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RADICAL CLASSES OF CYCLICALLY
ORDERED GROUPS

JAN JAKUBIK, GABRIELA PRINGEROVA

The investigation of cyclically ordered groups was begun by L. Rieger
[14]. Further results in this field were obtained in the papers [9], [15], [16], [17],
[18] and [10]. For the basic notations, cf. also L. Fuchs [3]. Cyclically
ordered groups can be viewed as being a natural generalizations of linearly
ordered groups. ‘

The notions of radical class and semisimple class of linearly ordered groups
were introduced and studied by C. G. Chehata and R. Wiegandt [1].
Some further aspects of the radical theory for linearly ordered groups were
investigated in the papers [5], [6], [11] in the general case, and in the papers [4],
[71, [8], [12], [13] in the case of abelian linearly ordered groups. In particular, in
the paper [8] K-radical classes of abelian linearly ordered groups were dealt with
(an analogous notion for radical classes of lattice ordered groups was in-
troduced by P. Conrad [2]).

In the present paper the Chehata—Wiegandt notion of a radical class and the
notion of a K-radical class of abelian linearly ordered groups are extended for
the case of abelian cyclically ordered groups.

We denote by

R — the lattice of all radical classes of abelian linearly ordered groups;

A, — the lattice of all K-radical classes of abelian linearly ordered groups;

A. — the lattice of all radical classes of abelian cyclically ordered groups;

A, — the lattice of all K-radical classes of abelian cyclically ordered groups.
(For definitions, cf. below.)

In fact, some results (including the proofs) for the lattice £, are analogous to
those for the lattice # (cf., e.g., Theorem 2.4). But there are also some rather
strong distinctions (cf., e.g., the existence of atoms and dual atoms in £, while
the lattice £ has no atom and no dual atom). Hence the lattices Z and 4, fail
to be isomorphic. On the other hand, the lattice &%, is isomorphic to the lattice
Fhe-

The lattice £ is a closed convex sublattice of %. Moreover, the partially
ordered collection £ is a retract of 4. The lattice 4, is not a sublattice of 4,..
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1. Preliminaries on cyclically ordered groups

For the sake of completeness, we recall some definitions concerning cyclically
ordered groups.

Let G be a group. The group operation will be denoted additively, the
commutativity of this operation will not be assumed. Suppose that a ternary
relation [x, y, z] is defined on G such that the following conditions I—IV are
satisfied for all x, y, z, a, beG:

I. If[x, y, z] holds then x, y and z are distinct; if x, y and z are distinct, then
either [x, y, z] or [z, y, x].

II. [x, y, z] implies [y, z, x].

III. If [x, y, z] and [y, u, z], then [x, u, z].

IV. [x, y, z] implies [a+ x+ b,a+y + b, a+ z + b].

Under these assumptions G is said to be a cyclically ordered group. The ternary
relation under consideration is said to be a cyclic order on G. When speaking
of this relation we often denote it by [].

If H is a subgroup of G, then H is viewed as being cyclically ordered by the
original cyclic order reduced to H.

Isomorphisms of cyclically ordered groups are defined in the obvious way. A
mapping f of a cyclically ordered group G into a cyclically ordered group G’ is
a homomorphism if the following conditions are satisfied:

(i) fis a homomorphism with respect to the group operation;

(ii) whenever x, y and z are elements of G such that f(x), f(y) and f(z) are
distinct, and [x, y, z] holds, then [f(x), f(»), f(2)] is valid.

Let L be a linearly ordered group. For distinct elements x, y and z of L we
put [x, y, z] if

1) xX<y<z or y<z<x or z<x<y

is valied. Then [] is a cyclic order on G induced by the linear order <.

A cyclically ordered group (G ; []) is said to be linearly ordered if there exists
a linear order < on G such that (G, <) is a linearly ordered group and the cyclic
order [] is induced by <. If such a linear order does exist, then it is uniquely
determined (cf. [10], Lemma 3.1).

Let K be the set of all real numbers x with 0 < x < 1. The operation + in K
is defined to be the addition mod 1. For distinct elements x, y and z of K we put
[x, y, z] if (1) is valid. Then K is a cyclically ordered group.

Let G, be a cyclically ordered group and let L be a linearly ordered group.
We denote by G, ® L the direct product of groups G, and L with a ternary
relation [] which is defined as follows. For distinct elements u = (a, x), v =
= (b, y) and w = (c, z) of the set G, x L we put [u, v, w] if some of the following
conditions is satisfied:
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@) [a, b, cl;
(i) a=b#cand x < y;
(i) b=c#aand y<z;
(iv) c=a#band z < x;
(V) a=b=cand[x,y, z].
Then G, ® L is a cyclically ordered group.

For M = G, x L we denote by M(G,) the natural projection of M into G,, i.e.,
the set of all elements a € G, such that there is x € L with (a, x) e M. The set M (L)
is defined analogously.

Let K be as above and let K, be a subgroup of K. A mapping ¢ of a cyclically
ordered group G into K, x L is said to be a representation of G if the following
conditions are satisfied:

(1) ¢ is an isomorphism of G into K, ® L;

(i) (p(G))(K)) = K, and (¢(G)) (L) = L.

1.1. Theorem. (Swierczkowski [15].) Each cyclically ordered group pos-
sesses a representation.

A subgroup H of a cyclically ordered group G will be said to be c-convex
(cf. [10]) if some of the following conditions is fulfilled:

(i) H=G,

(ii) for each he H with h # 0 we have 2h # 0; if he H, geG, [—h, 0, A],
[—h, g, ], then ge H. .

Let ¢ be a representation of a cyclically ordered group G. Under the denota-
tions as above, let G%() be the set of all ge G such that {¢(g)} (K,) = {0}. Then
we have ,

(i) G°(9) is the largest linearly ordered subgroup of G;

(i) if G, is a c-convex subgroup of G and G, # G, then G, = G°(9).

(Cf. [10], 3.5 and 4.6.)

From (i) (or from (ii) we obtain):

(iii) If ¢’ is another representation of G, then G°(¢") = G°(¢).

In view of (iii) we shall write G° instead of G°(¢).

In what follows all groups under consideration are assumed to be abelian
(i.e., “‘group” means ‘“‘abelian group”).

Let H be a c-convex subgroup of G. Let x,, x,, x; be elements of G such
that the classes x; + H (i = 1, 2, 3) are distinct. It is easy to verify that if
[x,, x5, x;] is valid in G, then [x], x5, x3] holds for each x/ex; + H (i = 1, 2, 3).
In such a case we put [x, + H, x, + H, x; + H]. We get a cyclically ordered
group which will be denoted by G/H. Moreover, we immediately obtain:

1.2. Lemma. (i) Let H be a c-convex subgroup of G. Then the mapping x —
— x + H is a homomorphism of G onto G/H. (ii) Let f be a homomorphism of a
cyclically ordered group G onto a cyclically ordered group G, and let H be the
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kernel of f. Then H is a c-convex subgroup of G and the mapping x + H — f(x)
is an isomorphism of G/H onto G,.

Let K, be a subgroup of K and let L’ be a homomorphic image of a linearly
ordered group L. For each element (q, x) of K, ® L we put f,((a, x)) = (a, x’),
where x” = h(x), h being the homomorphic mapping of L onto L’ under con-
sideration. Then f, is a homomorphism of K, ® L onto K® L’. (We shall say
that f; is a natural homomorphism of K, ® L onto K, ® L".)

1.3. Lemma. Let G be a cyclically ordered group and let H be a c-convex
subgroup of G, H # G. Let ¢: G — K, ® L be a representation of G. Let f be the
natural homomorphism of G onto G/H. Put L, = L/H(L). Let f, be the natural
homomorphism of K,® L onto K,® L,. Then there exists a representation
¢ G/H - K, ® L, of G/H such that the diagram

¢ 2- koL

Y
G/H 2- K ®L,

IS commutative.

Proof. The assertion is an immediate consequence of the fact that H # G
(and hence H < GY).

1.4. Lemma. Let G be a cyclically ordered group. Let ¢: G —- K, ® L and
©: G- K| ® L’ be representations of G. Then K, is isomorphic to K.

Proof. This assertion is contained in [10], Theorem 5.3.

2. Radical classes

The class of all cyclically ordered groups will be denoted by €,. Let Ge%,. Let
[ be an ordinal. Let G, (a < B) be c-convex subgroups of G such that

0}=G,cG,c...cG,c...(a< p), Ue<pG,=G.

For each a < g we put H, = G,/u,_,G,. Then G is said to be a transfinite
extension of cyclically ordered groups H, (a < B).

"t When considering a subclass X of €, we always assume that X is closed with
respect to isomorphism.

2.1. Definition. A nonempty subclass X of 6, is said to be a radical class, if it
is closed with respect to homomorphisms and transfinite extensions.

The definition of a radical class of linearly ordered groups is defined analo-
gously (the c-convexity is replaced by convexity); cf. [7]. The collection of all
radical classes of linearly ordered groups is denoted by Z£; this collection is
partially ordered by inclusion. Then Z is a complete lattice.
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We denote by %, the class of all linearly ordered groups. From Lemma 4.2,
[10] we obtain:

2.2. Lemma. Let X < %,. Then the following conditions are equivalent :

(1) X is a radical class of linearly ordered groups.

(ii) X is a radical class of cyclically ordered groups.

Let Y < €,. We denote by

Ext Y — the class of all cyclically ordered groups which are transfinite
extensions of some elements of Y;

Hom Y — the class of all homomorphic images of elements of Y.

The collection of all radical classes of cyclically ordered groups will be denoted
by .. This collection is partially ordered by inclusion. The greatest element of
AR, is €,. The least element of 4, is the class of all one-element cyclically ordered
groups; this class will be denoted by 0.

From the definition of a radical class we obtain immediately:

2.3. Theorem. Let A; (icl) be elements of A.. Then we have A ,A; =
= M, A;. The partially ordered collection A, is a complete lattice.

2.4. Theorem. Let ) # X < €,. Put T(X) = ExtHom X.

(i) TX)e4X.

(i) If YER, X< Y, then T(X) < Y.

The proof is analogous to that of Proposition 2.2 in [7]; it will be omitted.

In view of 2.4, T(X) is said to be the radical class generated by X. If X = {G},
then we write T(G) instead of T(X).

2.5. Theorem. Let A, (icl) be elements of A. Then we have v, A=
= Extu,,4,.

Proof. This is a consequence of 2.3 and 2.4.

From 2.3, 2.5 and [7], Corollary 2.3 we obtain:

2.6. Proposition. £ is a closed ideal of the lattice A,.

In view of 2.6 and [7], Example 2.7 we have

2.7. Proposition. The lattice &, is not modular.

2.8. Lemma. Let G, G, and H,(a < P) be as in the definition of the transfinite
extension. Then some of the following conditions is valid:

(i) There exists a < B such that H, is not linearly ordered ; in such a case H
is linearly ordered for each a(l) < a, and H,, = {0} for each a(2) with a <
<a2)<p. N

(i) All H, (a < B) are linearly ordered (and thus G is linearly ordered). ™

Proof. Let @ < f and suppose that H, is not linearly ordered. Since H,, is
isomorphic to G,/u, _,G,, we infer that G, is not linearly ordered. But G, is a
c-convex subgroup of G, and hence in view of G, £ G° we obtain G, = G. Thus
Gy = G whenever a < a(2) < f, therefore H,g, = {0} for such an a(2). Let
a(1) < a. If H,y is not linearly ordered, then we would have H, = {0}, which is
a contradiction.

259



Now let X be a nonempty subclass of €, such that X contains a zero group.
We denote by X, the class of all linearly ordered groups belonging to X. Put
X, = (X\X)) L 0~. Since X is closed with respect to isomorphisms, we infer that
0~ < X. Hence we have

X=XIUXO, leX():O_.

We apply the just introduced denotations also for the class %,. Hence (%)), is the

class &, of all linearly ordered groups and (%)), is the class of all cyclically

ordered groups which are either zero groups or fail to be linearly ordered.
We infer that

Hom X = Hom X,uHom X,, HomJX, = (%), HomJX, < (%),.

Now let {0} # Ge ExtHom X = T(X). If Ge(T(X)),, then according to 2.8
we must have GeExtHom X,. Conversely, if Ge ExtHom X,, then clearly
Ge(T(X)),.

Next let G e (T(X)),. Since G # {0}, G fails to be linearly ordered. In view of
2.8 there exists a linearly ordered c-convex subgroup H of G such that He
e ExtHom X, and that {0} # G/He Hom X,,. Conversely, if this condition is
satisfied, then clearly G e (T(X)),.

By summarizing, we obtain:

2.9. Theorem. Let X < €,. Assume that X contains a zero group.

(i) (T(X)), = ExtHom X, = T(X)).

(i1) (T(X)), is the class of all Ge €, such that either G = {0} or there exists a
c-convex subgroup H of G such that He Ext Hom X, {0} # G/He Hom X,

Denote

Ro=1{T(X): X = (%)), and {0} e X}.

From 2.9 and 2.5 we obtain:

2.10. Corollary. 2, is a closed ideal of the lattice A..

2.11. Lemma. Assume that {0} # G'eHom{G}. Let ¢: G> K, ® L be a
representation of G and let ¢’ G' —> K| ® L’ be a representation of G'. Then

(i) the cyclically ordered groups K, and K are isomorphic;

(ii) the linearly ordered group (G')° is a homomorphic image of the linearly
ordered group G°.

Proof. Let f: G — G’ be a homomorphism and let H be a kernel of f. In
view of 1.2 we can assume (without loss of generality) that G’ = G/H and
that fis the natural homomorphism of G onto G/H. Since G/H # {0}, we must
have H = G. Thus H = G°. Therefore in view of 1.3 and 1.4 we obtain that (i)
and (ii) are valid.

From 2.8 and 2.11 we infer:

2.12. Lemma. Let X < (6,),, {0}e X.

260



(i) If GeHom X, then G €(%),.

(ii) ExtX = X.

As a corollary we obtain:

2.13. Theorem. Let X < (%,)y, {0} X. Then T(X) = Hom X.

Now, 2.13 and 2.5 yield:

2.14. Corollary. Let A; (i€ ) be elements of (6,)y. Then in the lattice A, the
relation v ., A; = Ve A; is valid.

From 2.10 and 2.14 we infer:

2.15. Corollary. The lattice €, is completely distributive.

If A and B are elements of 4, then the relation 4 < B is valid in 4, if and
only if A, < B, holds in # and A4, £ B, holds in %,,. Thus we have

2.16. Proposition. The mapping

fiA—(4,4) (AeR)

is an isomorphism of the partially ordered collection &, into the direct product
RXRy.

Let us remark that the mapping f from 2.16 fails to be an isomorphism of the
lattice A. into R x R.q.

Let P be a partially ordered class and let Q be a nonempty subclass of P.
Assume that there exists a mapping y: P — Q such that

(i) if p\, p,e P and p, £ p,, then y(p)) < v(p));

(i1) if ge Q, then y(q) = q.
Under these assumptions Q is said to be a retract of P.

From 2.16 we obtain

2.17. Corollary. Both the partially ordered collections ® and %, are retracts
of A..

3. Atoms of 4%,

For X, Ye #. we write X < Y if X = Y and if there does not exist any Ze %,
with X = Z < Y. In such a case we also say that Y covers X. If 0~ < X (X <€),
then X is said to be an atom in £, (or dual atom in £, respectively). Analogous
denotations are applied for #Z and %,.

3.1. Lemma. (Cf. [7], 4.3 and 4.12.) In the lattice R there exist no atoms and
no dual atoms. ' '

3.2. Lemma. If X is an atom in &,, then either X€ ® or X € A,,.

Proof. Let X be an atom in %,. Then X,e &4, and X,e Z. Moreover, we
have X = X, v X,. Since X is an atom in £, we infer that either X = X, or,
X=X,
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3.3. Lemma. Let XeA.. Then the following conditions are equivalent :

(i) X is an atom in &,.

(ii) X is an atom in R,,.

Proof. This is an immediate consequence of 2.10.

Let K be as in Section 1 and let G be a subgroup of K. We denote by 71G]
the class of all cyclically ordered groups isomorphic to G. Put j[G] = T[G]u
v 0. We have

Hom T;[G] = T,[G] = Ext T[G].

Thus T,[G]e 4.. Moreover, T(G) = T,[G].
3.4. Lemma. Let Xe€ R.. Then the following conditions are equivalent :
(i) X is an atom of A,.
(ii) There exists a subgroup G # {0} of K such that X = T,[G].
Proof. Let (ii)) be valid. Let YeZ, 0- =« Y < X. Then there is G,€Y,

G, # {0}. In view of the definition of T;[G], the cyclically ordered group G, must
be isomorphic to G, hence

0-cX=TG)=TG)< Y<X,

implying X = Y. Hence (i) holds.

Conversely, assume that (i) is valid. There exists Ge X, G # {0}. In view of 3.3
we have XeZ,, hence Ge(%,),. Then there exists {0} # G,€%, such that
G,eHom{G} and G, is isomorphic to a subgroup K of the cyclically ordered
group K. Thus G,€ X, whence 0~ # T;[G,] < X, which infers X = T;[G)].

3.5. Proposition. Let YeR.,, Y # 0~. Then there is an atom X in R, such
that X LY.

The method of proof is analogous to that applied in the second part of the
proof of 3.4.

From 3.4 we also obtain:

3.6. Proposition. Let o, be the collection of all atoms of the lattice R.. Then
&, is infinite, but it fails to be a proper collection.

The elements of ¢, are of height 1 in the lattice %.. We can. define an
element Y to be of height 2 if there exists X €. such that X is covered by Y.
We denote by &, the collection of all elements of height 2 in the lattice %.. The
natural question arises whether ., is nonempty.

We can construct an element of .7, as follows. Let a be an infinite cardinal.
We denote by w(a) the first ordinal with cardinality a. Let I be a linearly ordered
set dually isomorphic to w(a) and for each ie I'let G, be a linearly ordered group
isomorphic to the additive group of all reals with the natural linear order. Let
G, be a lexicographic product of linearly ordered groups G, (ie ). Let K, be a
nonzero subgroup of the cyclically ordered group K. We put

G*=G,®K,.
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Let H be a homomorphic image of G,, H # {0}. From the definition of /and
from the fact that G, has no nontrivial convex subgroup we infer that H is
isomorphic to G,. Therefore if H’ is a nonzero homomorphic image of G*, then
H’ is isomorphic either to K, or to G*. Thus in view of 2.4 and 2.13 we obtain:

3.7. Lemma. 7.(K)) < T.(G}).

According to 3.4 and 3.7 we have

3.8. Lemma. T.(G}) e «/,.

If Bis an infinite cardinal with B # a, then G, and Gjare not isomorphic, thus
G7 is not isomorphic to G§. We also easily obtain that T(G}) # T(G}). Now
from 3.8 and 3.4 we get

3.9. Theorem. Let X be an atom in R,,. Then the collection of all elements of
o, which cover X is a proper collection.

3.10. Proposition. Let a and K, be as above. Then the interval [0~, T(G¥)] of
the lattice R, is a three-element chain.

The proof will be omitted.

Let us denote by X, the join of all atoms of the lattice 4,,.

3.11. Proposition. The radical class X, fails to be the greatest element of the
lattice A,,.

Proof. If X, (iel) are atoms of the lattice %, then in view of 2.14 we
have

() VierXi = Vi X

Also, from 3.4 we infer that if {0} # Geu,.,X,, then G is isomorphic to a
subgroup of K.

Let L # {0} be a linearly ordered group and let K, # {0} be a subgroup of K.
Then K, ® L belongs to %, and does not belong to u,.,X;. Hence X, # (%.),.

From the above result and from (1) we conclude:

3.12. Corollary. (i) The lattice R, fails to be atomic. (i) The interval [0~, X ]
of the lattice R,y is isomorphic to the Boolean algebra of all subsets of nonisomor-
phic types of nonzero subgroups of K.

4. Dual atoms of the lattice %,

As we already remarked above, there are no dual atoms in the lattice £#. Let
us now investigate the existence of dual atoms in the lattices %, and %,,.

4.1. Proposition. The lattice R, has no dual atom.

Proof. By way of contradiction, assume that Y is a dual atom of the
lattice Z,. Then there exists {0} # G €(%,), such that G does not belong to Y.
Next there exists a nonzero subgroup K, of K such that K, e Hom {G}. Let a be
an infinite cardinal, a > card G. Let G, be as in Section 3. Put
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H=G,®G.

Since G, € Hom {H}, H fails to be linearly ordered. Hence {0} # H €(%,),. In view
of 2.13 we have T(G) = Hom {G}, hence H ¢ T(G). Since Y'is a dual atom in %,

we obtain
He®),=Y v T(G) = Y v Hom{G}.

In view of 2.13 and 2.14 we have
Y v Hom{G} = Hom Y U Hom {G} = YU Hom {G},

hence He YU Hom {G}. As H does not belong to Hom {G} we get He Y. Since
GeHom {H} we obtain Ge Y, which is a contradiction.

From 4.1 and 3.6 we infer:

4.2. Corollary. The lattice X, is not self-dual.

4.3. Lemma. Let K, be a subgroup of K, K, # {0}. Let {Y},., be the class of all
Ye R, such that K, does not belong to Y.. Put Y = v ., Y. Then Y is a dual atom
of the lattice X..

Proof. If Z is any class of cyclically ordered groups such that K,¢Z,
then K, ¢ Ext Z. From this and from 2.5 we infer that K, does not belong to Y.
Hence Y <= &,. )

By way of contradiction, assume that Y fails to be a dual atom of %.. Then
there exists Ze 4. such that Y < Z < €,. Thus there is Ge Z\Y. Since T(G) =
€ Z, we obtain

Yv TG)<s Z

We distinguish two cases.

(i) K,¢ Hom{G}. Then K, ¢ T(G), hence T(G) < Y, implying G e Y, which is
a contradiction.

(i) K,eHom{G}. Let G,e%, If K,¢ Hom{G,}, then K,¢T(G,), thus
T(G,) £ Y and therefore G, € Y. Now assume that K,e Hom {G,}. Then G, is an
extension of a linearly ordered group L, by means of K,. Thus we have L,e Y,
K, e T(G), hence

{L;, K} = Y v T(G).

Since the class Y v T(G) is closed with respect to extensions, we get G,e Y v
v T(G). Therefore €, = Z, which is a contradiction.

Let K, and Y be as in 4.3. We denote Y = K.

4.4. Lemma. Let K, and K, be nonzero subgroups of K. Assume that K, is not
isomorphic to K,. Then K # K3.

Proof. We have K, e K}, K, ¢ K}.

Since there exists an infinite set of mutually nonisomorphic subgroups of K,
from 4.3 and 4.4 we infer

4.5. Theorem. The lattice R, has infinitely many dual atoms.
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4.6. Lemma. Let Y be an atom of the lattice R,. Then (€),< Y.

Proof. We have to verify that Y, = (%), By way of contradiction, assume
that ¥, # (%),. In view of 2.9 we have Ye . Since (%), is the greatest element
of # and since £ has no dual atoms, there is ¥;€ 2 such that ¥, < Y| < (%),
Hence there is a linearly ordered group G, which does not belong to Y;. Also,
there is a linearly ordered group G belonging to Y;\Y. Then G¢ Y, whence
Y v T(G) = 4,. Thus

G, eYv T(G)=Ext(YUuT(G)) = Ext(Yu Y).
Because G, is linearly ordered, we have
GeExt(Yyuh)=Ext;=1Y,

which is a contradiction.

4.7. Propesition. Let Y be a dual atom of the lattice R.. Then there is a nonzero
subgroup K, of K such that Y = K.

Proof. In view of 4.6 we have (%), < Y. If all nonzero subgroups of K
belong to Y, then we have Y = €, (since Y is closed with respect to extensions).
Thus there is a nonzero subgroup X, of K such that K, does not belong to Y.
According to the definition of K2 we have Y < K{ = &,. Since Y is a dual atom
of 4. and since K/e Z we obtain that ¥ = K.

4.8. Corollary. Let Ye A.. The following conditions are equivalent :

(1) Y is a dual atom of the lattice X,. .

(i) There is a nonzero subgroup K, of K such that Y = K.

4.9. Corollary. Let 9 be the collection of all dual atoms of the lattice X,.
Then 2 fails to be a proper collection.

5. K-radical classes

For G €, we denote by ¢(G) the system of all c-convex subgroups of G. The
system ¢(G) is partially ordered by inclusion.

Since H = G° is valid for each Hec(G) with H # G and since G° is linearly
ordered, we have

5.1. Lemma. ¢(G) is a linearly ordered set.

Let Xe . If for each Ge X and each G, €%, the relation

c(G) ~c(G)=G,eX

is valid, then X will be said to be a K-radical class.

K-radical classes of linearly ordered groups are defined analogously (c-
convexity is replaced by convexity). We denote by

A, — the class of all K-radical classes of linearly ordered groups;

AR, — the class of all K-radical classes of cyclically ordered groups.
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" Both %, and %, are partially ordered by inclusion. In [8] it was proved that %,
is a lattice.

From the property of G° mentioned above we infer:

5.2. Lemma. Let Ge(%,),, G # {0}. Then G° is a dual atom of the linearly
ordered set ¢(G).

5.3. Lemma. Let G be a linearly ordered group such that c(G) has a dual atom.
Then there is G,€(6,), such that ¢(G) ~ ¢(G)).

Proof. Let G’ be a dual atom of ¢(G). Let K, be a nonzero subgroup
of K. Put G, = K, ® G’. Then ¢(G) ~ ¢(G,) and G, €(%,),.

Let Xe %,. We denote by X* the class of all G, €(%,), such that thereis Ge X
with ¢(G) ~ ¢(G)).

5.4. Lemma. Let Xe %, and {0} # G,€(%,),. The following conditions are
equivalent : (1) G,e X * ; (ii) there is G € X such that chain c¢(G) has a dual atom and
c(G) ~ c(G)). .

Proof. This is a consequence of 5.3.

For Xe 4%, we denote X* = X* U X. From the definition of X* we obtain
immediately:

5.5. Lemma. Let Xe &, Ge X* and G,€%,. If ¢(G,) ~ c(G), then G,e X*.

5.6. Lemma. Let Xe %,. Then X* is closed with respect to homomorphisms.

Proof. Let Ge X* and let G’ be a homomorphic image of G. If GeX,
then clearly G’e X = X*. Assume that G does not belong to X. Then {0} #
# Ge(%,), and there is H e X such that ¢(H) has a dual atom G, and G, ~ G°.
The case G' = {0} is trivial; suppose that G’ # {0}.

In view of lemma 2.11, (G’)® is a homomorphic image of G° hence (G’)° is
a homomorphic image of G,. Thus there exists H,ec(G,) such that (G")" ~
~ G,/H,. In particular, ¢((G')°) =~ ¢(G,/H,). From this we infer that ¢(G’) ~
~ ¢(H/H,). The class X is closed with respect to homomorphisms, whence
H/H e X and thus G’ e X*.

5.7. Lemma. Let X€ %,. Then X* is closed with respect to transfinite exten-
sions.

Proof. Let Ge%,. Assume that G,e ¢(G) for each a < j,

0} S Gy S G S... SGuS ...y UyepGo=G

and that G,/u,_,G,e X* is valid for each @ < B. We have to verify that G
belongs to X*. We distinguish two cases.

At first suppose that G is linearly ordered. Then all G, are linearly ordered
and all H, = G,/u, . ,G, are linearly ordered as well. Hence all H, belong to X;
since X is a radical class, we obtain Ge X = X*.

Now suppose that G is not linearly ordered. Then in view of 2.8 there is
a(0) < B such that G, = G and G, < G for each a < a(0). Thus G, < (G,q)°
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for each & < a(0). We have H,, # {0} and H o € X*. Thus there is H, € X such
that c(H ) ~ c(Hyg). Denote

D = ua< a(())Ga'

For each a < a(0), G, is linearly ordered and thus D is linearly ordered as well.
Moreover, if @ < a(0), then H,e X. Therefore De X. Denote G’ = D o Hy, (the
symbol o stands for the operation of the lexicographic product). G’ is an
extension of D by means of H,; since {D, H,o} < X, we obtain G'€ X. We
have ¢(G’) ~ ¢(G). Thus according to 5.4, Ge X*.

5.8. Theorem. Let X€ %,. Then X* belongs to R,. If Ye R, and X < Y, then
X*cyY.

Proof. The first assertion follows from 5.5, 5.6 and 5.7. The second ass-
ertion is obvious.

The following lemma is easy to verify.

5.9. Lemma. Let YeA,. Let f(Y) be the set of all linearly ordered groups G
having the property that there exists G, € Y with ¢(G) ~ ¢(G,). Then f(Y)€ % and
f()*=r.

5.10. Corollary. Z, = {X*: X€%}.

If X, and X, are elements of %, then clearly

X, cX,=>Xf<c X%
In view of 5.9 we also have

XfcXf=X < X,.

Thus according to 5.8 we obtain:

5.11. Theorem. The mapping X — X* is an isomorphism of the lattice %, onto
the partially ordered collection R, ; hence A4, is a lattice.

If Xe4, then X need not belong to %, ; hence %, is not a subcollection
of &,.

5.12. Theorem. The lattice R, has no atoms and no dual atoms.

Proof. This is a consequence of 5.11 and of [8], Theorems 4.4 and 4.14.
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PAOUKAJIbHBIE KJACCbI HUKJIMYECKHW YIIOPAAOYEHHBIX I'PVIII
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C. I'. YEXATA u P. BUTAH/T BBenu noHATHE paaMKaJIbLHOTO Kjacca JIMHEHHO ymops-
IIOYeHHBIX rpynn. B HacTos1el cTaTbe 3TO NOHATHE pacUIMPAETCS IS CIIydast IUKIMYECKH ynops-

OOYCHHBIX Ipymi. I/ICCJ'ICIIleTCﬂ CBOIICTBa PELUETKH BCEX paaMKAJIbHBIX KJIACCOB abeneBbIX M-
KJIMYECKU YNIOOAAOYECHHBIX IpYMII.
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