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AN EXISTENCE THEOREM FOR A THIRD-ORDER 

THREE-POINT BOUNDARY VALUE PROBLEM 

WITHOUT GROWTH RESTRICTIONS 

MARTIN SENKYRIK 

ABSTRACT. In the paper there is proved an existence theorem for solutions u 
of the third-order nonlinear differential equation u'" = f(t,u,u', u") satisfying 
w'(0) -= « ' ( 1 ) = w(.7) = 0 , 0 < rj < 1 without growth restrictions on / . 

1. Introduction 

R o d r i g u e z and T i n e o [2] have proved an existence theorem for the 
Dirichlet problem u" = / ( r , u , u ' ) , u(0) = u(l) = 0 without requiring growth 
restrictions on / under the assumption that / is continuous. 

In this paper there are found some conditions for the existence of solutions 
of the third-order boundary value problem (BVP ) 

u'" = f{t,u,u\u"), (1) 

u'(0) = u ' ( l ) = u(rj) = 0, 0 < x] < 1, (2) 

where / satisfies only the local Caratheodory conditions on (0,1) x R3 . This 
problem models the static deflection of a three-layered elastic beam. Since the 
method used in this paper is very similar to that used by R o d r i g u e z and 
T i n e o [2], we also do not require any growth restrictions on / . 

In [3] there is proved an existence theorem for BVP (1), (2) which requires a 
growth condition on / only in a neighbourhood of either 0 or 1. 

2. Definitions and notations 

Let D' = ((0,1) x R3) . We say that / : D' -> R satisfies the local Caratheo­

dory conditions on D' ( / E Carioc(I}')) if / ( - ,x ,y ,2r) : (0,1) —> R is measurable 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34B10, 34B15. 
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on (0,1) for each x, y, z G R, / ( r , - , - , • ) : R3 —> R is continuous for a.e. 
t G (0,1) and sup{\f(t,x,y,z)\: \x\ + \y\ + \z\ < p} is Lebesgue integrable for 
any p G (0, +oo) . 

A function u G -4C2(0,1) satisfying (1) for a.e. t G (0,1) and fulfilling (2) 
will be called a solution of BVP(l ) , (2), where AC2(0,1) = {x: a: is a real 
function with one real argument and x" is absolutely continuous on [0,1]} . 

X = {x e C2(0,1), x'(0) = x'(l) = x(V) = 0} , where C2(0,1) = {x: x is a 
real function with one real argument and x" is continuous}. 

In the whole paper we shall assume that / G Cax\oc(D') • 

3. The main result 

First we state a general existence theorem. 

THEOREM 1. Let / * G Carioc((0,1) x R3 x (0,1)) and let there exist an open 
bounded set D C X such that for any A G (0,1) each solution u\ G X of the 
equation 

u'" = \f*(t,u,u',u",\) (3) 

satisfies 
u\ £ 6D (SD is the boundary of D) 

and let 0 G D. 

Then for any \ G [0,1] the equation (3) has at least one solution in clD 
(clD is the closure of D ) . 

P r o o f . The theorem follows from Mawhin's continuation theorem [1, The­
orem IV. 1, p. 27]. 

LEMMA 1. Let u G X and c\ < u" < C2 for every t G [0,1]. where c\, c<i G R, 
c\ < 0 < C2 • Then the inequalities 

\u(t)\ < M and \u(t)\ < ML for every t G [0,1], (4) 

where M = c\C2(c\ — C2)_1 , L = max{r/, 1 — 77} , are valid. 
t -

P r o o f . From the equalities u'(t) = Ju"(s)ds, —u'(t) = Ju"(s)ds it 
0 t 

follows that 

c\t < u'(t) < c^t, 

c2(l ~t)>- u(t) > c\(l - t) for every t G (0,1). 

Since u" is continuous we obtain from the last two inequalities and from (2) 
the inequalities (4). The lemma is proved. 
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LEMMA 2. Let there exist e G R, £ > 0 such that f(t,x,y,z) < 0 for a.e. 
t G (0,1) and for every x G (—ML, ML), y G [—£, e), z G (—e, e ) . Zetf u 
6e a solution of (1), (2) .suc/i that u'(t) > —e, c\ < u"(t) < c2 for every 
t G (0 ,1) , where c\,c2 G R and ca < 0 < c2 . T/ien u'(t) > 0 for t e (0,1) and 
u " ( l ) < 0 < u " ( 0 ) . 

P r o o f . Let u be a solution of (1), (2) satisfying the assumptions of Lemma 
2 and u'(t0) = 0, where t0 G [0,1). If u"(t0) = 0, then there exists 6 G R , 
<5 > 0 such that |u"(r)| < e and |u'(*)| < e for t G (*o, to + <$) and we obtain 

t 

/ 
/(-s,u,u ' ,u")dз = u"(t) < 0 foг Í E (*0, t0 + <S). 

Thus under the assumption that u"(t0) < 0 there exists £i G (*o,l) such that 
u'(*i) < 0, min{u'(t), t0 < t < 1} = u'(*i) and u"(*i) = 0 . Further there exists 
6\ G R, 6\ > 0 such that u'(t) G [s, e), u"(t) G (-e, e), for t e (t\,t\+ 6) 
and by integrating (1) from t\ to t, where t £ (t\, t\+6), we obtain u"(t) < 0 
for t G (*i, t\ + 6); but u '( t i ) = min{u'(r), t0 < t < 1} , and this contradiction 
proves that u"(t0) > 0 if t0 G [0,1) and u'(t0) = 0. Since u"(0) > 0 there 
exists t2 G (0,1] such that u'(t) > 0 for t G (0 , / 2 ) , u '( t2) = 0, u"(t2) < 0 
and by (the part of) the proof above, t2 = 1. If u"( l ) = 0, then there exists 
62 eR, 62 > 0 such that u"(t) G ( -£ , e) , u'(t) G ( -£ , e) for < G ( 1 - « S 2 , 1 ) 
and by integrating (1) from t to 1 for t G (1 — £2,1) we obtain —u"(t) < 0 for 
t G (1 — 62,1). On the other hand u'(£) > 0 for t G (0,1) and this contradiction 
completes the proof of Lemma 2. 

LEMMA 3 . Let there exist c\, c2 G R7 ci < 0 < c2 ^ucfc that 

liminf f(t,x,y,z) > 0, liminf f(t,x,y, z) > 0 
r—>ci *—>c2 

uniformly for x G (—ML, ML), y G [0 ,M), £ G [0,1]. Further let u be a 
solution of (1), (2), u'(t) > 0 for t G (0,1) , u"( l ) < 0 < u"(0) ana1 c2 < 
u"(t) < c2 for t G [0,1]. Then c\ < u"(t) < c2 for t G [0,1]. 

P r o o f . Let us suppose that u"(£i) = c 2 , where £i G [0,1], then ^i < 1 
since u"( l ) < 0. From the properties of / there follows the existence of 6 G R , 
6 > 0 such that f(t,u,u',u") > 0 for a.e. t G (*i, *i + 6). By integrating (1) 
from t\ to t where t £ (t\, t\ + 6) we obtain u"(t) > c2 for t E (t\, t\ -{-6) and 
this contradiction proves that u"(t) < c2 for t G [0,1]. Analogously Ci < u"(t) 
for t G [0,1] and the proof of Lemma 3 is complete. 
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THEOREM 2. Let there exist c\, c2 e R, ci < 0 < c2 such that 

liminf f(t,x,y,z) > 0, liminf f(t,x, y, z) > 0 
z—>cx z^c2 

uniformly for (t,x,y) G [0,1] x (-ML, ML) x [0 ,M). Further let 

limsup f(t,x,y,z) < 0 
(y,*)--(0,0) 

uniformly for (t,x) G [0,1] x (-ML, ML). Then BVP (1), (2) has a solution 
u satisfying 

-ML < u(t) <ML, 0 < u(t) <M, CT < u"(t) < c2 for t G [0,1]. 

P r o o f . By the Tietze-Urysohn lemma there exists a continuous function 
g: R x R -> [-1,1] such that y(0,0) = - 1 and g(y,c{) = 1 for i = 1,2 
y G [0, M ] . Let us put 

fn(t,x,y,z) = f(t,x,y,z) + n~lg(y,z) for n G N. 

Then we obtain that 

limsup fn(t,x,y,z) < —n~l (n G N) 

(2,,2)->(0,0) 

uniformly for (tf,;r) G [0,1] x (-ML, ML) and 

liminf fn(t,x,y,z) > n~l, liminf fn(t,x, y, z) > n~l (n G N) 
z-*ci z-*c2 

uniformly for (t,x,y) G [0,1] x (-ML, ML) x [0,M). For every fixed n G N 
there exists en e R, 1 > £n > 0 such that fn(t,x,y,z) < 0 for a.e. t G (0,1) 
and for every xe (-ML, ML), ye[-en,en), ze(-en,en). Put Un = {x e X: 
- ML < x(t) < ML, -en < x'(t) < M, cx < x"(t) < c2, for t G [0,1]}. 
From Lemmas 1 - 3 it follows that BVP 

/// \ r (x I II \ 

U = \jn\t,U,U ,U ) , 

with conditions (2) has no solutions in 8Un for A > 0. By Theorem 1 BVP 

u'" = fn(t,u,u',u") (5) 
with conditions (2) has a solution un G cl Un . It can be easily seen that the 
sequences (i/n)n^=1 , (ur

n)n
<L1 are uniformly bounded and equi-continuous on 

[0,1] and that the sequence ( u " ) ^ ! is uniformly bounded on [0,1]. From (4) 
and by the theory of the Lebesgue integral we get that the sequence (u'^J^Lj is 
equi-continuous on [0,1]. By the Arzela-Ascoli lemma without loss of generality, 
we may suppose that all the three sequences are uniformly converging on [0,1]. 
By the Lebesgue theorem and by (5) the function u(t) = lim un(t) on [0,1] 

n—•oo 

is a solution of (1), (2) and fulfils the assertion of Theorem 2. The theorem is 
proved. 
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