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A CHARACTERIZATION OF Kr. — CLOSED GRAPHS 

PAVOL HIC 

1. Introduction 

A non-empty graph G containing a subraph H without isolated vertices is 
said to be //-closed if, whenever F is a subgraph of G without isolated vertices 
that is isomorphic to a subgraph of // , then F can be extended to a subgraph 
of G isomorphic to // . 

//-closed graphs were introduced by T o m a s t a and T o m o v a [8], where 
also a characterization of //-closed graphs for H to be connected regular of 
degree r > 2 and H to be a cycle with one special chord, the so-called triangle 
chord, as well as H to be a cycle with two special triangle chords is given. 

A characterization of H — closed graphs for H to be a star and H to be a 
cycle was given by C h a r t r a n d , O e l e r m a n and Ruiz [2], but in terms of 
randomly H graphs. 

A characterization of //-closed graphs for H to be a matching was given by 
Sumner [7]. Analogical questions were studied, for example, in [1, 3, 5, 6]. 

We prefer the term //-closed graph instead of the term randomly H graph. 
In this paper is given a characterization of Kr s — closed graphs for arbitrary 

finite r, s. 

2. Notations and preliminary results 

We use the general notation and terminology of H a r a r y [4]. 
In order to avoid a situtation where only a complete graph would be //-

closed, require in the definition of //-closed graphs that H and F be without 
isolated vertices (see also [2]). 

So all the graphs considered in this paper are simple undirected without 
isolated vertices. The distance between the vertices w, ve V(G) is denoted by 
Q(U9V). Let H be a subgraph of G and r e V(G) - V(H)9 then Q(V9 H) = 
= mm{Q(v9u)\ue V(H)}. 

The family of all //-closed graphs will be denoted by a(H) and the family 
n-vertex //-closed graphs by cr„(H). 
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Obviously, every graph G is AVclosed and also every graph G is G-closed. 
Further, Kn is //-closed for every H c Kn. 

Lemma A (see Tomasta and Tomova [8, Lemma 1]). 
(i) // G e a(H), then G(G) a o(H). 

(ii) IfGean(H)9 then an(G) c an(H). 
Lemma B (see Tomasta and Tomova [8, Proposition 1]). Closeness Criterion: 

G is H — closed if and oly if for every minimal system S = {x , xi>2 ...,x^} of 
boolean variables for which the boolean expression 

w= n z *, 
II cz G eeE(G)- E(H) 

is true, Fs<£ //, where Fs is the graph consisting of the edges {e,, e2, ... ek) cor­
responding to the variables in S. 

Lemma C (see Tomasta and Tomova [8, Lemma 2]). 
Let H be a connected graph on at least four vertices different from a star. Then 
the H-closed graph is connected. 

Lemma 1. Let G be a Kr -closed graph and \V(G)\ > r + s, r > 2, s > 2. 
Let H c G and H ^ K, s. Then, for an arbitrary vertex veV(G)— V(H), 
Qb\H)=\. 

Proof. Let v be any vertex of V(G) — V(H). The existence of such a 
vertex is ensured because of |V(G)| > r + s. From H ^ Kr%s it follows that 
V(H) = A u 5, \A\ = r, \B\ = s. Let A = {vl9 v2, ..., vr}9 B = {w,, w2, ..., w,}. Let 
P = [x0,xi, .., xt] beany shortest (r, H) — path of G and let t denote the length 
of P. We can suppose that x0 = w,, x, = v. Such a path eists because G is 
connected by Lemma C. 
Form the graph H' as follows: delete from / / the vertex vx and add the adge 
(x,j/,). Obviously, H' is a subgraph of Kr v and thus it can be extended to Kr s in 
G. However, the only possibility to extend H' to Kr s is the adding of edges 
(xi, W/) for every / = 2, 3, ..., s. Now, we have the graph F with the following 
properties: 
1. H' czFczG. 
2. F^Krs. 
3. V(F) = AFu BF, AF = {x,, v29 ..., vr}, BF = {u]9 w2, ..., us}. Similarly, we can 
form the graph F' as follows: delete from Fthe vertex w, and add the edge (x2, 
x,). F' is a subgraph Kr, and the only possibility to extend it to Kr y is the adding 
of edges (x2, yf.) for / = 2, 3, ..., r. Hence, £>(x,, i;,-) = £)(xM H) = t — 1, which is 
a contradiction to the assumption. 

Q.E.D. 
Lemma 2. Let G be a Kr -closed graph and \ V(G)\ > r + s, r > 2, s > 2. 77zen 

V(G) = v4 u 5, |/^| > r, |Z?| > s and every vertex of A is joined to every vertex of B. 
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Proof. It is obvious if \V(G)\ = r + s. Now, let \V(G)\ > r + s and 
H^Krs9HaG. V(H) = A'v B'. A' = {v]9 vl9 ..., v,}9 B' = {U]9 u2, .., us}. 
Lemma 1 implies Q(V9 H) = 1 for an arbitrary vertex ve V(G) — V(H). Now, 
v can be tabled to A 3 A' (if v is joined to every w,) or to 5 3 B' (if u is joined 
to every t>;). 

The assumption that G is K, rclosed implies the joining of any vertex of A to 
any vertex of B. 

Lemma 3, Let G be a Krs-closed graph and V(G) = Au B (by Lemma 2). If 
there exists an adge in A [B]9 then G is a complete graph. 

Proof. By assumption V(G) = AuB. Let A = {v]9 vl9 ..., vr). B = {w,, ul9 

..., us)9 r' >r9 s' > s. Let e be any edge joining two vertices of A9 for example 
e = (vmv2). Then the subgraph G' c G which is given in Fig. 1 can be extended 
to Kr s only by adding exactly all edges from w, to ui9 i = 2, 3, ..., s and from i;, 
to vi9 i = 3, 4, ..., r. AS G was chosen arbitrarily G is a complete graph. 

Fig. l 

Lemma 4. The graP/j K2%n+ j /s K2 n-closed for any neN. 
Proof. Apply the Lemma B. The graph K2%n + X contains exactly n+ 1 

graphs isomorphic to Â 2 „. Thus the boolean expression W has the form: 

W=(ex vf) A (e2 v/2) A ... A (e/J + 1 vf + l) = 

V r(A^)A( A /A] 
1.2 / . - f l } L \ ; e L / V G { 1 , 2 / 7 + l } - L / J 

0) 
U { l . 

Now, let S be a minimal system for which W is true. From (1) it follows that 
the corresponding graph F, contains n + 1 vertices which belong to the comon 
part of K2%n+u. It implies that Fs £ K2%n. Hence, by Lemma B, K2%n + X is KZn-
closed. 

Q.E.D. 

3. Main results 

Theorem 1. A graph G is Kx ^closed if and only if 
(i) s = 1 and G is an arbitrary graph, 
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(ii) s = 2 and G is a graph in which no component is isomorphic to K2, 
(iii) s > 3 and no component of G is isomorphic to K2 and every vertex of G has 
degree 1 or at least s. 

The proof (i) is obvious and for the proofs of (ii) and (iii) see [2, propositions 
1 and 2]. 

Teorem 2, A graph G is K2 -closed if and only if 

(i) 8 = 2 and G = Kp with p > 4 or G = Kmn with 2 < m < n, 
(ii) 8 = 3 and G = Kp with p > 5 or G = Kmn with m > 2, n > 3 , 
(iii) s > 4 and G = Kp with p>s + 2orG = K2n with n> s. 

P r o o f 
(i) [2, Proposition 4 (ii)], 
(ii) All subgraphs of K23)

 a r e given in Fig. 2. 

Fig. 2 

It is easy to verify that Kp9 p > 5 or Kr v, r > 2, s > 3 are K2 3-closed. Now, 
let us assume conversely that G is AT2 3-closed. 
By Lemmas 1 and 2 V(G) = AKJ B and every vertex of A is joined to every 
vertex of B. Hence, G = Kr s. If there exists an edge between the vertices of A or 
/?, then Lemma 3 implies that G is a complete graph. 

Q.E.D 
(iii) Obviously, Kp9 p > s + 2 is K2 ,-closed. Now, we give the proof that K2n is 
K2 v-closed for any n > s. K2n+] is K2Vcl°sed for any neN by Lemma 4. Now, 
using Lemma A, for arbitrary n > s: 

G(K2n) a G(KXn.x) cz ... cz G(K2s+x) a G(K2S). 

Hence, K2n is K2 v-closed. 
Coversely, we assume that G is K2 v-closed. 

(1) For every ve K(G), deg(f) = 2 or deg(f) > s. 
P roof of (1). Suppose, on the contrary, that deg(i;) = r with 2 < r < s. De­
note by r(v) the neighbourhood of the vertex v. Then the subgraph //contain­
ing v and r(v) with edges between v and r(v) is isomorphic to a subgraph of 
K2s and cannot be extended to K2s in G. 
(2) For any vertices v9 w of degree two r(v) = r(w). 
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P r o o f of (2). If it is not true, then form the subgraph H containing v9 w, 
r(v) and xeT(w) together with the edges between v, r(v) and the edge (x, w). 
Obviously, H cannot be extended to K2 s in G. 
(3) If there are vertices of degree two, then there are exactly two vertices of degree 
at least s. 
P r o o f of (3). Let vx, v2, v3 be the vertices of degree at least s. From (2) it 
follows that one of them, say v3, does not belong to the common neighbour­
hoods of the vertices of degree two. Now, form the graph H as follows: 
V(H) = {vx, v2, v3, ux, u2} when ux is a vertex of degree two and E(H) = 
= {(P\i u\)i (v2> wi)> (v3> u2)}- It is impossible to extend H to K2s in G. 
(4) If any vertex of G has a degree at least s, then G is a complete graph. 
Proof of (4). Suppose, on the contrary, that G ^ KP. Then there are ver­
tices v, we V(G) and (v, w)$E(G). By assumption, we can form the following 
subgraph H given in Figure 3. 

Obviously, H is a subgraph of K2s and thus it can be extended to K2s in G, but 
it implies the existence of edge (w, v). Hence, G is a complete graph. 

Combining (1), (2), (3) and (4) we obtain the statement that G = Kp, 
p > s + 2 or G = K2 n, n > s. This completes the proof. 

Q.E.D. 
Theorem 3. A graph G is Kr ^closed with r > 3, s > 3 if and only if 

(i) s = r and G = Kr r or G = Kp, p >2r, 
(ii) s = r + 1 and G = Krr+X or G = Kr+Xr+X or G = Kp, withp > 2r + 1, 

(iii) s > r + 2 and G = Kr s or G = Kp with p > r + s. 
Proof, (i) It is obvious that Krr and Kp with p>2r are Kr .-closed. Thus 

we assume conversely that G is Kr r-closed. If |F(G)| = 2r and G ^ Krr, then 
there exists an edge joining vertices of the same part. Hence, G is a complete 
graph by Lemma 3. Let |F(G)| > 2r. Then, G is a complete graph by [8, 
Theorem 1]. 
(ii) Obviously, Krr+X and Kp withp > 2r + 1 are Kr r + ,-closed. It is sufficient to 
prove that Kr + Xr + X is KTrr+1-elosed. We apply the Closeness Criterion. The 
graph Kr+Xr+X contains exactly 2 (r + 1 ) graphs isomorphic to Krr + X. Every of 
them is Kr+Xr + l — v. Thus the boolean expression Whas the form: 
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rr + 1 rr + 1 -r\ rr + I r r + 1 

w=IA Ly(p" "y)Ji A { A Ly (M" ¥ 

It can be verified that any minimal system 5 for which W is true contains a set 
of odges that covers all vertices of Kr + , r + , . If, for example, a vertex uk is not 
covered, then the expression (uk9 vx) v (uk9 v2) v ... v (uk9 vr + x) is not true and 
hence Wis not true, either. The corresponding graph Fs is not included in Kr r + ,, 
thus Kr+1 r + 1 is # r r + 1-closed. 

Now, we assume conversely that G is Kr r+1-closed. We shall consider the 
following cases: 

Case 1. |K(G)| = 2r + 1. Then G = A^rr+1 or AT2r + 1 because of Lemma 3. 
Case 2. \V(G)\ = 2r + 2. Then there exists a vertex xe V(G) which does 

not belong to H c= G, H ^ A:r r + , . By Lemma 2 V(G) = AuB. 
We have two subcases: 

(a) \A\ = \B\ = r + \. Then G = Kr+Xr + X or the existence of any edge between 
the vertices of A [B]9 respectively, implies G = Â 2r + 2 by Lemma 3. 
(b) \A\ = r, \B\ = r + 2. Consider F from Fig. 4. 

Fig. 4 

It can be extended to Â r r + ) only by adding the edges (ux, u2) and (x9 v{)9 (vr + X9 

vt) for i = 1, 2, ..., r. By Lemma 3 G is a complete graph. 
Case 3. \V(G)\ > 2r + 3. By Lemma 2 V(G) = A u B. We can always ob­

tain the occurrence of a subgraph F such as in Fig. 4. Hence, G is a complete 
graph by Lemma 3. 
(iii) Obviously Krs and Kp p > r + s are Â r 5-closed. Conversely, let G be Krs-
closed. If |K(G)| = r + S, then G = Krs or /£r + , by Lemma 3. 
If | V(G)\ > r + s, then by Lemma 2 V(G) = Au B. There is always at least one 
of the following subgraph Gx [G2] from Fig. 5 [Fig. 6, respectively] in G. All of 
them can be extended to Krs by adding edges in A or B. Hence, G is a complete 
graph because of Lemma 3. Thus the proof of Theorem is completed. 

Q.E.D. 
Remark . The graph K2s s> 2 has no end vertex and it is not free (see 

[8]) but there exists no n0 such that crw(A:2 v) = Kn for every n> n0. This is the 
answer to the Problem 1 of [8]. 
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ХАРАКТЕРИЗАЦИЯ Кг,, — ЗАМКНУТЫХ ГРАФОВ 

РаVо1 Н1с 

Резюме 

Граф О называется Я — замкнутым графом, если всякий подграф Р графа О без изо­
лированных вершин, который является изоморфным подграфу графа Я, можно разширить 
на подграф графа (7, изоморфный графу Я. 

Автор дает характеризацию КГ5 — замкнутых графов для любых натуральных чисел г, 5. 
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