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ARITHMETIC OF BLOCK MONOIDS 

W O L F G A N G A . SCHMID 

(Communicated by Stanislav Jakubec) 

ABSTRACT. We investigate block monoids, the monoid of zero-sum sequences, 
over abelian groups and their divisor-closed submonoids. We derive some results 
tha t can be used as tools when investigating the ari thmetic of such monoids. 
Moreover, we investigate block monoids over so-called simple sets, the somehow 
simplest kind of sets with the property tha t the block monoids have non-unique 
factorization. 

1. Introduction 

We are interested in the arithmetic of Krull monoids with finite class group 
where every class contains a prime divisor. In particular, the multiplicative 
monoids of rings of integers are monoids with these properties. To understand 
the arithmetic of such monoids we investigate the arithmetic of block monoids 
over the divisor class group and of its divisor-closed submonoids. 

Let G be an additively written, abelian group and G0 C G some subset. 
We denote by F(G0) the free abelian monoid with basis G0 and we refer to 
its elements as sequences. Then B(G0), the block monoid over G0, is the set 

i 
of all zero-sum sequences, i.e. sequences S = Yl 9% ^ F{G0) such that the 

I i = l 
sum a(S) — Y 9i = 0 £ G. Since the embedding B(G0) <-r F(G0) is a divisor 

2 = 1 

homomorphism, every block monoid is a Krull monoid (respectively a semigroup 
with divisor theory). 

Block monoids were introduced in [Na79] and are used, via the notion of 
the divisor class group and appropriate transfer homomorphisms, to investigate 
various phenomena of non-unique-factorization for arbitrary Krull monoids and 
especially for algebraic number fields (cf. e.g. [Ge-HK92]). In particular, if one 
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is only interested in lengths of factorizations, then studying the associated block 
monoid is equivalent to studying the Krull monoid itself. 

For a detailed description of the notion of the associated block monoid of a 
Krull monoid and further examples of Krull monoids respectively the applica
tion of block monoids we refer to the survey articles [HK97a] and [Ch-Ge97] in 
[An97] and the references given there. For the algebraic theory of Krull monoids, 
cf. [HK98; Chap. 22, Chap. 23]. 

In this article we do not investigate a particular phenomenon of non-unique-
factorization in block monoids, but the results we obtain can be seen as tools 
suitable for application to different types of problems related to block monoids, 
such as half-factorial sets or differences in sets of lengths, cf. [Sch03b]. 

In particular, we will construct for some given G0 C G a set G0 such that 
B(G0) and B(G0) have the same arithmetic, but G0 is easier to handle from a 
group theoretical point of view (cf. Theorem 3.17). 

In Section 4 we investigate the sets of atoms of block monoids over so-called 
simple sets (cf. Theorem 4.7). Sets which are simple sets in our terminology 
can be found in various contexts in treatise on factorization problems (cf. e.g. 
[Ch-Sm03a], [Ga-Ge98b], [Ga-GeOO], [Ge87], [S176]). Hence, it seems worthwhile 
to investigate them independently and beyond the needs of some particular 
problem. 

2. Preliminaries 

In this section we fix some notations and terminology, in particular for 
monoids and abelian groups. They mostly will be consistent with the usual 
ones in factorization theory (cf. the survey articles [HK97a] and [Ch-Ge97] in 
[An97]). 

Let Q denote the rational numbers, Z the integers, N the set of positive 
integers, N0 = N U {0} and P C N the set of prime numbers. For r , s G Z we 
set [r, s] = {z G Z : r < z < s}. 

For a set P we denote by \P\ G N0 U {oo} its cardinality. For x G Q let 
\x] = min{2: G Z : x < z} and [x\ = max{^ G Z : x > z}. 

A monoid is a commutative cancellative semigroup with identity element and 
we use multiplicative notation. 

Let A, B be two subsets of some semigroup with operation *, then A * B = 
{a * b : a G A and b G B}. In particular we will use this for subsets of N0 and 
addition as operation. 

Let H be a monoid with identity element 1H = 1 G H. We denote by Hx 

the group of invertible elements of if, and we call H reduced if Hx = {1}. Let 
H11H2 C H be submonoids. Then we write H = H1 x H2 if, for each a G H, 
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there exist uniquely determined b G H1 and c G H2 such that a = be. For some 
subset E C H we denote by [E] C H the submonoid generated by E and we 
call H finitely generated, if there exists some finite E' C H such that [£"] = H. 

A submonoid S C H is called divisor-closed if a G S and b,c e H such that 
a = be implies b G 5 and c G S , i.e. for each a G S all divisors of a in H are 
elements of S. An element -a G H\HX is called irreducible (or an atom), if for all 
a,b e H, u = ab implies a G iIx or b G Hx and it is called prime (or a prime 
element) if for all a, b G H, it = ab implies u \ a or u \ b. Let *4(H) C H denote 
the set of atoms and V(H) C H the set of primes. Then V(H) C A(H) and we 
call H atomic (respectively factorial) if every a e H \HX has a factorization 
into a product of atoms (respectively primes). 

Let a G H \ Hx and a = u1---uk a factorization of a into atoms 
u1,..., uk G A(H). Then k is called the length of the factorization and \-H(a) = 
{k G N : a has a factorization length k} C N denotes the set of lengths of a. 
We set L(a) = {0} for all a G Hx . The monoid iJ is called BF-monoid if it is 
atomic and |L(a)| < oc for all a G H, and it is called half-factorial monoid if it 
is atomic and |L(a)| = 1 for all a G H. 

Let if be an atomic monoid. Then C(H) = {L(a) : a G if} denotes the 
system of sets of lengths of H. 

For a set P we denote by F(P) the free abelian monoid with basis P. Every 
a G F(P) has a unique representation in the form 

a= JI-°V p ( a ) 

pGP 

where vp(a) G N0 and vp(a) = 0 for all but finitely many p G P. 
A monoid homomorphism (f>: H -* D is called a divisor homomorphism if, for 

all a, b G H, (/>(a) | </>(b) implies a | b. The monoid H is called Kru.// monoid if it 
has a divisor homomorphism into a free monoid (cf. [HK98; Sec. 22.8, Sec. 23.4]). 
Every Krull monoid is a BF-monoid (cf. [Ch-Ge97; Lemma 2.7]). 

Let G be an additively written abelian group and G0 C G a subset. Then 
(G0) C G denotes the subgroup generated by G 0 , where (0) = {0} . 

The set G0 (respectively its elements) is called independent if 0 ^ G0 , 0 / G0 
r 

and, given distinct elements e 1 7 . . . , er G G0 and 77^ , . . . , rar G Z , ]T w--^ = 0 
2 = 1 

implies that m1e1 = • • • = rarer = 0. If we say that { e l 5 . . . , e r } is independent, 
then we will assume that the elements e l 5 . . . , e r are distinct. 

An element g G G is called torsion element if there exists some n G N such 
that na = 0. If g is a torsion element, then we denote by ord(g) = min{n G N : 
n9 — 0} its order. G is called abelian torsion group if all elements of G are 
torsion elements. 

For n G N let Cn denote a cyclic group with n elements. Let G be a finite 
abelian group. Then there exist a uniquely determined r G N and uniquely 
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determined n l 5 . . . , nr G N such that G = C ©• • -®Cnr and either 1 < nx \ ... 
• • • | nr or r = 1 and nr = 1; r(G) = r is called the rank of G and exp(G) = nr 

is called the exponent of G. 

Furthermore if |G| > 1, then there exist a uniquely determined r* G N 
and up to order uniquely determined prime powers qx,..., qr* , such that G = 
C 0 • • • © Cq^ and r*(G) = r* is called the total-rank of G. 

G is called p-group if exp(G) = pfc with p G P and k G N and G is called 
elementary p-group if exp(G) = p G P. Elementary p-groups are in a natural 
way vector spaces over the field F with p elements. 

An element 

-=i g£G0 

is called a sequence in G 0 , and for O G G0 we call v (5) the multiplicity of O 
in 5 . A sequence T is called subsequence of 5 if T divides S (in T(GQ)). Let 
T be a subsequence of 5 , then we denote by T _ 1 5 the codivisor of T, i.e. the 
sequence V G T(G0) such that TV = S. We denote by 

• l^l = / GN0 the length of 5 . 
z 

• °(S) = £ ^ G G the sum of 5 . 
2 = 1 

• supp(5) = {#. : i G [1, /]} C G0 the support of S. 

• k(S) = ^2 o"rd( •) ^ n e c r 0 5 , s number of 5 . 
=i 

Note that the sequence 1, the identity element of JF(G0), has length 0, 
sum 0, support 0 and cross number 0. If we consider | • |, v , a and k as maps 
from ^F(G0) to ( N 0 , + ) , G and (Q> 0 ,+ ) respectively, then these maps define 
monoid-homomorphisms. 

The sequence 5* is called a zero-sum sequence (a block), if a(S) = 0, and 
S is called zero-sumfree if cr(T) ^ 0 for all subsequences 1 ^ T of S. A zero-
sum sequence 1 ^- 5 is called minimal zero-sum sequence if for each proper 
subsequence T (i.e. with T ^ S), T is zero-sumfree. The empty sequence is the 
only zero-sum sequence that is zero-sumfree, but it is not a minimal zero-sum 
sequence. 

The set B(G0) consisting of all zero-sum sequences in G0 is a submonoid 
of JF(G0), called the block monoid over GQ. It is a Krull monoid, thus it is a 
BF-monoid and its atoms are just the minimal zero-sum sequences. If Gx C G 0 , 
then B(GX) c B(G0) is a divisor-closed submonoid. For ease of notation, we will 
write A(G0) instead of A(B(G0)) and do analogously for V(G0) and C(G0). 
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3. Submonoids of B(G) 

In this section we will investigate submonoids of B(G). As a first result we 
will show that the divisor-closed submonoids of B(G) are just the block monoids 
generated by subsets G0 C G. Having this at hand we give methods to find, for 
some H = B(G0), related monoids that are easier to handle, yet having the 
same systems of sets of lengths. 

We start with a definition. 

DEFINITION 3 .1 . 

(1) A reduced monoid H is called 
(a) minimal non-half-factorial, if H is not half-factorial, but each 

divisor-closed submonoid H' C H is half-factorial. 
(b) decomposable, if there exist divisor-closed submonoids 

{Ij^H^H.CH 

such that H = H1 x H2 (otherwise indecomposable). 
(2) A subset G0 of an abelian group G is called factorial (half-factorial, 

non-half-factorial, minimal non-half-factorial, decomposable, indecom
posable), if the block monoid B(G0) has this property. 

The following lemma will underline the importance of Definition 3.1. 

LEMMA 3.2. Let G be an abelian group and let H C B(G) be a submonoid. 
Then H is divisor-closed if and only if there exists a subset G0 C G such that 
H = B(G0). Moreover, if G is an abelian torsion group, then G0 is uniquely 
determined. 

P r o o f . Clearly for each G0 C G the monoid B(G0) is a divisor-closed 
submonoid of B(G). Let H C B(G) be a divisor-closed submonoid. We set 

G0 = [j supp(fi). 
BeH 

We will prove that H = B(G0). Obviously H C B(G0). To prove the other 
inclusion, we note that for each g G G0 there exists some SE H such that 

vg(Sg) > 0. If C = n 9i e B(G0), then C | f\ Sgi in B(G0), and since 
i=l i=l 

I 

I ] Sa e H, we obtain C <E H. 
i=i yi 

If G is an abelian torsion group, we have that gord(<9) £ B(G0) if and only if 
g G G0. Clearly, this implies that G0 is uniquely determined. • 

In Definition 3.1 we assigned monoid-theoretical properties to subsets of 
abelian groups. Next we will characterize subsets with these properties by their 
group-theoretical properties. 
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PROPOSITION 3.3. Let G be an abelian group and let G0 C G a non-empty 
subset of torsion elements. 

(1) V(G0) = {g°^: (G0) = (g)®(G0\{9})}. 

(2) G0 is factorial if and only if G0 \ {0} is independent. 

P r o o f . 
(1) Let geG0 such that (G0) = (g) © (G0 \ {g}) and BX,B2 G B(G0) such 

that gord^) \BXB2. Clearly vg(Bx) > 0 or vg(B2) > 0. Without restriction we 
assume vg(Bx) > 0. We get a(Bx) = vg(B1)g + h with h G (G0\ {g}), hence 
vg(Bx)g = 0 and ord(#) | vg(Bx). Thus gord(s) | Bx and we get 

{g°^: (G0) = (g)®(G0\{g})}cV(G0). 

Conversely, let P G V(G0). We first prove that |supp(P)| = 1. Assume to the 
contrary, there exist distinct elements g,h e G0 with g | P and h | P. We 
consider Pord(s) = (y^C) <>'<%))£ w i t h fi g ^ ^ ^ { ^ C l e a r l y p j p a n d 

P | 5vs(-P)ord(9); b u t P | (5va(P)ord(9))B = pord(ff) ^ w h i c h i s a contradiction. 
Thus P = gord^) with some g€G0. 

It remains to verify that (g) n (G0 \ {g}) = {0}. Assume to the contrary, 
that there exists some n £ [l,ord(#) - 1] and some h G (G0 \ {g}) such that 
ng + h = 0. Then there is some S G F(G0 \ {g}) such that a(S) = h. Thus we 
obtain gnS G B(G0), P\gnS, but P \ (gnS)ord(9), a contradiction. 

(2) Clearly, we have {gOTd^ : g G G0} c .4(G0) and 

^ ( G 0 ) c { 5
o r d ( ^ : 5 € o 0 } 

if and only if G0 \ {0} is independent. Since block monoids are atomic, B(G0) 
is factorial if and only if A(G0) = V(G0). Consequently, if B(G0) is factorial, 
then by (1), 

A(G0) = V(G0)c{g°^: 9eG0}, 

hence G0 \ {0} is independent. Conversely, if G0 \ {0} is independent, then 
(G0) = (g) © (G0 \ {g}) for every geG0, hence V(G0) = A(G0). D 

For a further characterization of factorial sets, cf. [Ge-HK92; Proposition 3]. 
At this point we give a group-theoretical characterization of half-factorial sets. 
The structure of half-factorial sets is in general not known (cf. [Ga-Ge98b] for 
various results on half-factorial sets). The fact that the characterization of half-
factorial sets involves the cross numbers of atoms may serve as motivation for 
the investigations on atoms of simple sets. Moreover, we give some results on 
minimal non-half-factorial subsets. 

The first part of the following proposition was obtained independently by 
several authors (cf. [Sk76; Theorem 3.1], [S176; Lemma 2] and [Za76; Proposi
tion 1]). 
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PROPOSITION 3.4. Let G be an abelian group and G0 c G a non-empty 
subset of torsion elements. 

(1) The following conditions are equivalent: 
(a) G0 is half-factorial. 
(b) k(A) = 1 for each A G A(G0). 

(2) The following conditions are equivalent: 
(a) G0 is minimal non-half-factorial. 
(b) G0 is not half-factorial and every proper subset G1 C G0 is half-

factorial. 

(c) There exists some A G A(G0) with 

k(A) i=- 1 and supp(A) = G0 

and for each U G A(G0) with supp(L7) C G0 

k(U) = l. 

(3) Every minimal non-half-factorial set is finite. 
(4) Every non-half-factorial set contains a minimal non-half-factorial subset. 

P r o o f . 
(1) cf. [Ch-Ge97; Proposition 5.4] for a proof in the terminology of this article. 
(2) (a) => (b): Clearly, G0 is not half-factorial. Let Gx C G0. Then 

B(G1) C B(G0) is a divisor-closed submonoid, hence it is half-factorial and 
consequently Gx is half-factorial. 

(b) = > (c): For each U G *4(G0) with supp(c7) C G0 we get that supp(c7) 
is half-factorial. Since U G *4(supp(t7)), we get k(t7) = 1. Since G0 is not 
half-factorial, there exists some block A G A(G0) with k(A) / 1 and clearly 
supp(A) = G 0 . 

(c) = > (a): If A G A(G0) with k(A) ^ 1, then i3(supp(A)) is non-half-
factorial. Therefore G0 is not half-factorial. Let H C B(G0) be a divisor-closed 
submonoid. By Lemma 3.2 there exists some Gx C G0 such that H = B(GX). 
Let U G A(GX). Clearly supp(U) C G1 C G0,"hence k(U) = 1 and H is 
half-factorial. 

(3) follows immediately from (2)(c). 
(4) is obvious for finite sets and clearly every non-half-factorial set contains 

some finite non-half-factorial set, e.g. supp(A) for some atom A with k(A) ^ 1. 
• 

Proposition 3.4 can be used to determine all abelian torsion groups G that 
are half-factorial respectively factorial. This result was obtained in [Car] as result 
on number-fields and in [Za76; Theorem 8] it is formulated for Krull domains. In 
[Sk76; Proposition 3.2] the result was formulated for monoids. For convenience 
we state the proof. 
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PROPOSITION 3.5. Let G be an abelian torsion group. Then the following 
statements are equivalent: 

(1) G is factorial. 
(2) G is half-factorial. 
(3) | G | < 2 . 

P r o o f . 
(1) => (2): Obvious. 
(2) =[> (3): Let G be half-factorial. By Proposition 3.4.(1), k(A) = 1 for 

each A G A(G). Assume there exists some g G G with ord(g) = n > 2, then 
-gg G -4(G) and k(-gg) = \ / 1. Thus ord(#) < 2 for each g £ G. Assume 
there exist two independent elements g,h £ G, then (g + h)gh G -4(G) and 
k((g + h)g/V) = | ^ 1 . Consequently, if G is half-factorial, then \G\ < 2. 

(3) =^> (1): Let |G| < 2. By Proposition 3.3.(2) we get that G is factorial. 

• 
Next we investigate decomposable and indecomposable monoids respectively 

sets. 

LEMMA 3.6. ([Ge94; Lemma 2]) Let H be a reduced atomic monoid. 

(1) If P = V(H) is the set of all primes of H and T C ff the set of all 
b G ff satisfying p\b for each p G P, then ff = F(P) x T. 

(2) Le£ ffl5 ff2 C ff &e too submonoids. If ff = HxxH2 and a = a1a2 G ff 
iui£/i ax G ff\ and a2 £ H2, then 

L t f ( a ) = LLJ1(ai) + L i / 2 ( a 2 ) -

(3) If H — Hxx H2, then ff zs half-factorial if and only if ff1 and ff2 are 
half-factorial. 

(4) 7/ ff is minimal non-half-factorial, then ff zs indecomposable. 

P r o o f . 
(1) Cf. [Ge94; Lemma 2]. 
(2) From the definition of x it follows that for each a G ff there exist 

uniquely determined ax G ffx and a2 G ff2 such that a = axa2 and we obtain 
A(H) = ^l(ff1)U^l(ff2). Thus the statement follows easily. 

(3) follows immediately from (2). 
(4) Let ff be minimal non-half-factorial and assume to the contrary that 

there exist {1} ^ ffl5 ff2 C ff such that ff = ffx x ff2. If H1 and ff2 are half-
factorial, then, by (3), ff is half-factorial, which is a contradiction. However, 
if ff- is not half-factorial for some i G [1,2], then ff is not minimal non-half-
factorial, since Hi is a proper divisor-closed submonoid, which is a contradiction. 
Consequently, ff is indecomposable. • 
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This lemma implies that, for almost all problems concerning sets of length, 
one can restrict to monoids without prime elements. In particular, for any 
G0 C G with 0 G G0, we get that by Proposition 3.3.(1), 0 G V(G0). Con
sequently, it is sufficient to investigate subsets not containing the 0 element. 

The following result gives a characterization of indecomposable sets. Using 
this we will prove that every finitely generated, divisor-closed submonoid of B(G) 
can be uniquely written as product of indecomposable submonoids (cf. The
orem 3.11). 

PROPOSITION 3.7. Let G be an abelian group and G0 C G a non-empty 
subset of torsion elements. Then the following conditions are equivalent: 

(1) G0 is decomposable. 
(2) G0 has a partition G0 = G1UG2 with non-empty sets G1, G2 such that 

B(G0)=B(G1)xB(G2). 
(3) G0 has a partition G0 = G1UG2 with non-empty sets Gx, G2 such that 

(G0) = (G1)®(G2). 

P r o o f . (1) and (2) are equivalent by Lemma 3.2, and clearly (3) implies 
(2). It remains to prove that (2) implies (3). Let G0 = G1UG2 be a partition 
with non-empty subsets G1,G2 C G0 such that B(G0) = B(G1) x B(G2). We 
have to verify that (Gx) n (G2) = {0}. Let 

d*= E v = E(-^)^<Gi)n<G
2) 

geGx geG2 

with ng G N0 for each g G G0 and n = 0 for all but finitely many. (To consider 
just non-negative n is no restriction, since the order of all elements is finite.) 

Then B = J | gng G B(G0) has a factorization of the form B = B1B2 
geG0 

with B{ G B(Gi) for each i G [1,2]. Obviously, we have Bi = ]\ gn^ hence 
geGi 

g*= E n 9 = 0. • 
geGi 

DEFINITION 3.8. Let G be an abelian group and G 0 c G a non-empty subset 
of torsion elements. A non-empty subset Gx C G0 is called a component of G0 

ii(G0) = (G1)®(G0\G1). 

LEMMA 3.9. Let G be an abelian group and let G0 C G be a subset of torsion 
elements. 

(1) If \G0\ = 1, then G0 is indecomposable. 
(2) If \G0\ > 1 and V(G0) ^ 0. then G0 is decomposable. 
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P r o o f . The first part of the lemma is obvious. Let |G0 | > 1 and P £ V(G0). 
From Proposition 3.3.(1) we know that P = Oord^) with some g £ G0 such that 
(G0) = (g)(&(G0\{g}), hence setting Gx = {g} we get that G0 is decomposable. 

• 
PROPOSITION 3.10. Let G be an abelian group and G0 C G a non-empty and 
finite subset of torsion elements. Then there exist a uniquely determined d £ N 
and (up to order) uniquely determined indecomposable sets | / G 1 , . . . , G d c G 0 

such that 

Go = \Jl=Gi and <Go> = 0 ( G i > . 
2 = 1 

P r o o f . We prove the existence of such sets via induction on |G0 | . For 
|G0 | = 1 it is obvious that G0 is indecomposable, hence we set d = 1 and 
G0 = Gx. Let |G0 | > 1. If G0 is indecomposable, we set d = 1 and G0 = G1. 
Let G0 be decomposable. Hence there exists some 0 ^ G'0 C G0 such that 

(G0) = (G'0)e(G0\G'0). 

Since |G0 | < |G0 | and \G0 \ G'0\ < \G0\, we get that there exist d',d" £ N and 
indecomposable sets 0 ^ G[,..., G'd, C G0 , such that 

d' 

(G'o) = ©<GJ>, 
z = l 

as-well as indecomposable sets 0 ^ G " , . . . , Gd„ C G0\G'0 such that 

<G 0 \G I 3> = © < G ; / > . 
i=i 

Cleaxly, G0 = \jt1G'iU\jt1G'f and 

(G0) = ®(G't)®®(G';). 
2 = 1 Z = l 

It remains to prove uniqueness. We proceed by induction on the minimal 
number d* for which there exist non-empty, indecomposable sets ( 7 1 , . . . , Gd* 
having the required properties. If d* = 1, then G0 is indecomposable and the 
assertion follows. Suppose d* > 1 and let 

0 # G 1 , . . . , G d . CG0 

be indecomposable sets with the required properties. Furthermore, let d £ N 
and 

9jtH1,...,HicG0 
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be indecomposable sets with 

G o = L L ^ a n d (G'o> = © ( ^ ) -
i=l 

We assert that there exists some j G [ l ,d ] such that Gd* = H-. We have 

Gd, = Gd, nG0 = Gd, n ( [ £ # « ) = U-=1 &* n Hi) 

d 
and hence (Gd*) = @(Gd* fliYJ. Since Gd* is indecomposable, Proposition 3.7 

i=i 
implies that there is some j E [l, d] such that Gd* = Gd* HHj and Gd* niJ- = 0 
for each i G [ l ,d ] \ {j}. Consequently, Gd* C i / - . 

Similarly, we obtain H- C Gk for some k G [l ,d*]. This implies that Gd* C 
i / • C G .̂ and hence k = d* and Gd* = H-. 

We consider the set G0 \ Gd* = \Ji=1 G%. By induction hypothesis we get 
that d* — 1 = d— 1 and that the indecomposable sets are uniquely determined. 

• 
THEOREM 3.11 . Let G be an abelian torsion group and let {1} ^ H C B(G) 
be a finitely generated, divisor-closed submonoid. Then there exist a uniquely 
determined d G N and up to order uniquely determined indecomposable, divisor-
closed submonoids {1} ^ Hx,..., Hd C B(G) such that H = Hx x • • • x Hd . 

P r o o f . By Lemma 3.2 there exists a uniquely determined subset G0 C H 
such that H = B(G0) and, since {1} ^ H and H is finitely generated, we have 
that 0 < |C?0| < co. By Proposition 3.10 we obtain that there exist a uniquely 
determined d G N and (up to order) uniquely determined indecomposable sets 
0 / Gx,..., Gd C G0 such that 

Go = (X=iG* and <Go> = © < ^ ) . 
i=l 

By Proposition 3.7 and induction on d we obtain # f ( J i = i ^ i ) = ^ ( ^ i ) x ••• 
• • • x B(Gd). Clearly, B(Gi) is indecomposable for each i G [1, d], which proves 
the existence of the decomposition. 

Conversely, for any decomposition d! G N and indecomposable, divisor-closed 
submonoids {1} ^ H[,..., H'd C H such that iJ = H[ x • • • x iF^ , we obtain by 
Lemma 3.2 that for each j G [1, d'], H'- = B(G'-) with some uniquely determined 

indecomposable set G'- ^ 0. Clearly, G0 = [}i=1G'- and again by induction on d! 
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and Proposition 3.7 we obtain that (G0) = 0 (G'-). By Proposition 3.10 wre have 

d! = d and for each i G [ l ,d] there exists some j G [ l ,d] such that G{ = G'-
and thus H- = H'. D 

1 J 

In the sequel we recall the notion of transfer homomorphisms (cf. [HK97a] 
for a detailed treatment) . We will apply transfer homomorphisms to construct, 
for some set G0 C G, an associated subset that has an easier structure, yet the 
same system of sets of lengths (cf. Lemma 3.15 and Theorem 3.17). Moreover, 
we will show how this procedure can be used to construct sets with prescribed 
properties (e.g. half-factorial sets). 

We demonstrate this procedure in a simple special case. 

E X A M P L E 3.12. Let p G P, G = C 2
2 , {e1,e2} be an independent generating 

subset of G and G0 = {e1 + e 2 ,pe 1 ,pe 2 }. Then 

AG0) = { K + e.y^pe.y-^pe^ : j € [l,p]} U {(pe.)*, (pe2Y) . 

In particular, for each B G B(G0) we get p | ve + e (B). Hence for G0 = 

{v(e\ + e2)->Ve\->Ve2\ the map 

(B(G0) ^B(G*0), 

' \ (e1+e2y(pe1)y(pe2y -> (p(e, + e2)Y(pel)y(pe2y 

is an isomorphism. 

DEFINITION 3.13. A monoid epimorphism G: H -» B of reduced monoids is 
called a transfer homomorphism if the following two conditions are satisfied: 

(i) e-Hi) = {i}. 
(2) If a G H and 6(a) = /?7 with / J j G B , then there exist b, c G H such 

that a = bc, 6(b) = (3 and 6(c) = 7 . 

LEMMA 3.14. Let 6 : H -» F? 6e a transfer homomorphism of reduced atomic 
monoids. 

(1) LH(a) = L B (6(a) ) for each a€ H. 
(2) if is half-factorial if and only if B is half-factorial. 
(3) If H is minimal non-half-factorial, then B is minimal non-half-factorial. 

P r o o f . 
(1) is proved in [HK97; Lemma 5.4]. 
(2) is obvious from (1). 
(3) Let H be minimal non-half-factorial. Clearly B is not half-factorial. Let 

B' C B be a divisor-closed submonoid. We need to prove that B' is half-factorial. 
We show that 

H' =-Q-1(B') CH 
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is a proper divisor-closed submonoid. Thus II' is half-factorial, hence by (2), 
B' = e ( I I ' ) is half-factorial. 

Since 0 is surjective, we get II' C II, and since 0 is a homomorphism, we 
get II' is a submonoid of II. It remains to prove that II' is divisor-closed. Let 
a G II' and a = be. We get 0 (a ) = 0(b)0(c) G B'. Since B' is divisor-closed, 
we get 0(b), 0(c) £ I?', consequently b, c G II' and IF' is divisor-closed. • 

LEMMA 3.15. Let G be an abelian group, G0 C G a non-empty subset of 
torsion elements, g G G0 and m = min{m' G N : m'g G (G0 \ {g})} • Then 
m | ord(g) and 

j B { G ^ ^HGo\{9}U{mg}), 

" m : \ B ^g-^(mg)^B 

is a transfer homomorphism. 

P r o o f . Let n = ord(g) and G0 = G0\ {g} U {mg}. Since 0 = ng G 
(Go \ {>}>. we get me [ l ,n ] . 

If m = 1, we get G0 = G0, 0 = id#/G ^ and the statement is obvious. 
Suppose that 1 < m < n. First we prove that 0 is well-defined. This means we 
need to prove that for any B G B(G0) we get m | v (B). 

Let B G B(G0). Since B has sum zero, it follows that v (B)g G (G0 \ {g}). 

If x,y G Z with xm + yvg(B) = gcd(m, vg(B)), then 

gcd(m, yg(B))g = x(mg) + i/(vp(.B)<j) G (G0 \ {g}) -

Thus the minimality of m implies that m = gcd(m,v (i?)). Setting B = g" we 
infer that m\n. 

Obviously 9 is an epimorphism and 0 _ 1 ( 1 ) = {1}. 
Let B € B(G0) and C, C1,C2e B(G*0), such that <j>(B) = C and C = CXC2. 

We need to prove that there exist BX,B2 e B(G0), such that @(B{) = Ci for 

each i e [1,2] and B = BXB2. We set t = min{v m s (C 1 ) , ^ ^ J • Then 

WC1C2)=vm j r(B) + - -^--

implies that 

Vo(#) v
0 ( £ ) 

^__ . _ v (c? ) > -S i - ' 
m m ^ i y - m 

Thus 

515 

v
m9(C2) = vmir(-S) + " ^ " W C i ) > ^ T - U 



WOLFGANG A. SCHMID 

and 
B2=g^)-mt{mgy^+tC2eB{G(j) 

have the required properties. 
Consequently, 6 is a transfer homomorphism. • 

The converse of Lemma 3.14.(3) is not true, as the following example will 
show. 

E X A M P L E 3.16. Let p e ¥ and G = C 2 with generating element e and let 
G0 = {e,pe, 2pe}. The set G0 is not minimal non-half-factorial, since the proper 
subset {pe,2pe} is non-half-factorial. If we consider g = e, using the notation 
of Lemma 3.15, we get m—p and 

G*0 = G0\ {e} U {pe} = {pe, 2pe} . 

Clearly, G0 is a minimal non-half-factorial set. 

THEOREM 3.17. Let G be an abelian group and let G0 C G a non-empty, 
finite subset of torsion elements. Then there exists a non-empty, finite subset 
G0 C G, such that 

9t(G*0\ {g}) for each g G G* 

and a transfer homomorphism 0 : B(G0) —>• B(G0). 

P r o o f . We proceed by induction on l(G0) — Y^ orcKg) £ N-
geG0 

If l(G0) — 1, then G0 = {0} and 0 G (G0 \ {0}), hence the assertion holds 
with Gl^G0. 

Suppose that l(G0) > 1 and assume that the assertion holds for all 0 / 
G0 C G of torsion elements with l(G'0) < l(G0). If g e (G0 \ {g}) for all 
g G G0 , we set G0 = G 0 . 

Suppose there exists some g G G0 with g ^ ( ^ o \ { ^ ) ) • ^ y Lemma 3.15 there 
exists some m G N > 2 with m | ord(g) and a transfer homomorphism 

0 . : /5(G 0 ) -> B(G0) 

with G0 = G0 \ {5} U {mg}. 
Since 

/(Gi) = l(G0) - ord(g) + ord(ma) < l(G0), 
there exists some non-empty, finite set G0 such that g G (G0 \ {g}} for each 
g G G0 and a transfer homomorphism 

e 2 : £ ( G 0 \ { 5 } U { m 3 } ) ^ B ( G * ) . 

Since the composition of transfer homomorphisms is again a transfer homomor
phism, we get 

G2 o Q1: B(G0) H- B(G*) 

is a transfer homomorphism. • 
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LEMMA 3.18. ([Ga-Ge98; Lemma 3.3]) Let G be an abelian torsion group, 
G0 C G a half-factorial set and g G G \ (G0) such that pg G G0 for some 
p G P . Then G0 U {g} is half-factorial. 

P r o o f . Since g £ (G0) and p is prime, we get that p = min{m ; G N : 
m1 g G (G0)}. Consequently, by Lemma 3.14.(2) and Lemma 3.15, G0 U {g} is 
half-factorial if and only if G0 \ {g} U {pg} = G0 is half-factorial. • 

4. Simple sets 

Let G be an abelian torsion group and G0 C G a non-empty subset. By 
Proposition 3.3.(2) we know that B(G0) is factorial if and only if G0 \ {0} is 
independent. Thus a subset G 0 c G \ {0} for which B(G0) is not factorial, but 
is most simple from a group theoretical point of view consists of independent 
elements and one additional element. 

As mentioned in the Introduction such sets have been frequently investi
gated. In particular, they are used as examples for minimal non-half-factorial 
sets (cf. [Ga-GeOO; Proposition 5.2]). However, there are several classes of groups, 
for example cyclic groups of prime power order (cf. [Ge87; Proposition 6]) and 
elementary p-groups with p < 7 (cf. [Na79; Problem II] for p = 2 and [Sch03a]), 
in which every minimal non-half-factorial set is of this type. 

This motivates the following definition. 

DEFINITION 4 . 1 . Let G be an abelian group. A non-empty set G0 C G \ {0} 
of torsion elements is called simple if there exist some g G G0 such that G0 \ {g} 
is independent, g G (c70 \ {g}), but g ^ (Gx) for any G1 C G0 \ {g}. 

In the following lemma we prove some basic results on simple sets. 

LEMMA 4.2. Let G be an abelian group and G0 C G a simple set. 

(1) 2 < | G 0 | < o c . 
(2) If G is finite, then \G0\ < r*(G) + 1. In particular, if G is cyclic of 

prime power order, then \G0\ = 2. 
(3) G0 is indecomposable. 

P r o o f . 

(1) The set G0 \ {g} is independent hence non-empty. Since g G G0, we get 
|C70| > 2. By definition g G (G0 \ {<?}), but g $ (Gx) for any Gx C G0 \ {g}. 
Hence 

9 = Ylzhh 

heG0\{g} 
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with zh G Z for all h G G0\ {g} and ^ = 0 for all but finitely many. However, 
g £ (Gx) for any Gx C G0 \ {g}. Consequently, zh ^ 0 for all h <E G0\{g}. 
This means that G0 \ {g} must be finite. 

(2) Let G be finite. Any independent subset of G has not more than r*(G) 
elements, hence \G0 \ {g}\ < r*(G). If G is cyclic of prime power order, then 
r*(G) = l . 

(3) Assume to the contrary that G0 is decomposable. By Proposition 3.7 
there exist non-empty subsets Gl:G2 C G0 such that G0 = G1UG2 and 
B(G0) = B{G1) x B(G2). Since g e (G0\ {g}), there exists some A G A(G0) 
with vg(A) = 1. Since A(G0) = A(G1)UA(G2), we may suppose without re
striction that A G A(Gl). This implies that g G (G1 \ {g}), a contradiction. 

D 

The arithmetic of block monoids generated by simple sets is not as simple, 
as one might expect. We start with an example. 

E X A M P L E 4.3. 

(1) Let G = (Z/4Z) 3 with independent and generating elements {e15 e2, e 3 } . 
Then G0 = {g, e l 5 e 2 , e 3 } with g = -(2e1+e2 + e3) is simple. Since U = 
O2e2e3 is an atom with k(U) = | and supp(U) C G0, Proposition 3.4.(1) 
shows that G0 is non-half-factorial, but not minimal non-half-factorial. 

(2) Let G = Z/30Z and G0 = {1+30Z, 6+30Z, 10+30Z, 15+30Z}. Then G0 

is simple and minimal non-half-factorial. 

However, if G is an elementary p-group, then simple subsets of G are either 
half-factorial or minimal non-half-factorial. 

LEMMA 4.4. Let G be an elementary p-group. 

(1) Let G1 C G be independent, g G G\G1 and G0 = G1 U {g}. Then the 
following conditions are equivalent: 

(a) G0 is indecomposable. 

(b) G0 is simple. In particular, if G0 is minimal non-half-factorial, 
then G0 is simple. 

(2) Let G0 C G be simple. Then for every h G G0 the set G0 \ {h} is 
independent, h G (G0 \ {h}) and h £ (Gx) for every Gx C G0 \ {h} . 

(3) Every simple set is either half-factorial or minimal non-half-factorial. 

P r o o f . 
(1) (a) = > (b): Let G0 be indecomposable. Then g ^ 0 and G0 is not 

independent. Hence (g) n (G±) / {0} and consequently g G (G1) . Assume 
g G (G2) for some G2C.Gl. Then G2 U {g} is a component of G0, which is a 
contradiction. Consequently, G0 is simple. 
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(b) = > (a): Let G0 be simple, then G0 is indecomposable by Lemma 4.2.(3). 
If G0 is minimal non-half-factorial, then it is indecomposable by Lemma 3.6.(4) 

and hence simple. 
(2) Let g G G0 such that G0 \ {g} = { e 1 , . . . , e r } is independent, g G 

r 
(G0 \ {9}) and g £ (<?-_) for every G1 C G0 \ {g}. Then g = £ ^ e - with 

i=i 
a2 G [1,I>— 1]. We consider G as a F -vector space and by linear algebra we infer 
that dimF (G0) = \G0\ — 1 and for every h G G0 we have (G0) = (G0\{h}). Thus 
G0 \ {h} is independent, h G (G0 \ {h}) and /i ^ (<?'-_) for every G[ CG0\{h}. 

(3) Suppose G0 is simple. By (2) every proper subset of G0 is independent 
and consequently half-factorial. Thus if G0 is not half-factorial, then G0 is 
minimal non-half-factorial. • 

The following theorem will prove that the notion of simple sets is not too 
restrictive. 

THEOREM 4.5 . Let G be an abelian group, G0 C G be a subset of torsion 
elements and g G G0 be such that G0 = G'0 U {g} with G'0 C G independent. 
Then there exist a set G0 C G and a transfer homomorphism 

O:B(G0)^B(G*0), 

where G0 \ {0} is simple or empty. 

P r o o f . If G0 \ {0} is independent, then by Proposition 3.3.(2), G0 is fac
torial. In this case we set G0 = {0} and the map 

(B(G0) ->B(G3) , 

\ B ,-> 0k^ 

is a transfer homomorphism. 
Hence we may suppose without restriction that G0 \ {0} is not independent. 

Thus we get (g) fl (G0 \ {g}) ^ {0}. Let m G N be minimal such that mg G 
(G0 \ {g}). By Lemma 3.15 there exists a transfer homomorphism 

e.-BCGo) -+B(G0\{g}U{mg}). 

Thus from now on we may suppose that m = 1. 
Let G1 C G0 be a minimal subset such that g G Gx and g G (G1 \ {g}). 

Thus Gx is simple. If Gx = G0, we set G0 = G0 and are done. Suppose that 
G2 = G0\G1 T̂  0. Since G0 \ {g} is independent and g G (G1 \ {g}), it follows 
that (Gx) H <G2> = {0}. Proposition 3.7 implies that B{G0) = B(GX) x B(G2). 
Since G2 is independent and B(G2) is factorial, the map 

f £ ( o 0 ) = !?((?!) x £ ( G 2 ) 4 8 ( 6 ^ ( 0 } ) , 
2 | B = BXB2 H.5 i 0

k (B2) 
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is a transfer homomorphism. Hence we set G0 = Gx U {0} and are done. • 

In the last part of this section we study the set of atoms *4(G0) for simple 
sets G0 C G. For simple sets consisting of two elements, this set wras determined 
in [Ge87] and [Ch-Sm03a] (cf. Proposition 4.8). 

DEFINITION 4.6. Let G be an abelian group and G0 C G be a simple set. 
Suppose that G0 = Gx U {g} with Gx = { e 1 5 . . . , er} independent, ord(e-) = n-

r 
for each i G [1, r] and g = — ^ biei with b{ G [1, n - - l ] for each i G [1, r ] . 

i=l 

(1) For j E N let Wj(G1,g) = Wj G B(G0) denote the unique block 
with v (IV) = j and ve. (IV) G [0,77^ — 1] for each i G [l ,r] (clearly, 
ve.(Wj.) = jbi m o d n - ) . 

(2) \{G1,g) = {jeN: W3 G A(G0)}. 

THEOREM 4.7. Let G be an abelian group, r G N. Gx = { e 1 , . . . , e r } be 
r 

an independent set with ord(eJ = n{ for each i G [ l , r ] . g = — ̂ 2 b
l
ei w^h 

bi e [1. ni~l\ for each i € [1»r] and Go = Gi u {#} • 2 = 1 

(1) .A(G0) = K < : i G [ l , r ] } u { ^ . : j e i ( G 1 , g ) } . 
(2) i(G l j f l) = {j G [l,ord(g)] : IV, { Wj for each k G [ l - j - l ] } . In 

particular, {l ,ord(g)} C i(G l 5g) C [l,ord(g)] . 

(3) Letl= {i G [l,r] : b-^ n - - l } and TV = max({0}u{n2 : z e [ l , r ] \ / } ) . 
Then 

[l^ulJiU^-WcKG^fl), 
iG I 

and if nx = • • • =nr and bx = • • • = br, then equality holds. 

(4) m i n ( i ( C 1 , f f ) \ { l } ) = m i n { ^ l : i € [ l , r ] } . 

(5) \(G1,g) = {l ,ord(#)} if and only if ovd(g) \ ni and bi = -^^ for each 

* € [ l , r ] . 

(6) / / i(G1)£7) ^ { l ,o rd( 5 )} , then mm^G^g) \ {1}) < \°-^l] . 

Thus in an important special case, i(G l7g) (and hence A(G0)) is completely 
determined by associated i(-, •) for sets G0 with |G0 | = 2. We mentioned already 
that for these sets two descriptions are known. We cite the description given in 
[Ch-Sm03; Theorem 2.1] (cf. [Ge87; Lemma 1] for a similar description). 

PROPOSITION 4.8 . ([Ch-Sm03; Theorem 2.1]) Let G be an abelian group, 
e G G with ord(e) = n > 3 . a G [2,n—1] and d = gcd(a, n). For k G [l, ̂ ] let 
qk G N0 and rk G [0, a—1] such that kn = qka-\- rk. Then 

i({e},ae) = [l, [*J - l] U {qk : rk<rt for each i € [l.fc-1]} . 
Now we formulate a corollary to Proposition 4.8, which we need in the proof 

of Theorem 4.7. For convenience we will give an independent proof for it. 

520 



ARITHMETIC OF BLOCK MONOIDS 

COROLLARY 4.9. Let G be an abelian group, e G G with ord(e) = n > 3 . 
b G [1, n—2], d = gcd(b, n) and b' G [l, ord(—be) — l] such that bb' = d mod n. 
Then 

{ [ ? l ^ } c i ( { e } , - t e ) . 

P r o o f . Obviously, {—be, e} is a simple set. In order to show that b' G 
i({e},—be), we have to verify that Wb, = (—be)b ed is an atom. Since for 
every B G z3({—be,e}) we have d | ve(H), and because b' = min{f G N : 
O~(( —be)ved) = 0 } , it follows that Wb, is an atom. 

In order to show that [^] G i({e}, —be), we have to verify that 

Wn] = ( - b e ) ^ V ^ 6 " n 

is an atom. Since for each j G [l, [f~|— l] we get W- = (—bep'e-7'6 and because 

[^]b - n < b, it follows that Wrni is an atom. • 

In [Ge87; Proposition 10] a more explicit description of .(•, •) for simple sets 
with two elements is given. It uses continued fraction expansions and is quite 
complicated to formulate. Since we will not need this explicit description, we do 
not cite this result. However, we give as an example the two easiest cases. 

E X A M P L E 4.10. Let e G G with ord(e) = p G P and b G [2 ,p-2] . 

(1) If b | p + 1, say qb = p + 1, then i({e}, -be) = { l , g , p } . 
(2) Let q = [ f] and r = [f] - p. If r | b + 1, say sr = b + 1, then 

i({e},-be) = { l , ? , s o - l , p}. 

Next we give some lemmata that will be used in the proof of Theorem 4.7. 
Let all notations be as in Theorem 4.7. 

LEMMA 4 .11 . ([Ga-Ge02; Lemma 2.2]) We have 

ord(g) = lcm[ < — J T ^ : i G [l ,r] 

LEMMA 4.12. Let j G N. 

(1) / / W G B(G0) with v (W) = j , then W- \ W. 
(2) If Ae A(G0) with \/g(A) = j , then W3= A. 
(3) If W- $L A(G0), then there exists some k G [1, j — 1] such that 

wJ = wkwj_k. 
P r o o f . 
(1) Let W e B(G0) with v (W) =j. Then 

Y,veSW)ei = -jg = '£vei(WJ)ei. 
i=l ѓ = l 
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Since G1 is independent, it follows that for all i G [l ,r] there are kz- G Z such 
that yei(W) = vei(W5) + fc^n-. Since vc.(W) G N0 and vc .(W j) G [0,n2 - 1], it 
follows that fc- G N0 for all i G [ l , r ] . Hence we obtain that W- \ W. 

(2) follows immediately from (1). 
(3) Suppose that W- $. A(G0). Then there exists some A G A(G0) with 

A | Wy Clearly, vg(A) < j and by (2), \ig(A) ^ j . Assume vg(A) = 0, then 
A G A(GX). Since G1 is independent, we get A = e^ for some i G [ l , r ] . 
However, we know ve. {W.) < n- and A\W-. Thus v (A) G [1, j - 1 ] and by (2) 
we get A = Wk for some fc G [1, j - 1 ] . Clearly, v ( W ^ W - ) = j - fc > 0 and 
^ei{wklwj) < ni f o r a11 * G [ l , r ] , hence W ^ 1 ^ - = W3_k. D 

r - l 

LEMMA 4.13 . Let r>2, g' = - Y, biei> Gi = {ei> • • • » e r - i } a n d {#'} u G i 
&e a simple set. Then l=1 

KG^^CiiG^g), 

and equality holds if there exists some i' G [l,r—1] such that n-, = n r and 
blt=br. 

P r o o f . We set W'3 = W-(G'vg') for each j G N. Let fc G \(G'vg') and 
assume fc ^ . ( G ^ g ) . Then Wfc ^ A(G0) and by Lemma 4.12.(3) there exists 
some / G [l,fc—1] such that Wx \ Wk. This implies W{ \ W'k, a contradiction. 
Hence fc G i(G l5g) and i(Gi,g ' ) C \(Gvg). 

Let i' G [ l , r - l ] such that n-, = nr and &-, = br. Let fc G N with fc ^ 
\(G'vg'). There exists some / G [l,fc—1] such that VV/ | W'k. Consequently, we 
obtain that 

Ve r TO=V c < l TO<V C i # (W f c )=V C r (W f c ) , 

which implies that Wx \ Wk and k^\(Gvg). Thus i(G/
1,g/) = " " ( G ^ ) . • 

LEMMA 4 .14 . Let b., = n{l - 1 /or some i' G [ l , r ] . Then 

[l,nil]C \(Gvg). 

P r o o f . Let j G [1, n-,]. Clearly vc.; (W .̂) = n-, - j , hence Wfe \ Wj for each 

fc G [1, j - 1 ] . Thus W- is an atom. • 

P r o o f of T h e o r e m 4.7. 
(1) Let A G A(G0) with v (A) > 0. Then Lemma 4.12.(2) gives immediately 

Ae{W3 : j G i ( G 1 5 g ) } . 

Let A' G A(G0) with v (A') = 0. Then supp(A') C G1 and since Gx is in
dependent, we get from Proposition 3.3.(2) that G1 is factorial and A(GX) = 
{ e - : t G [ l , r ] } . 
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(2) Let j > ord(a). Then gord^) | W-, hence j £ \(Gvg) and \(Gvg) C 

[l,ord(o)] . The other statements follow from (1) and Lemma 4.12.(3). 
(3) First we show that [1,/V] C \(Gvg). If I = [ l , r ] , then N = 0 and 

[1, TV] = 0. If I C [1, r ] , then Lemma 4.14 implies the assertion. 

Suppose that 7 ^ 0 and let i G / , say i = 1 . 
We have to show that i({e1}, — bxeY) C \(G1,g). For s G [l ,r] we set 

9{s) = ~~lb^ a n d G[s) = {ev...,es}, 
i=l 

hence G{
0
s) = G{s) U {g^} is simple. 

We assert that - ({e^ , —61e1) C \(G\S, g^) for every s G [ l , r ] . We proceed 

by induction on s. For 5 = 1 the assertion is clear. Suppose that s > 1 and that 

i ({ e i} ' — ̂ i e i ) C'(C?i , g ^ s _ 1 ; ) . Since G Q _ 1 is simple, Lemma 4.13 shows that 

i(Gi ,</ s_1^) C i(C?i , g^), hence the assertion follows. 
Now let bx = - • - = br and nx = • • • = nr. If b1 = nx — 1, then we get, 

applying Lemma 4.12.(3), [ l , n j C \(Gx,g) C [ l , n 1 ] . If 6X < nx — 1, we start 
with the set {—b1e1,e1} and apply r — 1 times Lemma 4.13. 

(4) Corollary 4.9 and (3) imply that 

{ [ f f l : i € [ l , r ] } c i ( G 1 , 0 ) \ { l } . 

Hence it suffices to verify that W- £ A(G0) for j G [2,m—1], where m = 
min{[^-] : i G [ l , r ] } . Let j G [2,m—1]. Since jb{ < n{ for each i G [ l , r ] , we 
obtain 

Wj=9jf[4bi-
i=l 

Therefore W1 \ Wj and Wj $ A(G0). 

(5) If ord(g) | n{ and b- = or%| ) for each i G [ l , r ] , then (4) implies that 

m i n ^ G ^ g ) \ {1}) = ord(g), hence \(Gvg) = { l ,ord(a)} by (2). 
Conversely, let i(G l 5g) = {l ,ord(#)} and let i G [ l , r ] . Then (4) and 

Lemma 4.11 imply that 

g c d ^ n Л ^{i^fc^'WH*' 
= min i/Є[l ,г] 

If bi\ni, then gcd(b-, n•) < ^ , hence 

n- n-
2 - 1 < - < 

ò. gcd(ò-,n.) 
n-

ЬRI-
< ^ i + l 
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which is a contradiction. Thus bi \ ni and ord(O) = ^ . 

(6) Let m = min(i(G 0,g) \ {1}) and suppose m < ord(a). We need to 

show that m < \^^-] . By (4) we have m = min{ [fj-] : i E [ l , r ] } , hence 

we may suppose without restriction that m = [^-] . By Lemma 4.H wre have 

ord(g) = l c m ( { g c d ( ^ > W y ) : v e [1, r ]}) , hence ord(g) is a multiple of g c d (

n

f e i \ n i ) . 

I f o r d ( g ) > 2 i ^ ^ 7 T , t h e n 

ord(O) 
m = < - < 

g c d ^ n j *1 

Suppose that ord(#) = g c d ( % > n i ) • If gcd(b 1 ,n 1 ) = bx, then m = ^ = ord(O), 

which is a contradiction. Thus 2gcd(b 1 ,n 1 ) < bx and ^ < 2 g c d ^ l ? n i ) = ^ ^ , 

hence m = [f^] < [ ^ ] . ' *' * D 

In general, equality does not hold in Theorem 4.7.(3). We will illustrate this 
by the following example. 

E X A M P L E 4.15. Let all notations be as in Theorem 4.7. Suppose that r = 2, 
nx = n2 = n > 3 are odd and g = 2ex — 2e 2 . Then I = {i G [1, 2] : b. ^ n — 1} 
= [1,2], JV = 0 and 

i({e1},2e1) = [ l J [ f J ] U ^ a n d '({ei}5-
2 ei) = { 1 ' [ f J + 1 ' r i } -

However, for j G [l, |_f J] we get 

W\ = gien-2je\J and 1V J + L f j = a^'+Lf\e n ~ 1 - 2 j e\ J ~ x , 

hence ^ { e ^ e ^ O ) = [ l ,n] . 
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