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Math. Slovaca 38, 1988, No. 3,255—268 

RADICAL CLASSES OF CYCLICALLY 
ORDERED GROUPS 

JAN JAKUBIK, GABRIELA PRINGEROVA 

The investigation of cyclically ordered groups was begun by L. Rieger 
[14]. Further results in this field were obtained in the papers [9], [15], [16], [17], 
[18] and [10]. For the basic notations, cf also L. Fuchs [3]. Cyclically 
ordered groups can be viewed as being a natural generalizations of linearly 
ordered groups. 

The notions of radical class and semisimple class of linearly ordered groups 
were introduced and studied by C. G. C h e h a t a and R. Wiegand t [1]. 
Some further aspects of the radical theory for linearly ordered groups were 
investigated in the papers [5], [6], [11] in the general case, and in the papers [4], 
I7L [8], [12], [13] in the case of abelian linearly ordered groups. In particular, in 
the paper [8] AT-radical classes of abelian linearly ordered groups were dealt with 
(an analogous notion for radical classes of lattice ordered groups was in­
troduced by P. C o n r a d [2]). 

In the present paper the Chehata—Wiegandt notion of a radical class and the 
notion of a AT-radical class of abelian linearly ordered groups are extended for 
the case of abelian cyclically ordered groups. 

We denote by 
01 — the lattice of all radical classes of abelian linearly ordered groups; 
^ — the lattice of all AT-radical classes of abelian linearly ordered groups; 
dbc — the lattice of all radical classes of abelian cyclically ordered groups; 
0^, — the lattice of all KT-radical classes of abelian cyclically ordered groups. 

(For definitions, cf below.) 
In fact, some results (including the proofs) for the lattice 0lc are analogous to 

those for the lattice 01 (cf, e.g., Theorem 2.4). But there are also some rather 
strong distinctions (cf, e.g., the existence of atoms and dual atoms in 0lc, while 
the lattice ^2 has no atom and no dual atom). Hence the lattices 0t and 0lc fail 
to be isomorphic. On the other hand, the lattice 9^ is isomorphic to the lattice 
®kc-

The lattice 2̂ is a closed convex sublattice of 0lc. Moreover, the partially 
ordered collection 01 is a retract of 0tc. The lattice 0^ is not a sublattice of 9^c. 
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1. Preliminaries on cyclically ordered groups 

For the sake of completeness, we recall some definitions concerning cyclically 
ordered groups. 

Let G be a group. The group operation will be denoted additively, the 
commutativity of this operation will not be assumed. Suppose that a ternary 
relation [x, y, z] is defined on G such that the following conditions I—IV are 
satisfied for all x, y, z, a, beG: 

I. If [x, y, z] holds then x, y and z are distinct; if x, y and z are distinct, then 
either [x, y, z] or [z, y, x]. 

II. [x, y, z] implies [y, z, x]. 
III. If [x, y, z] and [y, w, z], then [x, w, z]. 
IV. [x, y, z] implies [a + x + b, a + y + b, a + z + b]. 

Under these assumptions G is said to be a cyclically ordered group. The ternary 
relation under consideration is said to be a cyclic order on G. When speaking 
of this relation we often denote it by []. 

If H is a subgroup of G, then H is viewed as being cyclically ordered by the 
original cyclic order reduced to H. 

Isomorphisms of cyclically ordered groups are defined in the obvious way. A 
mappingfof a cyclically ordered group G into a cyclically ordered group G' is 
a homomorphism if the following conditions are satisfied: 

(i) fis a homomorphism with respect to the group operation; 
(ii) whenever x, y and z are elements of G such thatf(x),f(y) andf(z) are 

distinct, and [x, y, z] holds, then |/(x), f(y), f(z)] is valid. 
Let L be a linearly ordered group. For distinct elements x, y and z of L we 

put [x, y, z] if 

(1) x<y<zory<z<xorz<x<y 

is valied. Then [] is a cyclic order on G induced by the linear order _ \ 
A cyclically ordered group (G; []) is said to be linearly ordered if there exists 

a linear order ^ on G such that (G, 5S) is a linearly ordered group and the cyclic 
order [] is induced by f£. If such a linear order does exist, then it is uniquely 
determined (cf. [10], Lemma 3.1). 

Let K be the set of all real numbers x with 0 ^ x < 1. The operation + in K 
is defined to be the addition mod 1. For distinct elements x, y and z of K we put 
[x, y, z] if (1) is valid. Then K is a cyclically ordered group. 

Let G, be a cyclically ordered group and let L be a linearly ordered group. 
We denote by G}® L the direct product of groups G, and L with a ternary 
relation [] which is defined as follows. For distinct elements u = (a, x), v = 
= (b, y) and vv = (e, z) of the set G, x L we put [w, v9 w] if some of the following 
conditions is satisfied: 
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(i) k b9 c]; 
(ii) a = b # c and x < y; 

(iii) b = c 7* a and y < z; 
(iv) c = a # b and z < x; 
(v) a — b = c and [x, y, z]. 

Then G, (g) L is a cyclically ordered group. 
For M c G , x L w e denote by M(Gj) the natural projection of M into G,, i.e., 

the set of all elements a e G, such that there is x e L with (a, x) e M. The set M(L) 
is defined analogously. 

Let AT be as above and let K} be a subgroup of K. A mapping (p of a cyclically 
ordered group G into K{ x L is said to be a representation of G if the following 
conditions are satisfied: 

(i) (p is an isomorphism of G into Kx ® L: 
(ii) (rtG))(tf.) = tf, and (cp(G))(L) = L. 
1.1. Theorem. (Swierczkowski [15].) Each cyclically ordered group pos­

sesses a representation. 
A subgroup H of a cyclically ordered group G will be said to be c-convex 

(cf. [10]) if some of the following conditions is fulfilled: 
(i) tf=G; 

(ii) for each heH with h # 0 we have 2h ^ 0; if heH9 geG, [-h9 0, h], 
[-h9g9 h]9 thengetf . 

Let <p be a representation of a cyclically ordered group G. Under the denota­
tions as above, let G°(cp) be the set of all geG such that {<?(#)} C î) = {0}. Then 
we have 

(i) G°(cp) is the largest linearly ordered subgroup of G; 
(ii) if G} is a c-convex subgroup of G and G, ^ G, then G, c G°(<p). 

(Cf. [10], 3.5 and 4.6.) 
From (i) (or from (ii) we obtain): 
(iii) If cp' is another representation of G, then G°((p') = G°((p). 
In view of (iii) we shall write G° instead of G°((p). 
In what follows all groups under consideration are assumed to be abelian 

(i.e., "group" means "abelian group"). 
Let tf be a c-convex subgroup of G. Let x,, x2, x3 be elements of G such 

that the classes x, + tf ( /= 1, 2, 3) are distinct. It is easy to verify that if 
[x,, x2, x3] is valid in G, then [x{, x'2, x'3] holds for each x^ex, + tf (/ = 1,2, 3). 
In such a case we put [x, + tf, x2 + tf, x3 + tf]. We get a cyclically ordered 
group which will be denoted by G/tf. Moreover, we immediately obtain: 

1.2. Lemma, (i) Let H be a c-convex subgroup of G. Then the mapping x -» 
-» x + H is a homomorphism ofG onto G/H. (ii) Let f be a homomorphism of a 
cyclically ordered group G onto a cyclically ordered group Gx and let tf be the 
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kernel off. Then H is a c-convex subgroup of G and the mapping x + H ->f(x) 
is an isomorphism of G/H onto Gx. 

Let Kx be a subgroup of K and let L' be a homomorphic image of a linearly 
ordered group L. For each element (a, x) of Kx® L we putf, ((a, x)) = (a, x'), 
where x' = /7(x), /z being the homomorphic mapping of L onto L' under con­
sideration. Thenf is a homomorphism of Kx® L onto K® L'. (We shall say 
thatf, is a natural homomorphism of Kx® L onto Â , ® L'.) 

1.3. Lemma. Let G be a cyclically ordered group and let H be a c-convex 
subgroup of G,H ^ G. Let <p: G -> Kx® L be a representation of G. Let f be the 
natural homomorphism of G onto G/H. Put L, = L/H(L). Let f, be the natural 
homomorphism of Kx® L onto Kx® L,. Then there exists a representation 
(p'\ G/H -* Kx® Lx of G/H such that the diagram 

G -^U Kx ®L 

я 1/, 
G/H -¥—> Kx ® L, 

is commutative. 
Proof. The assertion is an immediate consequence of the fact that H ^ G 

(and hence H s G°). 
1.4. Lemma. Let G be a cyclically ordered group. Let (p\ G -> Kx® L and 

(p'\ G -> K\® L' be representations of G. Then Kx is isomorphic to K\. 
Proof. This assertion is contained in [10], Theorem 5.3. 

2. Radical classes 

The class of all cyclically ordered groups will be denoted by %. Let Ge%. Let 
P be an ordinal. Let Ga (a < (5) be c-convex subgroups of G such that 

{0} = G0 s G, s ... = Ga s ... (a < fi)9 va<pGa = G. 

For each a < /? we put Ha = Ga/ur<aGr. Then G is said to be a transfinite 
extension of cyclically ordered groups Ha (a < p). 

\ When considering a subclass X of % we always assume that X is closed with 
respect to isomorphism. 

2.1. Definition. A nonempty subclass X of(€a is said to be a radical class, if it 
is closed with respect to homomorphisms and transfinite extensions. 

The definition of a radical class of linearly ordered groups is defined analo­
gously (the c-convexity is replaced by convexity); cf. [7]. The collection of all 
radical classes of linearly ordered groups is denoted by £%\ this collection is 
partially ordered by inclusion. Then 01 is a complete lattice. 
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We denote by <£Q the class of all linearly ordered groups. From Lemma 4.2, 
[10] we obtain: 

2.2. Lemma. Let X ^ 5£Q. Then the following conditions are equivalent: 
(i) X is a radical class of linearly ordered groups. 

(ii) X is a radical class of cyclically ordered groups. 
Let Y s %. We denote by 
Ext Y — the class of all cyclically ordered groups which are transfinite 

extensions of some elements of Y; 
Horn Y — the class of all homomorphic images of elements of Y. 

The collection of all radical classes of cyclically ordered groups will be denoted 
by 0lc. This collection is partially ordered by inclusion. The greatest element of 
$c is <€a. The least element of 0tc is the class of all one-element cyclically ordered 
groups; this class will be denoted by 0". 

From the definition of a radical class we obtain immediately: 
2.3. Theorem. Let At (iel) be elements of Mc. Then we have Aie!A; = 

= niGlA;. The partially ordered collection 0lc is a complete lattice. 
2.4. Theorem. Let 0 =*-= X s %. Put T(X) = Ext Horn X. 
(i) T(X)e0tc. 

(ii) If Ye0lc, X^Y, then T(X) s Y. 
The proof is analogous to that of Proposition 2.2 in [7]; it will be omitted. 
In view of 2.4, T(X) is said to be the radical class generated by X. If X = {G}, 

then we write T(G) instead of T(X). 
2.5. Theorem. Let A( (iel) be elements of fflc. Then we have viefAj = 

= Ext <uieIAi. 
Proof. This is a consequence of 2.3 and 2.4. 
From 2.3, 2.5 and [7], Corollary 2.3 we obtain: 
2.6. Proposition. 0t is a closed ideal of the lattice 0tc. 
In view of 2.6 and [7], Example 2.7 we have 
2.7. Proposition. The lattice 0lc is not modular. 
2.8. Lemma. Let G, Ga and Ha (a < p) be as in the definition of the transfinite 

extension. Then some of the following conditions is valid: 
(i) There exists a < fisuch that Ha is not linearly ordered', in such a case i/fl(i) 

is linearly ordered for each a(\) < a, and Ha{2) = {0} for each a(2) with a < 
< a(2) <p. 

(ii) All Ha (a < p) are linearly ordered (and thus G is linearly ordered). 
Proof. Let a < p and suppose that Ha is not linearly ordered. Since Ha is 

isomorphic to GJ\JY< aGr we infer that Ga is not linearly ordered. But Ga is a 
c-convex subgroup of G, and hence in view of Ga $ G° we obtain Ga = G. Thus 
Gad) = G whenever a < a(2) < /?, therefore Ha{2) = {0} for such an a(2). Let 
a(l) < a. If Ha{X) is not linearly ordered, then we would have Ha = {0}, which is 
a contradiction. 
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Now let X be a nonempty subclass of %, such that X contains a zero group. 
We denote by Xt the class of all linearly ordered groups belonging to X. Put 
X0 = (X\Xt) u 0~. Since X is closed with respect to isomorphisms, we infer that 
0~ c X. Hence we have 

X=X/UX0, X/nX0 = 0". 

We apply the just introduced denotations also for the class %. Hence (%)t is the 
class JSftf of all linearly ordered groups and (%)0 is the class of all cyclically 
ordered groups which are either zero groups or fail to be linearly ordered. 

We infer that 

Horn X = Horn X, u Horn X0, Horn X, c (%)h Horn X0 <= (%)Qm 

Now let {0} =* G e Ext Horn X = T(X). If Ge(T(X))h then according to 2.8 
we must have Ge Ext Horn X{. Conversely, if Ge Ext Horn Xh then clearly 
Ge(T(X)\. 

Next let Ge(T(X))0. Since G ^ {0}, G fails to be linearly ordered. In view of 
2.8 there exists a linearly ordered c-convex subgroup H of G such that / / e 
e Ext Horn X{ and that {0} # G///eHomX0 . Conversely, if this condition is 
satisfied, then clearly Ge(r(X))0 . 

By summarizing, we obtain: 
2.9. Theorem. Let X ^ %. Assume that X contains a zero group. 
(i) (T(X)), = Ext Horn X, = T(X(). 

(ii) (r(X))0 /s the class of all Ge% such that either G = {0} or there exists a 
c-convex subgroup H of G such that He Ext Horn Xh {0} # G/H eHomX0. 

Denote 
Mc0 = {T(X):X^(%)0and{0}eX}. 

From 2.9 and 2.5 we obtain: 
2.10. Corollary. Mc0 is a closed ideal of the lattice 0tv. 
2.11. Lemma. Assume that {0} ̂  GeHorn{G}. Let cp: G-*K\®L be a 

representation of G and let q>'\ G' -> K\® L' be a representation of G'. Then 
(i) the cyclically ordered groups K, and K\ are isomorphic; 

(ii) the linearly ordered group (G')° is a homomorphic image of the linearly 
ordered group G°. 

Proof. Letf: G-> G' be a homomorphism and let H be a kernel off In 
view of 1.2 we can assume (without loss of generality) that G' = G/H and 
thatfis the natural homomorphism of G onto G/H. Since G/H ^ {0}, we must 
have H c G. Thus / / g: G°. Therefore in view of 1.3 and 1.4 we obtain that (i) 
and (ii) are valid. 

From 2.8 and 2.11 we infer: 
2.12. Lemma. Let X ^ (%)0, {0}G^ . 
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(i) If Ge Horn X, then Ge(%)0. 
(ii) ExtJT= X. 
As a corollary we obtain: 
2.13. Theorem. Let X^(%)0, { 0 } e l Then T(X) = H o m I 
Now, 2.13 and 2.5 yield: 
2.14. Corollary. Let Af (iel) be elements of(%)0. Then in the lattice Mc the 

relation v ieJAi = u^,.^,- is valid. 
From 2.10 and 2.14 we infer: 
2.15. Corollary. The lattice <£a0 is completely distributive. 
If A and B are elements of 0tc, then the relation A ^ B is valid in 0tc if and 

only if At 5S Bt holds in 0t and A0 ^ 2?0 holds in 0lcO. Thus we have 
2.16. Proposition. The mapping 

f:A-+(AhA0) (Ae0lc) 

is an isomorphism of the partially ordered collection 0lc into the direct product 
0lx0lcO. 

Let us remark that the mappingffrom 2.16 fails to be an isomorphism of the 
lattice 0lc into 01 x 0lcO. 

Let P be a partially ordered class and let Q be a nonempty subclass of P. 
Assume that there exists a mapping y/: P-* Q such that 

(i) tfp]9p2eP and px ^ p2, then </</?,) ;= V(p2); 
(ii) i f q e g , then y/(q) = q. 

Under these assumptions (? -S said to be a retract of P. 
From 2.16 we obtain 
2.17. Corollary. Both the partially ordered collections 01 and 0tcO are retracts 

of0tc. 

3. Atoms of 3tc 

For X, Ye Mc we write X -< Y if X c y and if there does not exist any Ze(%c 

with X a Z a Y.ln such a case we also say that Ycovers X. If 0" -< X(X< %), 
then X is said to be an atom in $c (or dual atom in 0lc, respectively). Analogous 
denotations are applied for 0t and 0lcO. 

3.1. Lemma. (Cf. [7], 4.3 and 4.12.) In the lattice M there exist no atoms and 
no dual atoms. 

3.2. Lemma. If X is an atom in 0tc^ then either Xe0t or Xe0lcO. 
Proof. Let X be an atom in 0tc. Then XQe0tcO and Xte0t. Moreover, we 

have X = X0 v X{. Since X is an atom in 0tc, we infer that either X = X0 or* 
X=X{. 
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3.3. Lemma. Let Xe0tc. Then the following conditions are equivalent: 
(i) X is an atom in 0tc. 

(ii) X is an atom in 0tcO. 
Proof. This is an immediate consequence of 2.10. 
Let K be as in Section 1 and let G be a subgroup of K. We denote by T[G] 

the class of all cyclically ordered groups isomorphic to G. Put T0 [G] = T[G] u 
uO" . We have 

Horn T0[G] = T0[G] = Ext T0[G]. 

Thus To[G]e0tc. Moreover, T(G) = T0[G\ 
3.4. Lemma. Let Xe0lc. Then the following conditions are equivalent: 
(i) X is an atom of 0tc. 
(ii) There exists a subgroup G ^ {0} of K such that X = T0[G]. 
Proof. Let (ii) be valid. Let Ye0lc, 0" c Y^ X. Then there is GxeY, 

Gx # {0}. In view of the definition of T0[G], the cyclically ordered group Gx must 
be isomorphic to G, hence 

o- c X = r(G) = rcG,) c r c i , 

implying X = Y. Hence (i) holds. 
Conversely, assume that (i) is valid. There exists GeX,G # {0}. In view of 3.3 

we have Xe0lcO, hence Ge(^a)0. Then there exists {0}^Gxe% such that 
Gj G Horn {G} and G, is isomorphic to a subgroup K\ of the cyclically ordered 
group K. Thus G,eX, whence 0" # r0[G,] s X, which infers Z = 2J[G,]. 

3.5. Proposition. Let Yefflc0, 7 ^ 0 " . Then f/*ere is an atom X in Mc0 such 
that X = Y. 

The method of proof is analogous to that applied in the second part of the 
proof of 3.4. 

From 3.4 we also obtain: 
3.6. Proposition. Let six be the collection of all atoms of the lattice 0tc. Then 

six is infinite, but it fails to be a proper collection. 
The elements of s/x are of height 1 in the lattice 0tc. We can, define an 

element Y to be of height 2 if there exists Xe six such that X is covered by Y. 
We denote by s/2 the collection of all elements of height 2 in the lattice 0tc. The 
natural question arises whether s42 is nonempty. 

We can construct an element of s42 as follows. Let a be an infinite cardinal. 
We denote by co(a) the first ordinal with cardinality a. Let /be a linearly ordered 
set dually isomorphic to co(a) and for each ie /let G(0 be a linearly ordered group 
isomorphic to the additive group of all reals with the natural linear order. Let 
Ga be a lexicographic product of linearly ordered groups G, ( ie/). Let Kx be a 
nonzero subgroup of the cyclically ordered group K. We put 

G$ = Ga®Kx. 
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Let H be a homomorphic image of Ga, H ^ {0}. From the definition of/and 
from the fact that G(i) has no nontrivial convex subgroup we infer that H is 
isomorphic to Ga. Therefore if H' is a nonzero homomorphic image of G*, then 
H' is isomorphic either to Kx or to G*. Thus in view of 2.4 and 2.13 we obtain: 

3.7. Lemma. TC(KX) < TC(G*). 
According to 3.4 and 3.7 we have 
3.8. Lemma. Tc(G^)es^2. 
If >L?is an infinite cardinal with P ^ a, then Ga and Gp are not isomorphic, thus 

G* is not isomorphic to GjJ. We also easily obtain that T(G*) # T(G|). Now 
from 3.8 and 3.4 we get 

3.9. Theorem. Let X be an atom in 0tcO. Then the collection of all elements of 
s&f

2 which cover X is a proper collection. 
3.10. Proposition. Let a and Kx be as above. Then the interval [0~, T(G*)] of 

the lattice 0lc is a three-element chain. 
The proof will be omitted. 
Let us denote by Xa the join of all atoms of the lattice 0tcO. 
3.11. Proposition. The radical class Xa fails to be the greatest element of the 

lattice 0tcO. 
Proof. If Xt (iel) are atoms of the lattice 0lcO, then in view of 2.14 we 

have 

(1) v ^ ^ u ^ Z , . . 

Also, from 3.4 we infer that if {0} # Geu/6/X,-, then G is isomorphic to a 
subgroup of K. 

Let L # {0} be a linearly ordered group and let Kx ^ {0} be a subgroup of K. 
Then Kx® L belongs to 0tcO and does not belong to u/G/X,-. Hence Xa ?-= (%%. 

From the above result and from (1) we conclude: 
3.12. Corollary, (i) The lattice 0tcO fails to be atomic, (ii) The interval [0~, Xa] 

of the lattice 0tcO is isomorphic to the Boolean algebra of all subsets ofnonisomor-
phic types of nonzero subgroups of K. 

4. Dual atoms of the lattice 0tc 

As we already remarked above, there are no dual atoms in the lattice 01. Let 
us now investigate the existence of dual atoms in the lattices 0tc and 0tcO. 

4.1. Proposition. The lattice Mc0 has no dual atom. 
Proof. By way of contradiction, assume that Y is a dual atom of the 

lattice 0tcO. Then there exists {0} # Ge($a)0 such that G does not belong to Y. 
Next there exists a nonzero subgroup Kx of K such that Kx e Horn {G}. Let a be 
an infinite cardinal, a > cardG. Let Ga be as in Section 3. Put 
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H = Ga®G. 

Since G, e Horn {#}, # fails to be linearly ordered. Hence {0} # He(%)0. In view 
of 2.13 we have T(G) = Horn {G}, hence # # T(G). Since Fis a dual atom in Mc0> 
we obtain 

He(%)0 = F v T(G) = F v Hom{G}. 

In view of 2.13 and 2.14 we have 

Y v Horn{G} = Horn Yu Horn {G} = F u Horn {G}, 

hence # G F u Horn{G}. As # does not belong to Horn{G} we get He Y. Since 
Ge Horn {#} we obtain GeY, which is a contradiction. 

From 4.1 and 3.6 we infer: 
4.2. Corollary. The lattice Mc0 is not self dual. 
4.3. Lemma. Let Kx be a subgroup ofK^ Kx # {0}. Let {J-}/€/ be the class of all 

YeMc such that Kx does not belong to Y(. Put Y = v iefY{. Then Y is a dual atom 
of the lattice Mc. 

Proof. If Z is any class of cyclically ordered groups such that KX$Z, 
then Kx$ExtZ. From this and from 2.5 we infer that Kx does not belong to F. 
Hence Y <=.%. 

By way of contradiction, assume that F fails to be a dual atom of Mc. Then 
there exists ZeMc such that F c Z c f f l . Thus there is GeZ\Y. Since T(G) s 
c Z, we obtain 

F v T(G) c Z. 

We distinguish two cases. 
(i) iT, £Hom{G}. Then Kx £ 7\G), hence T(G) S Y, implying GeY, which is 

a contradiction. 
(ii) KxeHom{G}. Let Gxe%. If K:1^Hom{G1}, then KX$T(GX% thus 

-T(G,) S Fand therefore G, e F. Now assume that KT, e Horn {G,}. Then G, is an 
extension of a linearly ordered group L, by means of Kx. Thus we have L, e F, 
Kx e T(G), hence 

{ i , J i } ^ v r ( G ) . 

Since the class F v T(G) is closed with respect to extensions, we get GxeYv 
v T(G). Therefore % c Z, which is a contradiction. 

Let Kx and F be as in 4.3. We denote F = Kf. 
4.4. Lemma. Let Kx and K2 be nonzero subgroups of K. Assume that Kx is not 

isomorphic to K2. Then Kx # K2. 
Proof. We have K^eKf, Kx$Kf. 
Since there exists an infinite set of mutually nonisomorphic subgroups of K, 

from 4.3 and 4.4 we infer 
4.5. Theorem. The lattice Mc has infinitely many dual atoms. 
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4.6. Lemma. Let Y be an atom of the lattice 0tc. Then (^J, ^ Y. 
Proof. We have to verify that 1, = (%){. By way of contradiction, assume 

that Yt 7-= (%)i. In view of 2.9 we have Y{e0t. Since (^), is the greatest element 
of 0t and since 0t has no dual atoms, there is YJ e0t such that Y{ c= Yx c (<5Q/e. 
Hence there is a linearly ordered group G, which does not belong to YJ. Also, 
there is a linearly ordered group G belonging to Yx\Yt. Then G<£F, whence 
Y v T(G) = %. Thus 

G,e F v T(G) = E x t ( 7 u T(G)) c Ext(Yu ^ ) . 

Because G, is linearly ordered, we have 

G ,eEx t (> ,u^ ) = Ext i ; = Yl9 

which is a contradiction. 
4.7. Proposition. Let Y be a dual atom of the lattice $c. Then there is a nonzero 

subgroup Kx of K such that Y = Kf. 
Proof. In view of 4.6 we have (%), ^ Y. If all nonzero subgroups of K 

belong to Y, then we have Y = % (since Y is closed with respect to extensions). 
Thus there is a nonzero subgroup Kx of K such that K^, does not belong to Y. 
According to the definition of Kx we have Y^K* c%. Since Y is a dual atom 
of 0tc and since .ATfe^j. we obtain that Y = if,*. 

4.8. Corollary. Let Ye0tc. The following conditions are equivalent: 
(i) Y is a dual atom of the lattice 0tc. 

(ii) TTjere is a nonzero subgroup K} of K such that Y = Kf. 
4.9. Corollary. Let 3f be the collection of all dual atoms of the lattice 0tc. 

Then Q) fails to be a proper collection. 

5. K-radical classes 

For Ge% we denote by c(G) the system of all c-convex subgroups of G. The 
system c(G) is partially ordered by inclusion. 

Since H c G° is valid for each Hec(G) with H # G and since G° is linearly 
ordered, we have 

5.1. Lemma. c(G) is a linearly ordered set. 
Let Xe0tc. If for each GeX and each G, e% the relation 

c(G)^c(G,)=>G,eJ!r 

is valid, then X will be said to be a AT-radical class. 
A>radical classes of linearly ordered groups are defined analogously (c-

convexity is replaced by convexity). We denote by 
0^ — the class of all A^-radical classes of linearly ordered groups; 
0tck — the class of all ^-radical classes of cyclically ordered groups. 
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Both &k and $ck are partially ordered by inclusion. In [8] it was proved that ^ 
is a lattice. 

From the property of G° mentioned above we infer: 
5.2. Lemma. Let Ge(%)0, G ^ {0}. 77ten G° is a dual atom of the linearly 

ordered set c(G). 
5.3. Lemma. Let G be a linearly ordered group such that c(G) has a dual atom. 

Then there is Gxe(%>a)0 such that c(G) ~ c(Gx). 
Proof. Let G' be a dual atom of c(G). Let Kx be a nonzero subgroup 

of K. Put G, = Kx ® G'. Then c(G) ~ c(Gx) and Gx e(%)0. 
Let J e ^ . W e denote by X+ the class of all Gxe(%)0 such that there is GeX 

with c(G) s. c(Gx). 
5.4. Lemma. Let Xe 0^ and {0} # Gxe (%)h The following conditions are 

equivalent: (i) GxeX + ; (ii) there is GeX such that chain c(G) has a dual atom and 
c(G) ~ c(Gx). 

Proof. This is a consequence of 5.3. 
For I e 4 w e denote X* = X+ u X. From the definition of X* we obtain 

immediately: 
5/5. Lemma. Let Xe^ GeX* and Gxe%. If c(Gx) ~ c(G), then GxeX*. 
5.6. Lemma. Le/ XeSft^. Then X* is closed with respect to homomorphisms. 
Proof. Let GeX* and let G' be a homomorphic image of G. If GeX, 

then clearly G'eX^ X*. Assume that G does not belong to X. Then {0} i=-
T* Ge(^ ) 0 and there is HeXsuch that c(H) has a dual atom Gx and G, ^ G°. 
The case G' = {0} is trivial; suppose that G' ^ {0}. 

In view of lemma 2.11, (G')° is a homomorphic image of G°, hence (G')° is 
a homomorphic image of Gx. Thus there exists Hxec(Gx) such that (G')° ~ 
~ G,///,. In particular, c((G')°) ~ c(Gx/Hx). From this we infer that c(G') a 
~ c(H/Hx). The class X is closed with respect to homomorphisms, whence 
H/Hx eX and thus G'eX*. 

5.7. Lemma. Let Z G ^ . Then X* is closed with respect to transfinite exten­
sions. 

Proof. Let Ge%>a. Assume that Gaec(G) for each a < /?, 

{0}zG0sGxs...sGas...9 Kja<pGa=G 

and that Ga/ur<aGyeX* is valid for each a < p. We have to verify that G 
belongs to X*. We distinguish two cases. 

At first suppose that G is linearly ordered. Then all Ga are linearly ordered 
and all Ha = GJ\jy< aGr are linearly ordered as well. Hence all Ha belong to X; 
since X is a radical class, we obtain Ge X £ X*. 

Now suppose that G is not linearly ordered. Then in view of 2.8 there is 
a(0) < P such that Ga(0) = G and Ga < G for each a < a(0). Thus Ga c (Ga(0))° 
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for each a < a(0). We have Ha{0) # {0} and Ha{0) e X*. Thus there is H'a{0) eXsuch 
that c(Hm) ~ c(H'a{0)). Denote 

For each a < a(0), Ga is linearly ordered and thus D is linearly ordered as well. 
Moreover, if a < a(0), then HaeX. Therefore D e l . Denote G' = Do H'a{0) (the 
symbol ° stands for the operation of the lexicographic product). G' is an 
extension of D by means of H'a{0); since {D, Ha{0)} c X, we obtain G'eX. We 
have c(G') ^ c(G). Thus according to 5.4, GeX*. 

5.8. Theorem. Let Xe^. Then X* belongs to 0tck. If Ye0tck and X <= 7, then 
X*c: Y. 

P r o o f The first assertion follows from 5.5, 5.6 and 5.7. The second ass­
ertion is obvious. 

The following lemma is easy to verify. 
5.9. Lemma. Let Ye0lck. Let f(Y) be the set of all linearly ordered groups G 

having the property that there exists Gx e Ywith c(G) ~ c(Gx). Then f(Y)e0^ and 
(f(Y))*=Y. 

5.10. Corollary. 0tck = {X*: Xe^}. 
If Xx and X2 are elements of ^ , then clearly 

Xx c l ^ l f c l * . 

In view of 5.9 we also have 

Xf^X^Xx^X2. 

Thus according to 5.8 we obtain: 
5.11. Theorem. The mapping X-+ X* is an isomorphism of the lattice ^ onto 

the partially ordered collection ^tck; hence 3fcck is a lattice. 
If XeS^, then X need not belong to dtck\ hence ^ is not a subcollection 

of^ , . 
5.12. Theorem. The lattice 0tck has no atoms and no dual atoms. 
Proof. This is a consequence of 5.11 and of [8], Theorems 4.4 and 4.14. 
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РАДИКАЛЬНЫЕ КЛАССЫ ЦИКЛИЧЕСКИ УПОРЯДОЧЕННЫХ ГРУПП 

^ап ^акиЬ^к, СаЬпе1а Р п п § е г о у а 

Р е з ю м е 

С Г. ЧЕХАТА и Р. ВИГАНДТ ввели понятие радикального класса линейно упоря­
доченных групп. В настоящей статье это понятие расширяется для случая циклически упоря­
доченных групп. Исследуются свойства решетки всех радикальных классов абелевых ци­
клически уподядоченных групп. 
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