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GRAPH ISOMORPHISMS OF SEMIMODULAR 
LATTICES 

JAN JAKUBfK 

This note is a continuation of a former paper of the author [4], where it was 
proved that a condition concerning sublattices of type C (for denotations, cf. 
below) is sufficient for semimodular lattices i£ and S£\ of locally finite length with 
isomorphic graphs to have direct product representations /: 5£-* sdxffi and g: 
5£i—>sd x :58~ such that h = g~lf (where 28~ is dual to 38 and h is the given graph 
isomorphism of 5£ onto 5£i). 

In the present paper it will be shown that the condition concerning sublattices of 
type C is also necessary for the existence of such direct product representations. 
A further result on graph isomorphisms of semimodular lattices (dealing with 
sublattices of type G ) is established. 

Graph isomorphisms of distributive lattices were studied in [7]; for the case of 
modular lattices cf. Birkhoff [1] and the author [3], [5]. 

We recall some notions of graphs of lattices. Let !£ = (L; ^ ) be a lattice. X is 
said to be of locally finite length if each bounded chain in ££ is finite. In what 
follows all lattices are assumed to be of locally finite length. If a, b e L and a is 
covered by b (i.e., a < b and the interval [a, b] is prime), then we write a < b or 
b >a. The lattice i? is called semimodular if and only if its elements satisfy 

(§') If x and y cover a, andx+y, thenxvy covers x and y. (Cf. [2a], p. 100; in 
[2b], p. 15, the term 'semimodularity' has a different meaning.) 

By the graph G(££) we mean the undirected graph whose set of vertices is L and 
whose edges are those pairs {a, b} which satisfy either a < b or b < a. If % and (S2 

are graphs with sets of vertices Gi and G2 and if h: Gi—> G2 is a bijection such that, 
for any JC and y from Gi the pair {JC, y} is an edge in <&! if and only if {h(x), h(y)} 
is an edge in «S2, then h is said to be an isomorphism of ^i onto <&2. 

If !£i = (^i; ^i) is a lattice and h is an isomorphism of G(S£) onto G(££i), then h 
is caAed a graph isomorphism of the lattice S£ onto «S?i. The covering relation in 5£i 
is denoted by <-. 

Now let h: L—»Li be ary bijection and let T^L. The subset T is said to be 
preserved (reversed) under .i if, whenever tu t2e T, xi, x2eL and U^JCI<JC2^t2, 
then /I(JCI)<I/I(JC2) (or h(xi)>in^i,, respectively). 
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Let C be the lattice in Fig. 1. A lattice is said to be of type C if it is isomorphic to 
C. Consider the following conditions for the lattices 5£ and if, and for the mapping 
h: 

(a\) All sublattices of type C of if are preserved under h and all sublattices of 
type C of ££\ are preserved under h~\ 

(a2) There are lattices s4 and S8 and direct product representations / : î —» 
dx2k, g: Z£\->s4x® such that h = g~lf. 

The following result was proved in [4]: 
(A) ([4], Theorem 2.) Let ^£ and ifi be semimodular lattices and let hbe a graph 

isomorphism of 5£ onto 5£\. Then (ct\) =-$> (a2). 
(In [4] it was assumed that 5£ and 5£\ are finite, but the proof established in [4] 

remains valid in the case when if and ifi are of locally finite length. Also, in Thm. 2 
of [4] it was asserted only that there are lattices si and 2& such that if = si X 2ft and 
!£x = s4x 2h~; but, in fact, the stronger result (ai) => (a2) was proved in [4]. If (a2) 
holds, then h is a graph isomorphism of if onto ifi.) 

1. Lemma. Let 3~=(T; =) be a lattice of type C. Then £T is subdirectly 
irreducible. 

The proof is simple; it will be omitted. 
Now let if, 5£\ and h be as above. Assume that (a2) holds. We denote 

si = (A ; =), Sft = (B; =). In view of the assumption, there exists an isomorphism / 
of S£onto si X 28. If xeL and f(x) = (a, b), then we write also a = x(A), b = x(B). 
For MczL we put M ( A ) = { x ( A ) : xeM}, M(B) = {x(B): xeM}. 

2. Lemma. Let &~ = (T; =) be a sublattice of cx? and suppose that 3~ is c. ^r>e C 
Then we have either (i) ca rdT(A)= 1, or (ii) cardT(B)= 1. 

Proof. Put ?T\ = (T(A); =), 3~2 = (T(B);= The injection defined by f\T: 
2T-* 0~\ X 5"2 is a subdirect product represerta jf :T; in view of Lerrima 1 we 
infer that either (i) of (ii) is valid 
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If (i) holds, then clearly T is reversed under / ; if (ii) is valid, then T is preserved 
under / . 

3. Lemma. Let ££ and i£i be semimodular lattices. Then (a2) ---> (ax). 
Proof. Let h: L—>Li be a bijection. Assume that (a2) is valid. Then h = g~lf, 

and as already remarked above, h is a graph isomorphism. By way of contradiction, 
suppose that there is a sublattice :T in !£ such that :T is of type C and T is not 
preserved under h. (If in this supposition 5£ and ffl are replaced by J?i and h'1, then 
we proceed analogously.) Thus the condition (i) of Lemma 2 holds and hence ST is 
reversed under h. Also, from (a2) we easily obtain that (h(T); ^i) = 3~i is 
a sublattice of % which is dually isomorphic to C. By using [8], § 45 it is easy to 
verify that 5£i is not semimodular, which is a contradiction. 

Theorem (A) and Lemma 3 yield: 

4. Theorem. Let i£ and i£i be semimodular lattices and let h be a graph 
isomorphism of 5£ onto 5£i. Then the conditions (ai) and (a2) are equivalent 

Let :J = (T; ^) be a sublattice of a lattice ££= (L; ^ ) . Assume that there exists 
an isomorphism <p of C onto :T such that q)(u)< q)(xi)< cp(v), cp(u)<q)(yi)< 
q)(v), q)(x) < q)(z) and <p(y) < (p(z). Then ST will be called a G-sublattice of ££. If, 
moreover, cp(xi)<q>(x), q>(v)<q)(z) and (p(yi)<cp(y), then :T is said to be 
a C2-sublattice of if. 

Let J?i = (Li; ^i ) be a lattice and let h: 5£-*££x be a bijection. Consider the 
following conditions (i = 1, 2) : 

(an) All G-sublattices of 5£ are preserved under h and all G-sublattices of 5£i 
are preserved under ft"1. 

Let u, v, xi, x2, ..., xm, yu y2, ..., yn be distinct elements of L such that 
u<.Xi<Jt2< ... <xm<v, u<yi<y2< ... < y n < v and either (i) JCivyi = v, or (ii) 
jcm Ay„ = M. Then the set {u, v, Xi, ..., jcm, yu ..., yn} is said to be a cycle in 5£; if 
moreover, m > l or n>\, then this cycle is called proper. 

From [6] (Thm. 3.7 and Lemma 2.3) we obtain: 

5. Lemma. Let ££ and S£i be lattices and let hbea graph isomorphism of ££ onto 
S£\. Then the condition (a2) is equivalent with the condition 

(a3) if Co is a proper cycle of ££ (of %), then C0 is either preserved or reversed 
under h (orh~\ respectively). 

6. Lemma. Let 5£ and J£i be semimodular lattices and let h be a graph 
isomorphism of ££ onto S£\. Then (an) ---> (a2). 

Proof. In establishing the proof of Theorem 2 in [4] the condition (ai) was used 
in the proofs of the lemmas 9 and 10 onfy; now for proving that (an) ---> (a2) is 
valid it suffices to replace the expresion 'a lattice of type C by 'a G-sublattice' in 
these lemmas. 

7. Lemma. Let J£ and ££i be semimodular lattices and let h be a graph 
isomorphism of 5£ onto %. Then (a2) =>(an). 
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Proof. According to Lemma 3 we have (a2) :=> (ai), and clearly (a,) => ( a n ) . 
Alternative proof: Let ST be a G-sublattice of ££. Under the denotations as 

above, there exist elements a0, au ..., am, b0, bu ..., bn eL such that (p(xx) = a0< 
ax<...<am = q)(x), <p(yi) = b0< b\<b2< ... <bn = cp(y). Then {(p(u), y(z), 
a0, au ..., am, b0, bu ..., bn} is a proper cycle in i£ (because am/\bn = (p(u)). Hence 
in view of Lemma 5, the interval / = [(p(u), (p(z)] is either preserved or reversed 
under h. If J is reversed under h, then we easily obtain from (a2) that h\j is a dual 
isomorphism of / onto the interval [h((p(z)), h(cp(u))] of S£u but this interval fails 
to be semimodular; thus SP\ is not semimodular, which is a contradiction. Hence T 
is preserved under h. Analogously we verify that each G-sublattice of Z£x is 
preserved under h~l. 

Theorem 4, Lemma 6 and Lemma 7 yield: 

8. Corollary. Let 5£ and S£\ be semimodular lattices and let h be a graph 
isomorphism of 5£ onto !£\. Then (a2)<=>(an)<=>(ai). 

The following question remains open: 
Let if, 5£\ and h be as in Corollary 8; are the conditions (a2) and (aJ2) 

equivalent ? 

REFERENCES 

[1] BIRKHOFF, G.: Some applications of universal algebra. Coll. Math. Soc. J. Bolyai, 29, Universal 
algebra (Esztergom 1977), North Holland, Amsterdam 1982, 107—128. 

[2a] BIRKHOFF, G.: Lattice Theory, Revised edition, Amer. Math. Soc, Providence 1948. 
[2b] BIRKHOFF, G.: Lattice Theory, 3rd. ed., Amer. Math. Soc, Providence 1967. 
[3] HKYEHK, 51.: O rpa(})HHecKOM H30Mop(})H3Me cTpyKTyp. HexocnoB. MaT. >K. 4, 1954, 131-141. 
[4] JAKUBfK, J.: On the graph isomorphism of semimodular lattices. (Slovak.) Matem. fyz. 

casopis4, 1954, 162—177. 
[5] JAKUBfK, J.: Unoriented graphs of modular lattices. Czech Math. J. 25, 1975, 240—246. 
[6] JAKUBfK, J.: On isomorphisms of graphs of lattices. Czech. Math. J. 35, 1985, 188—200. 
[7] HKYEHK, 51.; KOJIHEMAP, M.: O HeKOTopbix cBOHCTBax nap CTpyKTyp HexocnoB. MaT. >K. 4, 

1954, 1-27. 
[8] SZASZ, G.: Einfuhrung in die Verbandstheorie Budapest 1962. 

Received February 9, 1983 Katedra matematiky VST 

Svermova 9 
040 02 Kosice 

H3OMOP<DH3MM TPAcDOB YlOJiyjXEJXEKHliJXOBhlX PEUIETOK 

Jan J a k u b i k 

Pe3K)Me 

B craTbe aBTopa [4] HaHfleno flocraTOHHoe ycjiOBHe, npH KOTOPOM nojiyaefleKHHTjoBbi peuieTKH ££ H 
t£\ JIOKaJIbHO KOHeHHOH flJIHHbl C H30MOp(J)HbrMH rpa(})aMH OTJIHHaiOTCfl TOJIbKO ABOHCTBeHHOCTbK) 
HeKOToporo npHMoro COMHOKHTCJIH ; B npe^JiaraeMOH 3aMeTKe flOKa3aHO, HTO STO ycjiOBHe HBJIHCTCJ. 
TO>Ke Heo6xoAHMbiM. 
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