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A NOTE ON IMPERFECT MONOMIAL CURVES IN P3 

EDUARD BODA — STEFAN SOLCAN 

One of the most interesting problems in algebraic geometry started with 
Kronecker's result in 1882 is the following: What is the smallest number of 
(homogeneous) equations defining an algebraic set in an affine (or projective) 
n-space. Lately several authors have obtained strong results in the affine case and 
particular ones also in the projective case. For more detail see, e.g., [12]. 

There are papers dealing with curves in a 3-dimensional projective space P£ 
over a field k. In 1979 R. Hartshorne (see [6]) published a short but very nice 
proof of the fact that every curve Cd given parametrically by (/, tf*~ lt, st*~ \ t") 
in Pi is a set-theoretic complete intersection for d ^ 4 and the characteristics 
char(k) = p > 0. Bresinsky, Stiickrad and Renschuch proved in [4] the same for 
the curves C(d, b, a) given parametrically by (/ , sV~ *, ff*~a,t*) in P\ with g.c.d. 
(d, b, a) = 1 (also in the case of finite characteristics of k). More complicated is 
the situation in the case of char(k) = 0. Stiickrad and Vogel showed in [12] that 
the above mentioned curve C(d, b, a) is a set-theoretic complete intersection for 
any characteristics, if C(d, b, a) is arithmetically Cohen-Macaulay. Note that a 
curve C is arithmetically Cohen-Macaulay iff the local ring of the vertex of the 
affine cone over C is Cohen-Macaulay. 

During his stay in Bratislava W. Vogel posed the question: Is there an 
irreducible arithmetically non-Cohen-Macaulay (equivalently: imperfect) curve 
in Pj|, char(k) = 0, which is a set-theoretic complete intersection? 

Using a proposition with an algebraic formulation of the problem we are 
investigating some classes of curves in P£ with char(k) = 0. We get sufficient 
conditions for these curves to be a set-theoretic complete intersection. 

The notation in this paper is the standard one, for the basic facts and 
definitions (systems of parameters, multiplicity e0, regular and Cohen-Macaulay 
local rings, ...) see, e.g., [14]. We denote by LA(M) the length of an A-module 
M and by ht(a) the height of the ideal a, see, e.g., [7]. Dim(A) means the 
Krull-dimension of the ring A. The notion of a "set-theoretic complete intersec
tion" is explained in Proposition 1. 

With respect to the above mentioned results we will assume in the following 
that char(k) = 0. 
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First of all we formulate two conditions to abbreviate our explanation. 
1. Let (A, m) be a local ring with the maximal ideal m. We say that the condition 

(E) in A holds if for every ideal a in A there is 

dim(A/a) + ht(a) = dim(A). (E) 

2. Let (A, m) be a local ring and p a prime ideal of A with dim(A/p) = r. We say 
that the multiplicity condition (M) for p holds when there exist r elements x„ 
..., .Yr of m such that x = {x„ ..., xr} is a system of parameters for A/p and 
the following condition is true 

e0((p, x), A) = e0((p, x)/p, A/p). e0(p . Ap, Ap). (M) 

Proposition 1. Let (A, m) be a local ring with an infinite residue field A/m in 
which the condition (E) holds. Let p be a prime ideal of A. When (M) for p is 
true, then p is the set-theoretic complete intersection, i.e. there are s = ht(p) 
elements ax as of p such that rad((a„ ..., as)) = p. 

For the proof of proposition 1 see [1] Proposition 2 or [10]. 
The following lemma shows that Proposition 1 is useless for defining primes 

of curves in PjJ which are imperfect, i.e. arithmetically non-Cohen-Macaulay. 

Lemma 2. Let (A, m) be a regular local ring with A/m infinite and p is a prime 
ideal of A. If (M) for p holds, then A/p is Cohen-Macaulay. 

Proof. Let (M) be true for p. Put q = (p,x), where x = {JC„ ..., xr} is a 
system of parameters for A/p. By virtue of (M) there is then e0(q,A) = -
= e0(q/p, A/p). e0(p . Ap, Ap). 
We will count e0(q/p,A/p). Set A/p = A and q = q. A = (x„..., xr). For the 
system of parameters {x„ ..., xr) in A we set b0 = (0). A and bk = U(bk_,) 4- -
+ (x*) for 0 <k ^ r. The symbol U(a) denotes the intersection of all primary 

ideals q, belonging to a such that dim(A/qy) = dim(A/a). Then e0(q, A) = L(A/br), 
see [2]. Counting in A we get b0 = U(p) b; = U(b;_,) + (xk), 0 < k ^ r. Put 
b; = q*. Because o f p c q c q * (see [2]), we have 

e0(q,A) = L(A/q*.A) = L(A/q*). (1) 

The regularity of A implies e0(p . Ap, Ap) = 1 and together with the condition (M) 
we get e0(q, A) = e0(q, A). With trivial L(A/q) ^ e0(q,A) (see, e.g., [5], p. 255) 
there then holds L(A/q) ^ L(A/q*). On the other hand, we have from q £ q* that 
L(A/q) ^ L(A/q*) and q = q*. Then we get 

e0(q,A) = LA/q), (2) 

i.e. in A there is an ideal q = (x„ ..., xr) generated by a system of parameters such 
that (2) holds. This means that A = A/p is Cohen-Macaulay (see, e.g., [14]) as 
required. 
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As in our case R = k [XQ, X,, X2, X3](Xo Xl X2 X3) is regular, we formulate an easy 
modification of Proposition 1. 

Proposition 3. Let R = k[Xo, X,, X2, X3](Xo, X2 X3) and p be a prime ideal in 
R, dim(R/^3) = 2. Assume there are elements a,, a2 of R and F e p such that 
a = {a,, a2} is a system of parameters for R/p and 

e0((F, a)/(F), R') = e0((p, a)/p, R/p). e0(p'. RJ,, R;) , 

where R' = R/(F) and p' = p.R' ; then there eists an element G e p such that 
p = rad((F, G)), i.e. p is a set-theoretic complete intersection. 

In order to describe the way how to find such an element F in some special 
cases we need the following lemma. 

Lemma 4. Let q = (X?, X,X2, XJ) c k [X„ XJ(XuX2) = A, n ^ 2. Then 
e0(q,A) = 2/z. 

Proof. Put q ' = (X^ + X5,X,X2). Then q' is a reduction of q and 
e0(q', A) = £0(q, A), see [8]. Since q' is an ideal generated by a system of par
ameters in a regular local ring, the claim follows from the fact that 
e0(q\ A) = L(A/q') by counting the length. In fact q" = (X? + I, X^ + 1, X,X2) c -
c q ' c q and L(A/q") = 2n + 1, L(A/q) = In - 1, thus e0(q, A) = L(A/q') = 
= 2n. 

Note that Grobner in [5], p. 256 counted e0(q, A) for the above q in the case 
n — 3, but his calculations cannot be used for n > 3. 

Let R be as in Proposition 3 and C„ the curve in P£ given parametrically by 
(s*, f~ !t, sf- \ f) with the defining ideal p = (F„ ..., F„), F, = XoX3 - X,X2, 

2 - ^ A 2 "~ A l > r 3 — A 0 A 2 ~~ A l A3» •••» r „ _ j - A 0 A 2 ~" A 1 A 3 5 

F r t = Xn
2 ~

 ] - X,X^"2, see [9], p. 320. It is known that Cn is nonsingular for every 
n and it is arithmetically Cohen-Macaulay for n = 3, arithmetically non-Cohen-
Macaulay Buchsbaum for n = 4 and arithmeticaly non-Buchsbaum whenever 
n^5, see, e.g., [13]. Put q = (p,Xo,X3) = (Xo,X3,Xr \ X ^ X p 1 ) . From 
Lemma 4 it follows that e0(q, R) = 2. (n — 1). Let us count e0(q/p, R/p) as in the 
proof of Lemma 2. We use the so-called U-process and we get 
e0(q/p,R/p) = L(Rq*) = 2 . ( W r 2 ) . 

Now we formulate the main result. 

Theorem 5. Let Crt, p, q be as above, n ^ 4. If there exists a form Fe-
Gp(«-1) _ p«-1^ which is superficial of degree n — 2 with respect to q, then CM 

is a set-theoretic complete intersection. 
R e m a r k s . 

1. The symbol p(0 denotes the ith symbolic power of p, i.e. p(0 = p'. Rp n R. 
2. We say that an element F of a local ring (A, m) is superficial of degree s with 

respect to the m-primary ideal q if F e q5 — qs + ] and there exists a positive 
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integer c such that (qn: F) n qc = q"~5 for all n > > 0. For more facts about 
superficial elements see [14]. 
Proof of Theo rem 5. The assumptions for F imply en(q.R,Rp) = 

2. (n — 1). (n — 2) and e0(p. Rp, Rp) = n — 1, R = R/(F). The assertion now foll
ows from Proposition 3. 

We finish this paper by an example which shows that the idea of Theorem 5 
is useful also for the arithmetically Buchsbaum curves. Note that the Buch-
sbaum property is a simple generalization of the Cohen-Macaulay one, see [11]. 

Example . In [3], Theorem 3, there is a characterization of arithmeti
cally non-Cohen-Macaulay Buchsbaum curves over an algebraically closed 
field k. Curves are given parametrically by (84n, 8^ + 1 f n " l , s2"" x fn +1 , t4") with the 
defining ideal p = (X0X3 - X,X2, X ^ 2 " " l - X2"+ \ X0X^ - X2nX3, 
X? + ] - X2"- !X2). As before we put q = (p, X* X3) = (X^ X3, X,X2, X2n + \ 
Xf + !). Then we get e0(q, R) = 2. (2n + 1) by .virtue of Lemma 4. For q/p we get 
e0(q/p, R/p) = An = 2. 2n. Comparing with the curve C„ from Theorem 5 we see 
that the only difference is in the degree of the required superficial element F. 
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ЗАМЕЧАНИЯ О НЕСОВЕРШЕННЫХ МОНОМИАЛИНЫХ КРИВЫХ В Р^ 

Эдуард Бодя — Штефан Солчан 

Резюме 

В работе исследуются некоторые классы неприводимых несовершенных мономиальных 
кривых пространства Р ,̂ сЬаг (к) = 0, рассматривая их как теоретико-множественное полное 
пересечение. Доказывается, что если дла кривой С с общим нулем (за,за~ Ч951*~\ Iе) сущест
вует однородный многочлен Рер^~ ! ) — рс~ \ который является поверхностным элементом 
порядка а* - 2 относительно идеала (рс, Хо> Х3), то С — теоретико- множественное полное 
прересечение. 
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