMEASURES 

IVAN DOBRAKOV 

Let 91 be a ring of subsets of a non-empty set T. According to Definition 1 in [1] 
we say that a set function /i: 91—>[0, +oo) is a submeasure if it is 1) monotone, 2) 
continuous: An e 91, n = 1, 2, ..., and A n \ 0 implies ju(An)—>0, and subadditively 
continuous: For every Ae9l and e > 0 there is a 6 > 0 such that B e 91 and 
JU(B)<<5 implies ju(A)- £ ^ J U ( A - B ) . ^ / i ( A ) ^ / x ( A u B ) ^ / i ( A ) + e. If the 6 in 
condition 3) is uniform with respect to Ae9l, then we say that \i is a uniform 
submeasure. It is easy to verify, see page 68 in [2], that subadditive continuity is 
equivalent to the following property 3)*: If A, Ane9l, n = l,2, ... and 
/x(AAAn)—>0, then JU(A„)—>JU(A). Similarly, the uniform subadditive continuity 
is equivalent to the following one: 3u)*: for each e > 0 there is a 6 > 0 such that A, 
B e 91 and /z(AAB)< 6 --> |JU(A) - /i(B)| < s. If instead of 3) we have J U ( A U B ) ^ 

JU(A) + /i(B) for every A, Be 91, or J U ( A U B ) = /z(A) + \x(B) for every A, Be 91, 
AnB = 0, then we say that \i is a subadditive or an additive submeasure, 
respectively. Obviously subadditive, and particularly additive submeasures (i.e., 
countable additive measures) are uniform. 

We say that a set function \i: 91—>[0, +oo] is exhaustive if ju(An)—>0 for each 
infinite sequence An e 91, n = 1, 2, ... of pairwise disjoint sets. In Theorem 18 in [1] 
we proved, see also [3] for another proof, that a uniform, subadditive or additive 
submeasure JU: 91—»[0, + oo) has a unique extension of the same type to o(9l) — the 
a-ring generated by 91, if and only if it is exhaustive. Two additional, rather clumsy, 
conditions were needed to obtain the extension theorem for non-uniform sub-
measures. In this note, using a more transparent approach we show that these 
conditions may be replaced by the following: (ii) below, and Ane9l, n = l,2, ... 
and /i(AnAAm)—>0 as n, m—>oo implies that /i(An) —/i(Am)—>0 as n, m—»oo. 

We start with a set function JU: 91—>[0, +oo) having the following properties: 
(i) JU is monotone and JU(0) = O, 

(ii) JU has the pseudometric generating property, briefly the (p.g.p.), see 
Theorem 1 in [2]: For each e > 0 there is a <5>0 such that A, B e9i, \i(A), 
\i(B)<b implies / i ( A u B ) < £ , and 

(iii) \x has the Fatou property, briefly the (F.p.): A, An e 91, n = l,2, ... and 
An/A implies ju(An) /V(A). 
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Put gia(<3l0)={A; there are Ane$l, n = \,2, ... such that An/(\)A}, and 
01* = {A: AcB for some B e ^ J . Clearly \i has a unique extension \i: 0la^> 

[0, +00] defined by the equality \i(A) = lim JU(A„), where A„ e 9fc, w = 1, 2, ... and 
n—»°° 

A „ / A , and JU on 3fta shares the properties of \i on $1. 
For A e ^ define JU*(A) = inf {|u(B): B G ^ B D A ) . Then: 

a) \x*l°Jia = \i, 
b) ju* is monotone, and 
c) there is a sequence of positive numbers 6k, k = l , 2 , ... such that c \ \ 0 , 

0 < 6 * ^ 2 ~ \ and Ake0l*, ^t*(Ak)<5k, k = \,2, ... implies 

Ц*( 0 A.). 

Obviously ./V* = {N: Ne$t* and ^*(N) = 0} is a hereditary a-ring. 
We shall also need another extension of JU, namely we put 

$a = {A: there are Ane9l, n = \, 2, ... such that An/A 
and |u(A-A„)-->0}, 

3la = {A: there are An e$l, n = \, 2, ... such that An\A 
and n(An - A)—>0}, 

$ = {A: AcB for some B e l } , 
and for A e $ we define /2(A) = inf {JU(B), B e l , B^A}. 

Then it is easy to see that 01 is a hereditary ring, the restriction of /1 to $ a equals 
]U, a n d 

c) there is a sequence of positive numbers Sk, k = \,2, ... such that 6 f c \0, 

0 < d * ^ 2 " \ and A * e $ , JU(A*)<<5/<- k = l, 2, ... implies that Q A, E J? and 
f = j t + i 

fi( U A.W*. 

Clearly k= {N: Ne $1, £i(N) = 0} is a hereditary a-ring, and since fi(A)^(i*(A) 
for each Aetfl, SfcN*. 

For S c i H * we define its closure <2 by the equality <£ = {A: A e ^ * , and there 
are A„ e 91, n = 1, 2, ... such that 

iU*(A„AA)->0 . 

Similarly for & cz $ we define its closure 5 using $1 and /}. 

Theorem 1. Let Qcztfl* be a ring, and let Ene&, n = \,2, ... be such that 
fi*(EnAEm)—>0 as n, m—><*>. Then there is a subsequence {Enk}T c= {En}T such 
that: 
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1) Fk = \jEnie%, Gk = f)Enie£8, and fi*(F-G) = 0, where F=f] jEni = 
i=k i=k k=1 i=k 

Urn sup Enk and G=\J f]Eni= lim inf Enk (£<, and £& are defined using ju*), 
* k=l i=k k 

and 
2) J U * ( E „ A F ) - > 0 as n->oo. 

Analogous results hold in $1 with fi. 

Proof. Take a sequence {6k}k=1 according to the property c) of JU* above, and 
then a subsequence {Enk}cz{En} such that u.*(Enk+iAEnk)<dk for each k = 
1,2, .... Then 

hence 

and 

/i*(Ů(-3-,+.Ae„))_á6 l._1 for k=2,3, ..., 

Fk = U E* = Enk(j\J (Eni+1AEni) e ŠL, 
i=k i=k 

Gk = f] Eni = Enk-Q (EnMAEni) € as. 

Further, since 

Fk-Gk = {J(Eni+1AEni), 
i = k 

0^(i*(F- G)^n*(Fk - G,)^<5 t- , -*0. 

Hence f i * ( F - G ) = 0. 

2) now follows immediately from the inclusions 

EnAF = EnAEnkAEnkAFkAFkAFc(EnAEnk)u 

(EnkAFk)u(FkAF) c (EnAE„k)u(j (Eni+1AEni). 
i=k 

Analogous arguments yield the corresponding assertions for & and fi. 

Corollary 1. Any o-ring 9,cz'3l*(^l) is complete with respect to Q, Q(E, F) = 
li*(EAF) (=fi(EAF)). 

Corollary 2. £%*($) is complete with respect to Q. 

Corollary 3. The closure 21 (21) of a ring 2Lcz<3l* (01) is a ring which is complete 
in Q, and £czo(£)uJi* (&czo(£)vM*). 
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Theorem 2. Let $ cz \>A* be a ring and let p*: J>—>[0, + °°] be exhaustive. Then 

>) = o(u))vM'*, andp*(AnAA)-*0 whenever An e $, n = l, 2, ... and A„ — A (i.e. 

if Iim inf An = lim sup = A ) , particularly p* is exhaustive on 1. Analogous results 
n n 

hold in $. with fi. Particularly, if p: 01 —>[0, + o°) is exhaustive, then Jl„ = Jla, hence 

J? = l#*, fi = n* on 01*, <V* = ./V' = .lV, ^ = 0t = o(0l)uX, and p*: o(Jl)\uX-» 

[0, +°o] is continuous. 

P r o o f . First we show that p*: 5—>[0, +°o] is exhaustive . Suppose the contrary. 

Take a sequence {6k}T according to the property c) of p*. Then there is a positive 

integer k and a sequence of pairwise disjoint sets An e 2 — 2, n = 1, 2, ... such that 

p*(An)>dk for each n = l,2, .... For each w = l , 2 , ... take Bn e J so that 

p*(AnABn)<8k+3+n. Since for n±m BnnBm cz (A„AB„)u(A„ I AB„ I ) , 

/ i*(B„nB„.)<6*+ 2 + , I A„. . Put C, = B, and C„ = Bn - (B{v...uBn ,) for n > l . Then 

Cn, n = 1,2, ... are pairwise disjoint elements of 9, hence by exhaustivity of p* on 

J there is an n0 such that p*(C„)<8k+3 for each n = n0. Since B„ - C„ = 

( B , n B B ) u . . . u ( B . i n B n ) , |U*(B.. - C J < c \ + 2 for each n = l , 2, .... Thus ( i * ( B „ ) ^ 

^ ( ( B , , — Cn)uCn)<Sk + i for each n = n0. Hence for n = n0 we have the contradic­

tion p*(An)^p*((AnABn)<dk. 

The inclusion .9 czo(2)vN* follows from Corollary 3 above. Since clearly J is 

a ring containing # and ,V *, to show that o(9)uN* cz 2 it is enough to prove that J 

contains the union of any sequence of pairwise disjoint sets from 2. 

Let Ane2, n = l,2, ... be pairwise disjoint sets. Since p*: 2 - * [ 0 , + ao] is 

exhaustive, for each k = 2, 3, ... there is an nk > nk , such that p* ( ( J AA < c\ for 
\ ' "A. / 

/ / t . + l \ 

each p = 1,2, .... Thus JU* I ( J A / ) < 6 ; for each j =1,2, ..., hence 
\ i = n, / 

*̂ (y A, - y A,)=M* (u A,)=(y tj A,) ̂  6., 

for each k = 2, 3, .... Hence [jAne&, which we wanted to show. Thus J = 
n = \ 

a(<2)u.V*. 

Since An^>A means lim sup (AnAA) = 0, and since 2 is a a-ring, for the second 
n 

assertion of the theorem it is enough to show that p* is continuous on 2 . Let 

AnG 9, n = 1,2, ..., and let A „ \ 0 . Then Bn = An — An + X, n = 1,2, ... are pairwise 

disjoint and An = ( J B , . Now in the same way as in the paragraph above we obtain 
i = n 

that J U * ( A „ ) - > 0 . 

Ana logous arguments yield the results for 01 and p. The rest of the theorem is 
evident . 
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Let ju: 01—>[0, +00) be a subadditive or a uniform submeasure. Then it is easy to 
see that fi*: 01*—>[0, +°°] is subadditive, or is uniformly subadditively continuous, 
respectively. Hence, as a corollary, we immediately have the extension theorem for 
such submeasures, see also Theorem 18 in [1]. 

Corollary. An additive, subadditive or uniform submeasure JU: 01—>[0, +00) has 
a unique extension /i: o(0l)-*[O, +00) of the same type if and only if it is 
exhaustive. 

The uniqueness of the extension follows immediately from Corollary 3 of 
Theorem 15 in [1]. If \i: 01-->[0, +00) is additive, then the additivity of /i*: 
o(0l)-±[O, +00) may be proved in the following way: Let A, B eo(0l), and let 
AnB = 0. Take An,Bne0l, n = l,2, ... so that ii*(AnAA)-*0 and jU*(BnAB)-> 
0. Then JU*(A„)-->JU*(A) and JU*(B„)—>/i*(B), hence by additivity of [i on 01 we 
have: 

\i*(AuB) = \i*(AAB) = X\m \i(AnABn) = \\m \i(An-Bn) + 
n—>°o n—»°o 

hmn(Bn-A„) = 2li*(AuB)-(i*(A)-li*(B), 
n—K*> 

hence fi*(AuB) = fi*(A) + [i*(B). 
Concerning subadditively continuous extensions we have 

Theorem 3. The following conditions are equivalent: 
a) fi: 01—>[O, +00) is subadditively continuous, 
b) If An e0i, n= 1, 2, ... and ju(A„AAm)—>0 as n, m^>ooy then for each e>0 

there is a d>0 such that Be 01 and 11(B) < 6 implies ii(An) - e ^ JU(A„ - B) S 
li(An)^fi(AnuB)^ii(An) + e for each n = 1, 2, ..., and 

c) If An e0i, n = 1, 2, ... and ii(AnAAm)-*0 asn, m—»oo, then pi(An)- n(Am)—> 
0 as n, m-+o°. 

Proof. a)4>b). Let Ane0i, n = l,2, ... be such that /i(AnAA„,)—>0 as n, 
m—> 00. By Corollary 2 of Theorem 1 there is an A e 01 such that /l(A„AA)->0. 
Let e > 0. By the subadditive continuity of fi on 01 there is a 6A > 0 such that Be0i 
and fi(B)<5A implies i u ( A ) - 2 - 1 - £ ^ fi(A -B)^fi(A)^fi(AuB)^fi(A) + 
2'1 - e. Further, by the (p.g.p.) of fi there is a 6 0 < 6A such that B, Bi e 01 and /2(B), 
/2(Bi)<<50 implies fi(BuBi)<dA. Take «0 so that fi(AAAn)<60 for n^n0. Then 
for n^n0 and for Be 01 with fi(B)<60 we have the inequalities / 2 ( A ) - 2 _ 1 - £ ^ 
/ 2 ( A - ( B u ( A - A J ) ) ^ / 2 ( A n - B ) ^ / 2 ( A „ ) ^ / 2 ( A n u B ) ^ / 2 ( A u ( A „ - A ) u B ) ^ 
/2(A) + 2 _ 1 £ . Hence for such « and B we have the inequalities fi(A„) — s^ 
fi(An -B)^fi(An)^fi(AnuB)^fi(An) + e. Finally, by the subadditive continuity 
of fi we take <5i, ..., Sno corresponding to e and Au ..., A^ respectively, and we put 
<5=min {50, <5i, ..., 6^}. 

Clearly b) ---> c). 
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c)=>a). For Ae0l put JU(A) = lim ju(An), where A ne3#, A* = 1,2, ... and 
n—*•<*> 

n(AnAA)—>0. By c) \i is clearly unambiguously defined. First we show that (i: 
0l-*[O, +00) is subadditively continuous, and then that pi(A) = (i(A) for each 
Ae0i. 

Suppose ju: 01 —>[0, +<*>) is not subadditively continuous. Then there is an £ > 0 
and A, An e 01, n = 1, 2, .... such that JU(A„AA)—>0 and | J U ( A „ ) - JU(A) | > e for 
each n = 1, 2, .... Take A0,fc, A„,fc e 01, k, n = 1, 2, ... so that |u(A0,fcAA)—>0 and 

(i(An,kAAn)—>0 as k—>co, for each n = l , 2 , .... Then ju(A) = lim ju(A0,fc), 
fc—»oo 

[i(An) = lim /i(A„,fc) for each rz = l , 2 , ... and lim ^(AAA n ) 

= lim lim ii(Ao,kAAn,k) = 0. 
n—*oo k—»oo 

Take a sequence {<5,}r according to the property c) of JU*. By the last equality for 

each i = l , 2 , ... there is an nt such that lim ju(A0,fcAAn„fc)< <5,. But then for each i 
k-*oo 

there is a k, such that iu(Ao,fclAA„l,fcl)<6I and |ju(An/,fc,)- JU(A„,)| < i~\ By the 
properties of the sequence {6,}T the first inequality implies that the sequence 
{A0,fcl, Anukl9 ..., A0,fcl, Ani,ki, ...} is p-Cauchy, where g(E, F) = ^i(EAF), hence by 
c) and the second inequality we have the contradiction 

ju(A) = lim ru(A„l,fc|) = lim JU(A„,). 

There remains to be shown that 11(E) = (i(E) for each E e 01. Let Ee0l. Take 
a sequence En e 01, n = 1, 2, ... so that JU(EAF„)—>0, and let have the notations of 

Theorem 1. Then fi(E) = inf { JU(£) : EczB, B e $la) -Sinf ii(Fk) = lim y(Fk) = 
k fc—>oo 

lim ii(Enk) = 11(E), since ju(FfcAF„k)—>0 as k—>oo. 
fc—»oo 

On the other hand, for each e > 0 there is a B e $a such that B ID F and 
iu(F) + £^iu(B)^iu(BnF f c )^ |u(F) for each k, hence fi(F)^ii(F) = ^i(E). There 
remains to be shown that JU(F) = JU(F). Since JU: $—>[0, +00) is subadditively 
continuous, and since JU = JU on <$la, by the definition of (i, (i: $1—>\0, +00) is 
subadditively continuous from the right, i.e., for each Ae$l and e > 0 there is 
a <5>0 such that B e $ , /2(B) <<5 implies J U ( A U B ) ^ J U ( B ) + e. From this, since 
fi(EAF) = 0 we immediately have the required equality fi(F) = ]u(E). The theorem 
is proved. 

From Theorems 2 and 3, and Theorem 3-b) in [1] we immediately have (the 
uniqueness follows easily from Corollary 3 of Theorem 15 in [1]) our extension 
theorem for submeasures, compare with Theorem 18 in [1]. 
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Theorem 4. (Extension Theorem for Submeasures.) A submeasure JU: 01 —> 
[0, +oo) has a unique extension to o(0l)- the o-ring generated by 01, if and only if it 
is exhaustive on 01, Ane0l, n = 1, 2, ... and /J(A„AAm)—>0 as n, m—> oo implies 
JU(A„) — jLi(Am)-->0 as n, m—^oo, and for each e > 0 there is a # > 0 such that A, 
Be 01 and ii(A), ii(B)<6 implies fi(AuB)<£. 
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О РАСШИРЕНИИ СУБМЕР 

\уап ^ о Ь г а к о V 

Р е з ю м е 

Пусть 01 кольцо подмножеств непустого множества Т. Согласно с [1] функция множеств ц: 
01—>(0, оо) называется субмерой, если она монотонна, непрерывна ( А „ \ 0 ф ц(Ап)—>0), и 
полуаддитивно непрерывна (УА б 01 и У е > 0 3 6 > 0 , Ве01, /*(В)<<5 Ф 1*(А)- е^/*(А -В)^ 
ц(А)^ц(АиВ)^1м(А) + е). Последнее условие можно заменить следующим: А, Апе01, п = 
1, 2, ... и д(А„ДА)—>0 Ф ц(Ап)—>у,(А). Необходимые и достаточные условия для расширения 
субмеры из кольца 01 на порожденное им сигма кольцо были установлены Теоремой 18 в [1]. 
Условия II и III этой теоремы слишком громоздкие. В настоящей работе показывается, что их 
можно заменить более простыми условиями. А, именно, справедлива следующая 

Теорема о расширении субмеры. Субмера ц: 01—>(0, + оо) однозначно растирается до суб­
меры на сигма кольце, порожденном 01 тогда и только тогда, когда она не имеет ускользающей 
нагрузки на 01, Апе01, п = 1, 2, ... и ^(А„ДАт)—>0 для п, т-+°° Ф ц(А„)-/х(Ат)—>0 для п, 
т—•оо, и для каждого е>0существует д >0так, что А, В е 01 и ц(А), [л(В)<д Ф ц(АиВ)<е. 
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