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Math. Slovaca 29,1979, No. 3 

NON LINEAR INTEGRALS 

JANSlPOS 

Introduction 

This paper is a continuation of [7] where we introduced the notion of the integral 
for a pre-measure (non-negative, monotone, in an empty set vanishing set 
function), which is defined on a pre-space. In this paper we shall show that if 
a pre-measure has some other properties, then the integral has some interesting 
properties. We shall namely be interested in the study of strong subadditive and 
strong superadditive measures. 

If one has a set function on a ring, then constructing an integral means to define 
a functional on a subclass of the class of all measurable functions. It is natural to 
desire that the integral must copy as many properties of the set function as possible. 
It is also natural to desire that the measure of a set should concide with the integral 
of the characteristic function of the same set. 

Our process of integration claims all these desired properties in case of a pre-, 
strong super and strong submeasures. However, it is easy to see that in the case of 
a general submeasure the integration process turns out to be useless, since in this 
case it need not be subadditive. 

§ 0 begins with notes about terminology and notation. We give also the definition 
of the integral and list some of its interesting properties. We show a useful formula 
for computing some examples. In § 1 we introduce the notion of strong super- and 
strong submeasures and give examples. §2 contains a proof of the fact that the 
integral copies some properties of the set function with respect to which it has been 
constructed. In § 3 we present a theory of Lp spaces for our integration theory with 
respect to a strong subadditive measure. In §4 we establishe a theorem expressing 
the values of a strong submeasure integral in terms of some additive measure 
integral values. 

§0. Preliminaries 

By a pre-space we mean a pair (X, 3)), where 0 e Q) and Q) cz 2X. An extended 
real valued monotone set function \i defined on Q) is called a pre-measure iff 
fi(0) = O. 
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A pre-measure yt is called continuous if it has the following two properties: 

(i) An/A =>H(A„, Be2) implies limn fi(An)^fi(B). 
(ii) A „ \ A czH, |u(Ai)<oo, (An, B e<3)) implies lim„ ii(An)^ii(B). 

The function / : X—> ( — oo? oo) is Q)-measurable or only measurable iff the sets 
{x ; f(x)=\a} and {x ; f(x)=\—a} are in 3) for every a > 0 . 

We denote by S£(Q)) the set of all ^-measurable functions. f e !£($)) is called 
a simple function if the range of / is finite. 

Now we recall the definition of the integral given in [7]. 
Let f b e a family of all finite subsets of ( — °°, °°) which contains zero. Let 

Fe& with 

F = { 1 > m < 1 ? m - 1 < . . . < 6 0 = 0 = ao<al<...<an}, 

and let f be a ^-measurable function. We put 
n 

S(/,F)=2(«-a.-.)M({* ;/(*) = «.}) 
i = l 

m 

+ ^(bi-bi-l)n({x;f(x)^bl}) 
/' = -

if the right-hand side expression contains no expression of the type oo — oo. Since & 
is directed by inclusion, the triple (S(f, F), SF, =>) is a net. We put 

^ / = ^ / = J / d / i = H m 5 ( / , F ) 

if the limit exists. / is called integrable iff 3>J is finite. 
We denote by 5£i=%i(X, 3), ii) the set of all integrable functions. 
The main properties of ^M proved in [7] are: 

1° .J^A = ^ (A) . 
2° J>J = sup {3>»g ;g^f,g is simple} for f e £*($)) 
3° ^M is a monotone functional. 
4° 3^ is additive in a horizontal sense, i.e. if a î O, then 

4 / = ̂ ( /Aa) + -*M(/-/Afl) 

if one of the right-hand side expressions is finite. 

5° For fe£x#f = 3>f-$f-. 
6° J>(af) = aJ>f. 
7° / , |/|e-S?(S) and \f\eX, implies fe^. 
8° If ii is continuous, fn e%(*?)), fn/f e3(2)) and J>fn ;= c < oo, then $fn/$f. 
9° II> is continuous, fn,f' e %($)), g e^u\fn\^g, fn -+fand 3) is a o-lattice, then 

lim„ J>fn=J>f. 
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10° Fatou's lemma: If \i is continuous, /„, g e£i(@) with fn ^g, lim inf„ $fn"^kc, 
and 2 is a o-lattice, then the function f defined byf(x) = lim inf„ fn(x) is integrable 
and J>f _i lim infn J>fn. 

R e m a r k . Let feJ£^(X, Q), fi) and let A be the Lebesgue measure on 1? ; then 

where on the right-hand side there is an ordinary Lebesgue integral and g(t) = 
H({x;f(x)^t}). 

Proof . Suppose first tha t / is bounded by A . Then g(t) vanishes on (A , o°). Let 
e > 0 . Choose F 0 = {0 = ao<a1<...<ak} with a* _= A and such that for F => F 0 there 
holds: \&uf -S(f, F)\ < e/2. Choose such a 6 > 0 that for every partition A of the 

interval (0, A ) with the norm less then d there holds í g(t)dt-Җg,Л) 
JO 

<є/2, 

where Z(g, A ) is a Riemann integral sum of g with respect to the partition A. Let 
F=>F 0 be such that F n (0, A ) is a partition of (0, A ) with the norm less then <3. 
Then 

4 / - f 0(0 df = Uf-S(f,F) + S(f,F)- f 0(0 df 
Jo Jo 

i r A i 
= W-S(f,F) + 2(g,Fn(0,A))- 0(0 df < e 

I Jo I 

because5(/, F) = Z(0, F n ( 0 , A ) ) . And so we get ^ / = [ g(t)dt= \g dA . 

If now / is not necessarily bounded, then 

^M/= lim J2v(/AA)=lim f g(t)dt=[g dl. 

The formula just proved may be very usefull for computing examples. Let 
k _ 

^ 1 = ^ A c

? ^ 2 = VA, ji3 = arctg A and let / be an identity map on (0, 1) ; then 

^ 1 / = f ^({x ; * § * } ) dA(0= f (1 - 0 * dt = l / ( * + 1). 
Jo Jo 

J W = [ VT-^ df = /fc/(A: + 1), 

^ 3 / = ^/4- lnV2. 
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§ 1. Non additive measures 

Let (X, %) be a pre-space and let <€ be a lattice. 
A pre-measure \i defined on % is 

a) subadditive iff 
ti(AvB)^ii(A) + ii(B), 

b) strongly subadditive iff 

iu(AnH) + |u(AuH )^ iu(A) + iu(H) 

c) strongly superadditive iff 

iu(AnH) + / i (AuH )^ iu (A) + j(i(H) 

d) additive iff 

iu(AnH) + iu(AuH) = iu(A) + iu(H). 

A strongly subadditive (superadditive) pre-measure is a strong sub-measure 
(super-measure). 

We give a list of interesting examples of pre-, sub- and super-mearusres. For this 
we need the following. 

Lemma 1. If a, b, c, d are non-negative real numbers with c^a, b^d, 
c + d^a + b(c + d ^ a + b) and f: JR+—>JR+ is an increasing concave (convex) 
function, then 

f(c)+f(d)^f(a)+f(b)(f(c)+f(d)^f(a)+f(b)). 

Proof. Denote g(x) = f(x) + f(c + d -x). (O^x^c + d). Then a is a concave 
function with g(c + y) = g(d-y) for ye(c,d). Since / is concave, kx2 + 
(\-l) (c + d-Xx) = c + d-x2 and (1 -X)xi + X(c + d-x2) = x2 we get that g is 
increasing on (c, (c + d)/2). And so we have 

g(c) = g(d) = min {g(x); x e (c, d)}; 

since c + d — a^b and / is increasing, we get 

f(c)+f(d) = g(c)^f(a)+f(c + d-a)^f(a)+f(b). 

The proof of the second assertion is similar. 

E x a m p l e 2. Let ^ be a lattice and /i be a strong submeasure (supermeasure) 
on <€. Further let / : R + ̂ >R+ be an increasing concave (convex) function with 
/(0) = 0. Then the set function v on % defined by v(A)=f(\i(A)), for A G ^ is 
a strong submeasure (supermeasure). The proof of this is a conclusion of Lemma 1 . 
Moreover if \i and / are continuous and [i is finite or /(oo) = oo? then v is also 
continuous. 
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E x a m p l e 3 . From the foregoing example it follows that if fj is a countably 
additive measure on a ring 01 and k is a positive integer, then the set functions 

k _ 

VJU, arctgjU and v(A) = J U ( A ) / ( 1 + /i(A)) for finite v are continuous strong 

submeasures. The set functions iik and v(A) = exp JU(A ) — 1 are continuous strong 
supermeasures. 

E x a m p l e 4. Let // be a countably additive measure on a ring 91. We put for 
A c=X|U*(A) = inf {lim„ yi(An); Ane9l. AnnA/A}. 

Then \i * is a strong submeasure which is not necessarily continuous. Clearly \i * is 
an extension of |U. By III. § 1., D 18 of [3] JU* is a Choquet .^-capacity o n X . 

E x a m p l e 5. Let ft be defined on % (a lattice of sets) as follows ii(0) = O and 
li(A)=\ for 0£Aec€. Then ^ is a strong submeasure on c€>. 

We note that all examples of submeasures and strong supermeasures are also 
pre-measures. 

A special case of strong submeasures are the so called maxitive measures [5]. 
A pre-measure m defined on a lattice % will be called a maxitive measure iff 

m ( A u B ) = max {m(A), m(B)}. 

The following examples show that a maxitive measure may be considered as an 
indicator of the size of a set. 

E x a m p l e 6. Let X = R and let 

m(JB) = sup {|JC ;xeE} for E—R. 

More generally, let (X, g) be a metric space and 

m(E) = sup {d(x, x0); x eE} (sup 0 = 0) 

E x a m p l e 7. Let (X, g) be a metric space, ^ = 2X and m(E) be the Hausdorff 
dimension of £ . 

§ 2. Properties of the integral in special cases 

In this section the family % is assumed to be a a-lattice. 

Theorem 8. Let f and g be non-negative measurable functions. Then 

J>(fAg) + J>(fvg)^J>f + Jg 

if \i is a strong submeasure, 

#(fAS) + J?(/vg)^$f' + 3g 

if n is a strong supermeasure. 
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Proof. Let F e f with F = (ao = 0 < a i <a2< ... <an). Put 

Ai = {x;f(x)^ai} and Bt = {x; g(x)^a.} m 

Since fi is strongly subadditive we get 

^({x;(fAg)(x)^ai}) + ^i({x;(fvg)(x)^ai}) 

= ^i(AinBi) + fi(AiuBi)^n(Ai) + fi(Bi), 

After multiplying by (a. - a t - i ) and summing over i we get 
n 

5( /Afl ,F) + S ( / v a , F ) g V ( a i - f l , _ 1 ) (/.(A,)+ •.(__,)) 
i = l 

= 5 ( / , F ) + 5 f e , F ) . 

If Jf + Jg = oo. then the assertion is trivial. Let Jf + Jg <oo. Let E > 0 . Choose 
F o e ^ with |S ( / ,F ) - J? / |< r and |S (# , F)-Sg\ <s for Fz>F0. 

Then 
^ / + ^ > S ( / , F ) + S t e , F ) - 2 e 

i=S( /Ag ,F) + S ( / v g , F ) - 2 E . 

Since E was arbitrary, we get 

Jf + Jg^J(fAg) + J(fvg). 

The proof for a strong supermeasure is similar. 

Corollary 9. If f and g are non-negative measurable functions and \x is a strong 
submeasure, then 

J(fvg)^Jf + Jg. 
We shall now establish that J has similar properties on non — negative <£ 

— measurable functions as [i has on %. 

Lemma 10. Let Ai => A2=)... => An and A be measurable sets and let fi be 
a strong submeasure on <€ ; then 

n+l n+1 

2^((AnA.-,)uA.).ti2>(A.) + ,.(A), 
. = 1 i = l 

where A0 = A and An+i = 0. If fi is a strong supermeasure on c€, then the opposite 
inequality holds. 

Proof. If fi(A) = oo, then the assertion is trivial. Suppose that/ /(A) is finite. 
Let n=2; then using the fact that \i is strongly subadditive we get 

\i (A u A i) + \i ((A n A i )u A2) + pi (A n A 2) = 
^v(A) + u.(Al)-fi(AnAl) + v(AnA1) + u.(A2)-u-(AnAinA2) + u.(AnA2)^: 

^ / i ( A ) + /i(Ai) + iu(A2). 
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For n > 2 the assertion can be similarly proved by induction. The proof of the 
opposite inequality for a strong supermeasure is similar. 

Lemma llXet f and g be non-negative simple functions g = CXA and \i be 
a strong submeaure. Then 

J>(f + g)^J>f + J>g. 

If (x is a strong supermeasure, then 

<?(f + g)^4f+<J>g. 

Proof. Let [i be a strong sub-measure. If \i(A) = oo, then the proof is trivial. Let 
H(A)<°°. Let {ai, ..., ««} 0 = ao<ai...<a« be the range of / . 

Denote A, = {x ; /(*)___£*,-} i = 1, 2, ..., n A0 = A, A„+i = 0 c„+i = 0 and c, = 
a, — a,_i. Suppose first that c^d i = l,2, ..., n; then 

rt+i 

/ + Q = _£ [C ' X(AoA,_1)-Al + (d - C)XAt] 
i = l 

and 

A u A i D A , D ( A n A i ) u A 2 = ) A 2 D . . . D ( A n A „ - i ) u A - =>A„ =>AnAn 

From Corollary 15 of [7] we have 

rt+i 

J(f + g)= JJ[c(i((AnAi-1vAi) + (ct -c)n(At)] 
i = l 
rt + 1 rrt + 1 rt + 1 -. 

= ^c^Ad + c 2 > ( ( A n A , - , ) u A ) - ]>>(A,) _i 
i = l i = l i = l J 

_ i ^ / + ̂ a , 

where the last inequality follows from Lemma 10. We have proved the lemma for c 
with 0 < c =\d i = 1, 2, ..., n. Let now c be an arbitrary positive number and let 
c = m - b, where m is a natural number and 

Denote 

Then 

.Ь___min{c,; i = l,2, ..., n} . 

QІ = Ь x* 7 = 1*2, ...,m. 

J>(f + g) = J>(f + g i + g2+...+gn) 
- ^ ( / + â Г l + . . . + Ø m - l ) + ^Øm--І 

- І ^ ( / + í 7 l + . . . + í 7 m - 2 ) + ^flfm-l+^flfm-І 

_ІJř/ + jгa1-K..+J?am 

= $f + 3>g. 
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Here we have used the first part of this proof. In the case of a strong supermeasure 
the proof is the same. 

Proposition 12. Let f and g be non-negative simple functions and fi be a strong 
submeasure; then 

J(f + g)^Jg+Jg. 

Moreover if {i is a strong supermeasure, then 

J(f + g)^Jf + Jg. 

Proof. Let {bu ..., bn} with 0 = b0<b1 <...<bn be the range of #.Denote gt = 

= (bl-bi-1). x{x; g(x)^bi} for i = l, 2, . . . , n ; then 

n n 

g = ^gt and Jg=^Jgt. 
i=l i = l 

Further 

^ ( / + g ) = ^ ( / H - g l + . . . + g n ) ^ ^ ( / + ^ l + . . . + ^ „ - 1 ) + ^ „ 

^ ( / + 01 + . . . + g „ - 2 ) + ^ g „ - l + ^ n 
=:Jf + Jg1 + ...+Jgn 

= M + 3>g, 

using Lemma 11. The case of a strong supermeasure is similar. 

Theorem 13. Let f and g be measurable non-negative functions; if [i is a strong 
submeasure, then 

J(f + g)^Jf + Jg, 

if \i is a strong supermeasure, then 

J(f + g)^Jf + Jg. 

Proof. Let \i be a strong submeasure. If Jf or Jg is infinite, then the assertion 
is clear. Let Jf and Jg be finite; then since 

f + g^2-(fVg) 

from the monotonicity of J and Corollary 9 we have 

J(f + g)^2. J(fvg)^2. (J(/) + J(g))<oo. 

Take a simple function h^f + g. Clearly ^(Sh)<oo. Let F = {a0, au ...,an} e& 
(ao = 0 < a i < . . . < a n ) be such that max {a,—-«,_!} < e/2, Jf - S(f, F) < e/2 and 
Jg-S(g,F) < e/2. Let (f + g)F(x) = at, fF(x) = a, and gF(x) = ak ; then a. ^ / ( x ) 
+ g(x),a,^f(x)<aj+1andak^g(x)<ak+u Since max {a,—^.j} < £,2, we get 
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and so 

Hence 

h(x)ŠliF(x)Ž(f + g)F(x) = a,šf(x) + g(x)Sal+i + ali+, 
š a , + ak + c =fF(x) + gF(x) + s, 

h (x)^fF(x) + gF(x) + exs,,(x). 

M=J>(fF + gF) + ev(Sh) = J>fF + J>gF + e - ti(Sh) 
= $f + $g+£'li(Sh). 

Since ii(Sh)<°°, we have 

J>h=Sf + J>g. 

The proof now follows by 2°. 

If JU is a strong supermeasure, then the case $(f + g) = °° is clear. Let 3>(]' + g)<CG; 
then by the mononicity of S> 3>f and 3>g are finite. Let / , g are measurable simple 
functions with f*=f and g^g; then $f + 3>g = $(f + g) = $(f + g) and so by 2° 

.^/ + .^^(/ + 0) . 

Corollary 14. Let f be a measurable function. Let [i be a strong submeasure; 
then f is integrable iff \f\ is integrable. 

Proof. Let / be integrable; then 

# |/| = J>(f +f~) = J>fJh + J>f~< oo . 

And so | / | is also integrable. The opposite implication follows by 7°. 
The results of this paragraph involve the validity of the following theorem. 

Theorem 15. Let ft be a measure on <€. Let f and g be non-negative ^-measura
ble functions, then 

<?(f + g) = J(fAg)+<?(fvg) = ff + #g. 

§3 . Function spaces 

In this paragraph we shall assume that 2 = Sf is a a-ring of the subsets of X and \i 
is a continuous strong submeasure on Sf. 

A property P pertaining to points of X is said to hold almost everywhere (a.e.) iff 
the set of all x for which P does not hold is from Sf and is of \i measure zero. 

For example f = g a.e. means that 

E = {x;f(x)>g(x)} 

is from Sf and ^i(E) = Q. 
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In all our convergence theorems (see [7]) we may the pointwise convergence 
change by convergence a.e. To illustrate this fact we give now the variant of 8°. We 
shall need some lemmas. 

Lemma 16. If E etf, [i(E) = 0 and f is a measurable function, then 

^ ( / X H ) = 0 . 

Proof. Let a>0; then 

{x',fxE=\a}c=E, 

and so S(f, F+) = 0, for every F in :f.. And so we get $M+XE) = 0. 

Similarly ^M(/_%E) = 0 . From 5° we get 

^(fXE) = ^(f+XE)-^(f~XE) = 0. 

Proposition 17. Let f be an integrable function, let g be a measurable function 
and let f — g a.e.; then 

$f = $g 

and so g is also integrable. 
Proof. Let E = {x ; f(x)^hg(x)} ; then Eetf and fi(E) = 0. Since 

<?f+ = $(f+XE+rXE)^(rXE) + $(f+XE) 
= $(fx^$f\ 

we get 

Similarly 

#r=$(rxE'). 
From 5° we get 

jf=sr - *r=f(f+XE) -*(TXE')=*(fxE>)= 
= S(gXE.) = fg. 

The following result is sometimes called the Theorem of Beppo—Levi. 

Theorem 18. Let {/„} be a sequence of integrable functions a.e. increasing, 
which converges a.e. to the measurable function f. Let J>fn=c<oo n = 1, 2, .... 
Then f is integrable and 

<?f = \imnJ>fn. 

Proof. Let E be such a measurable set that y(E) = 0 and /„ (* ) /7 (* ) for x IE ; 
then 

fnXE'/fXE' • 
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If follows from 8° that 

^(fnXB')/l^(fXB). 

By the last proposition J>(fnXE>) = $fn and ^ ( /XE) = •>/, and so 

•*/ = •*(fXE) = lim„ .^(fnXE) = limn .^/n . 

The Banach spaces S£P(X, fi) 1 ;=/? =1 oo for a continuous strong submeasure are 
defined in the natural way. All classical results; namely Holder's inequality, 
Minkowski's inequality and the completeness of S£p are valid. We give first the 
proof of the completeness of S£x. 

For a function / e S£p we write 

ll/llp=V.*|/|p. 

The number ||/||p is called a pseudonorm of / . 

Theorem 19. The linear space S£X(X, Sf, JU) of all integrahle functions on 
(X, Sf,\i) is a complete pseudometric space with respect to the pseudometric 

Q(f,g) = \\f-ah = \\f-g\\. 

Proof. Let {/„} be a fundamental sequence of integrable functions with 
| | / „ + I - / „ | | < l / 2 " . P u t / o = 0 and 

n n 

<Pn = 2 I/* ~/*--| (<Pn(*) = 0 if the 2 \fk(x)~fk-\(x)\ i s n o t defined). 
k=i k=\ 

Then cpn/cp = £ I/* ~ / * - i | and .ftp. . 5 1 . 
k = l 

By the theorem of Beppo—Levi we get that q> is integrable and the sequence {cpn} 
n 

has a limit a.e. clearly fn=^(fk —/*-i) has a limit a.e. too. We define f(x) = 0 if 
*:=i 

limn /„(*) does not exist and put f(x) = limn fn(x) in the oposite case. | / | = <p, and 
so / is integrable. Choose n0 with ||/n —fm\\<£ for n,m^n0; then 

l l / - / p | | = ^ ( l / - / p | ) = ^ ( | l im- /« - /p | ) -S 
;=^(limn | / n - / P | ) = liminfn \\fH-fp\\^e. 

In the following we give a proof of a result of Mazur [4] (see also [6]). 

Theorem 20. The spaces S£p(X,Sf,\i) ( p ^ l ) are complete pseudometric 
spaces. 

Proof. Let p>\. Let us define a map <P: S£p-+S£x by Of = |/ |p s ign/ and 
a map W: S£X-*S£P by !ffo = |<7|1/p sign g. 
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Since 

we get 

and hence 

^""к-уГаИхГ'-уЫ""1! f o r х>УеК> 

|4 /(a ,)-^(02) |pš2p-1 | f l1-a2 | 

ii^(^1)-^(g2)iiP-=2i/fliLa1-g2ii;/p 

for all gi and g2 in S£x. Clearly W is a continuous map. 

Since 

Ixlxr'-ylyr^plx-yKlxr'+lyr1) 
yields 

i*(f.)-*(f2)isp(i/,-/2| i/.r-'+i/.-^i IAI--1), 

hence by the Holder inequality 

ii<p(/.)-<p(/2)iigpii/.-/2iip(ii/,ir+n/2ir). 
If {/„} is a fundamental sequence in S£p, it is bounded and is therefore carried by 

<P into a fundamental sequence {gn}, gn = <P(fn) in S£\. 
Let a be a limit of this sequence in ££u by the completeness of SEX this exists. By 

the continuity of W the function / = W(g) is the limit of {/„} in S£p. 

Corollary 21. The spaces S£p, P = 1 are mutually homeomorphic. 

§ 4. On the value of the integral 

We turn now our attention to the theorem about the value of the integral. We 
shall need the following two lemmas. 

For the rest of this paper (X, Sf) will be a measurable space (see [2]) and \i will 
be a strong submeasure on Sf. 

Lemma 22. Ler BicAicB2cA2c...cBncAn be a sequence of sets from Sf 
with \i (Bn )<°°; then 

i (^(A I)-M(B I))-=/i(U(A l-B J)) . 
i = l i = l 

Proof. For n = I the inequality is an easy consequence of the subadditivity of \i. 
Let n = 2 ; then, using the subadditivity and the strong subadditivity of [i, we get 
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li(B,) + ii(B2) + ii((Ax -B1)v(A2-B2))^n(B2) + n(A1v(A2-B2)) = 
= u.(B2n(AlKj(A2-B2))) + ii(B2uA1v(A2-B2)) = 

= fi(Ai) + fi(A2) 
from which the inequality follows. The proof in general proceeds by induction. 

Lemma 23. (see [8]). Let E0 be the linear subspace of a partially ordered upward 
filtering linear space E. Let l0 be a linear monotone functional on E0 and let p be 
a seminorm on E. Let l0(x)=\p(x) for xeE0. Then there exists the linear 
monotone functional I on E with the properties: 

(i) / is an extension of f0, 
(ii) l(x) = p(x) for x in E+. 

Lemma 24. Ler 01 be a subring of Sf. If cp is a measure on 01, with cp"=p, then 
there exists a finitely additive measure v on Sf, such that v is an extension of cp and 
vtk\i on Sf. 

Proof. Denote Eo = 5Ex(0l, cp), E=£l(Sf, pi), E0 = E0nE, l0 = fv and p(f) = 
^M | / | . Then l0 is a linear functional on E0, p is the seminorm on E and l0^p on E0. 
It follows from the last lemma that there exists the linear monotone functional / on 
E such that / is an extension of l0 and l=p on E+. Let us define the set function v 
as follows: V(A) = IXA. By the additivity and mono tonicity of / it follows that v is 
a finitely additive measure on Sf. Since v (A) = IXA = PXA = -?nX* = jw(A)forA 
in Sf, we have v=iju on Sf. 

Theorem 25. Lef f be a nonnegative integrable function on X; then 

^ / = max^v / , 
V 

where the maximum is taken over all finitely additive measures v such that 

0 ; = V . = JU on Sf. 

Proof. We nut 
e p U t 3> = {{x;f(x)^a};a>O}u{0}. 

Denote by 01 the family of all sets of the form 

U (Ai - Bi), where Bt c A x czB2 a A2 c= ... c Bn a An is a sharply increasing sequ

ence of sets from 2 and the sets A,— Bi (i = 1, 2, ..., n) are pairwise disjoint. We 

put 
ф(U(A, -Bi) ) = 2>( .4,)-л(Ą)). 

4 = 1 ' í = 1 

It is easy to see that 01 is a ring. By Lemma 22 cp is a finitely additive measure on 01 
with cp =i JU . By the last lemma there exists a finitely additive measure v on Sf, such 
that v is an extension of cp and v =i JU on Sf. Since $J depends only on the values of 
li on Q), it is clear that 3>J = -A/. Since for all finitely additive measures ron : f with 
r"=ju there holds ^ T / = i ^ / , we get 

^ / = max #vf. 
V 
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Corollary 26. // y is a strong submeasure on a o-ring Sf, then 

\i — max v 

where O^v^fi and v is a finitely additive measure on Sf. 

Proof. This is a clear conclusion of the last theorem and the fact that 

<?TXA = T ( A ) for every A and for every pre-measure T on Sf. 

Let now m be a supermeasure on (X, Sf). Similarly one can prove as the last 

theorem the following one: 

Theorem 27. Let m be the, strong super-measure on Sf. Let f be a nonnegative 

integrable function; then 

J>mf = min Jvf 
V 

and 
m(A) = minv(A) AeSf, 

V 

where the minimum is taken over all finitely additive measures vonSf with v^fi. 
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НЕЛИНЕАРНЫЕ ИНТЕГРАЛЫ 

Ян Шипош 

Резюме 

Пусть //-положительная, возрастающая и строго полуаддитивная функция множества оп
ределенная на некотороч а-кольце. 

В статье доказывается, что интеграл введеный в [7] является строго полуаддитивным функ
ционалом. 

Кроме того доказывается — в случае непрерывной ц — что Ьр — пространство Банаха. 
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