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ABSTRACT. Let K be a number field, R its ring of integers and H the set of 
non-zero principal ideals of R. For each positive integer k the set Bk(H) C H 
denotes the set of principal ideals for which the associated block has at most k 
different factorizations. For the counting functions associated to these sets asymp­
totic formulae are known. These formulae involve constants t h a t just depend on 
the ideal class group G of R. Starting from a known combinatorial description for 
these constants, we use tools from additive group theory, in particular the notion 
of Davenport 's constant and a classical addition theorem, to investigate them. 
We determine their precise value in case G is an elementary group or a cyclic 
group of prime power order. For arbitrary G we derive (explicit) lower bounds . 

1. Introduction 

Let R be the ring of integers of an algebraic number field K and G 
the ideal class group. If |G | > 1, then R respectively the monoid H of 
non-zero principal ideals of R is not factorial. Quantitative aspects of non-unique 
factorizations were first investigated by W. N a r k i e w i c z and then by many 
authors (see [20; Chap. 9], [12], [9]). Among others, the following sets have been 
studied for every k G N: 

• Tk(H), the set of all non-zero principal ideals aR where a G R has at 
most k distinct factorizations, 

• Bk(H), the set of all non-zero principal ideals aR where a G R and the 
associated block j3(aR) has at most k distinct factorizations, 

• Qk(H), the set of all non-zero principal ideals aR where a G R has 
factorizations of at most k different lengths. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11N64, 11R27, 20D60, 20K01. 
K e y w o r d s : factorization, zero-sum sequence, block monoid. 
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If Z is any of these sets and x G R> 1 , then let Z(x) denote the number of 
principal ideals aR G Z with (R : aR) < x. It has turned out that, for x —> oc, 
Z(x) has the following type of asymptotic behavior: 

Z(x) ~ Cx(\ogx)-A(\og\ogx)B , 

where C G % 0 , A G M>0 and 5 G N 0 . For the sets Tk(H) and Qk(H), the 
exponents A and B have received a lot of attention, but there are still mam 
open questions around them (see [18], [19], [5], [10], [13], [4], [26], [28]). In this 
paper we concentrate on the set Bk(H). In [6] it was proved that 

I _i_ r*((7) 
A = 1 — where r*(G) is the total rank of G , 

\G\ 

and a (rather involved) combinatorial description of B was given (in terms of 
G and k). In Section 2 we first introduce the necessary terminology to give 
this description (Definition 2.1.2) and then we derive a result on the oscillatory 
behavior of the counting function associated to Bk(H), which is based on recent 
work of M. R a d z i e j e w s k i (Theorem 2.3.2). In the subsequent sections, we 
start from the combinatorial description of B and derive, for every k G N, an 
explicit lower bound for B (Theorem 7.1) and the precise value of B, in the 
case where G is an elementary group or a cyclic group of prime power order 
(Theorems 4.2, 5.4, and 6.1). For these investigations we use methods from 
additive group theory, in particular the notion of Davenport's constant and a 
classical addition theorem. 

2. Preliminaries 

Let N denote the set of positive integers, P C N the set of prime numbers 
and we set N0 = N U {0}. For m.n^Z let 

[ra, n] = {x G Z : ra < x < n} . 

For n G N let Cn denote a cyclic group with n elements. Let G be an addi-
tively written finite abelian group. A subset G0 = { e l 5 . . . , e r } C G is called 
independent (resp. its elements are called independent), if 0 ^ C?0, e 1 ? . . . . e r 

are pairwise distinct and every equation of the form 

r 

\ J miei = 0 with ral5..., rar G Z implies ra1e1 = • • • = mrer = 0 . 
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The maximal cardinality of an independent set of elements having prime power 
order is called the total rank of G, which will be denoted by r*(G). Then 

ГҶGO = £ Г P ( G ) 

where, for every p G P , V

P(G) denotes the p-rank of G. Our terminology in 
factorization theory is consistent with that in [7] and with the survey articles in 
[2]. For convenience and to fix notations, we recall some key notions and some 
basic facts. 

Mono ids and factorizations. 
Throughout, a monoid is a multiplicatively written commutative cancellative 

semigroup with identity element. Let H be a monoid. We denote by Hx the 
group of invertible elements of H and by Hred = {aHx : a G H} the associated 
reduced monoid of H. We call H reduced if Hx = {1} (and then Hred = H). 

An element u G H is called an atom of H (or an irreducible element of H) 
if u £ Hx , and for all a, b G H, u = ab implies that a G Hx or b G Hx . 
We denote by A(H) the set of atoms of H, and H is called atomic if every 
a G H \ Hx is a product of atoms. 

An element p G H is called a prime of H, if p £ Hx , and for all a, b G H, 
p | ab implies that p | a or p | b. Then H is factorial if it is atomic and every 
atom of H is a prime. 

For a set P, we denote by JF(P) the free abelian monoid with basis P. It is 
a reduced factorial monoid, and every a G F(P) has a unique representation of 
the form 

a = I T PVp(o) where v (a) G N0 and v (a) = 0 for almost all p G P, 

PGP 

whence 

H = ! > > ) £ No-

The monoid Z(H) = ^(A(Hred)) is called the factorization monoid of H. 

The unique homomorphism n: Z(H) -> Hred satisfying TT | A (IT \ = id is 

called the factorization homomorphism of H. It is surjective if and only if H is 
atomic, and it is an isomorphism if and only if H is factorial. For a G H, the 
elements in Z(a) = n~1(aHx) C Z(iJ) are called the factorizations of a, and 
L(a) = {|z| : z G Z(a)} C N0 is called the set of lengths of a. For k G N we set 

fk(H) = {aeH : |Z(a)| < k} and £*(-*?) = { a G / Y : |L(a)| < k} . 

Then ^Fk(H) C Gk(H), and H is factorial if and only if it is atomic and 
H = ^(H). 
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Block monoids. 
Let G be an additively written abelian group and G0 C G a subset. An 

element 

i = l s<EGo 

of the free abelian monoid JF(G0) is called a sequence in G0. We denote by 

• \S\=l= Yl y
g(S) G N0 its length, 

geG0 

i 

• <?(S) = E fli = E v^(^)g ^ G i t s sum, 
2 = 1 ^GCO 

• E(S) = { E gz : M - ' C [1,/]} C G t h e s e i of sums (of non-empty 
L iei J 

subsequences) of S. 

Then B(G0) = {S G F(G0) : a(S) = 0} is an atomic submonoid of JF(G0), 
called the 6/ocfc monoid over G0. It is factorial if and only if G0 \ {0} is in­
dependent (see [6; Proposition 3]). Its elements are called blocks (or zero-sum 
sequences), its atoms are called minimal zero-sum sequences and the identity 
element 1 G B(G0) is also called the empty sequence. The sequence S is said to 
be zero-sumfree if 0 ^ ^(S). A sequence T G F(G0) is called a subsequence of 
S if it is a divisor of 5 in the monoid T(G0) (equivalently, v (T) < v (S) for 
all a G G 0 ) . Subsequences T l 5 . . . , Ts of 5 are called disjoint if their product is 
a divisor of S. For brevity, we set 

A(G0) = A(B(G0)) , Fk(G0) = Tk(B(G0)), and Qk(G0) = Gk(B(G0)) . 

Krull monoids . 
Let H be a reduced Krull monoid (see [14; Chapter 22]), H <-> D = F(P) 

a divisor theory, G = {[a] : a G D} the class group of H and G0 = {[p] : 
p G P} C G the set of classes containing primes. The block monoid B(G0) is a 
reduced Krull monoid and the homomorphism j3: H —>• B(G0), defined by 

i i 

P(a) = n\Pi\ for every a = J J ^ G H, where p1,...,pleP, 
2 = 1 2 = 1 

is called the block homomorphism of H. It is a transfer homomorphism (see [8]) 
and, among others, we have 

(3(A(H)) = A(G0) and Gk(H) = {a G H : (3(a) G Gk(G)} . 

For every k G N we define 

Bk(H) = {a€H: (3(a) e Tk(G)} 
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and clearly 
fk(H)GBk(H)cgk(H). 

Let R be the ring of integers of an algebraic number field K, Tm(R) the 
set of non-zero ideals of R and H = H(R) the set of non-zero principal ideals 
of R. Then H is a Krull monoid, the embedding H ^ Tm(R) is a divisor theory 
whose class group G is the usual ideal class group of i t . Thus G is finite and 
every class contains a prime divisor. For k G N and x G Ryi , the functions 

(R: aR) < x}\ , 

(R: aR) < x}\ , 

(R: aR) < x}\ 

Fk(x) = \{aRefk(H) 

Bk(x) = \{aReBk(H) 

Gk(x) = \{aReGk(H) 
are just the counting functions already discussed in the introduction. There is 
a general combinatorial machinery to tackle "block dependent" factorization 
properties. We introduce the necessary combinatorial terms (for a more general 
setting see [12; Sec 4]). 

DEFINITION 2 .1 . Let G be a finite abelian group. 

(1) For a subset Q C G and a sequence S G T(G \ Q), we set 

n(Q,S) = Sf(Q)HB(G), 
and the pair (Q, S) is called a k-system if 0 / f£(Q, S) C Fk(G). 

(2) For every k G N, we define 

bk(G) = m<^{\S\: (3Q)(Q C G, Q \ {0} independent, |Q| = l + r*(G), 

Sef(G\Q), Q*n(QiS)crk(G))}. 
Note that for |G| < 2 we have bk(G) = 0. 

PROPOSITION 2.2. Let G be a finite abelian group with \G\ > 3 and k G N. 

(1) If (Q,S) is a k-system, then Q\ {0} is independent. 
(2) There exist finitely many k-systems (Qi:S{) with i G [l,m] such that 

m 

?k(G) = \Jn(Ql,si). 

(3) bk(G)>0. 

P r o o f . See [6; Proposition 3, Theorem 1, Corollary 1]. • 

By Proposition 2.2.1 it is clear that 

bk(G) = m^{\S\ : (3Q)((Q,5) a k-system, \Q\ = 1 + r*(G))} , 

which is an alternative way to define bk(G) (see [6; Definition 3]). 
In the following theorem we summarize results on the asymptotic behavior of 

the functions Bk(x). The first part of the theorem is proved in [6; Theorem 2]. 
The second part is an immediate consequence of recent results obtained in [25], 
[24] building, among others, on results of [17], [16]. 
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THEOREM 2,3. Let R be the ring of integers of an algebraic number field K, 
H the set of non-zero principal ideals, G the ideal class group with \G\ > 3 . 
and k G N. 

(1) For x > e e . 

Bk(x) = x(logx)-^^^^ (nOoglogs) + O ( ^ ^ f T ) ) 

with Vk G C[X] a polynomial with positive leading coefficient and 

degV^ = bk(G), 7 = T ^ f 1 - cos £?r J and M G N depends on k 

and K. 
(2) The error-term 

ад - éi I^ßk(Щxi <-* 

is subject to oscillations of positive lower logarithmic frequency and size 
x^~£, where 

aREBk(H) V y 

ancf f̂te contour of integration C goes counterclockwise around the points 
\ and 1. 

P r o o f . We briefly outline the argument. 

(1) By Proposition 2.2, Tk(G) is a finite union of k-systems. For a subset 
Q C G and a sequence S G T(G \ Q), the asymptotic behavior of the counting 
function 

Q(Q,S)(x) = \{aReH : (3(aR) eQ(Q,S) and (R:aR)<x}\ 

is studied in [15]. Combining these two results the assertion follows. 

(2) By [25; Theorem 1], it suffices to verify that the Mellin transform of the 
error-term fulfills certain conditions. (Note that in the terminology of [24] the 
result of [25; Theorem 1] can be expressed by saying, that the function is subject 
to oscillations of lower logarithmic frequency 7 and size xd~6 .) Using again the 
decomposition of fk(G), this can be done analogously as it was done in [24] 
for the functions Qk(x). Indeed, the technical results there, namely Theorem 6, 
Lemma 3 and Lemma 4, are formulated for counting functions Q(Q, S)(x), and 
thus they can be applied immediately. Note that in order to apply [25; The­
orem 6], we use that bk(G) is positive. • 
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3. Auxiliary results 

In this section we recall respectively establish some auxiliary results. 

LEMMA 3 .1 . Let G be a finite abelian group. 

(1) IfG'cG is a subgroup and k G N, then bk(G
r) < bk(G). 

(2) If G = GX®G2 and k{ G N for i G [1,2], then bk k (Gl 0 G2) > 
bfcl(GJ + bfca(G2). 

P r o o f . This is [6; Proposition 7], except for the cases |G| < 2, and \G1 \ < 2 
or \G2\ < 2. However, the statements are obvious for \G\ < 2. And, if \GX\ = 2, 
say, then (2) follows from (1), since G2 C G and bfc (Gx) = 0. D 

In the following lemma we fix a subset Q C G and compare factorization 
properties of the elements of Q,(Q,S) with those of fi((3,T) for a subsequence 
T of S. 

LEMMA 3.2. Let G be a finite abelian group, Q C G such that Q \ {0} is 
independent, 5- G T(G \ Q) and k{ G N for i G [1, 2]. If fi(Q. £.) <jL Tki (G) for 
i G [1,2], then 

m^sjtr^G). 
In particular, if S G T(G \ Q) such that Q(Q, S) ^ 0 and T is a subsequence 
of S such that Q(Q, T) <£ Tk(G) for some k G N, then ft(Q, S) (jL Tk(G). 

P r o o f . If tyQ-SJ <t Fk.(G) for i G [1,2], then there exist blocks 
B2 with I Z ^ ) ! > fc. + 1 for i G [1,2]. Since BXB2 G Vt(Q,SxS2) and 
\Z(BXB2)\ > \Z(BJ\ + |Z(B2)| - 1 > kx + k2 + 1, the result follows. The 
"in particular"-statement follows by noting that Q,(Q,S) / 0 is equivalent to 
Q(Q,S) <£ T0(G), and ^(Q.T^S) + 0 if both Q(Q,S) and Q(Q,T) are 
non-empty. D 

4. Elementary groups 

A finite abelian group G is called elementary if every element in G has 
squarefree order, i.e., G is equal to a direct sum of cyclic groups of prime order. 
Also, elementary groups are characterized by the property that every subgroup 
is a direct summand. Thus for elementary groups maximal independent sets 
are necessarily generating. This fact simplifies the investigations considerably 
and allows us to determine the value of bk(G) for elementary groups. Namely, 
we show (see Theorem 4.2) that equality holds at the lower bound (implicitly) 
obtained in [6]. 
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First we introduce some additional notation and recall basic facts. Let E = 
{ e 1 , . . . , e r } C G be an independent generating set. For each g G G there 
exist uniquely determined coordinates bi G [0,ord(e i) — l] for i G [l ,r] such 

r 
that g = — Yl be-, and if a ^ E, there exists a uniquely determined atom 

i=\ r 
Ag G A({g} U E) with vg(Ag) = 1, namely Ag = g J[ e-* (see [27] for more 

i=l 

general results of this type). For i G [1, r] let 7r2-: G —•> (e-) denote the projection, 
with respect to { e l 5 . . . , e r } , on the ith coordinate. 

PROPOSITION 4 . 1 . Let G be a finite abelian group with \G\ > 3 . Further, let 
{ e 1 ? . . . , e r } fee an independent generating set, r2 = |{i G [l ,r] : ord(e-) = 2 } | , 
and Q = {ev..., er} U {0} . / / S G .F(G \ Q) and 

| 5 | > ^ ( o r d ( e J - l ) - [ ^ - ] , 
i=l 

then there exists a subsequence T of S with \T\ < max{ord(e i) : i G [l , r]} and 
il(Q,T)^^(G). 

P r o o f . We start with the following immediate observations. For each h G 
G\Q, since / i ^ O , there exists some i G [l ,r] with 7rz(/i) ^ 0. Moreover, if 
j G [l ,r] and ord(e j) = 2, since h ^ {0,e-}, there exists some i G [l ,r] \ {j} 
with 7T.(/i) ^ 0. 

Let 5 G .F(G \ Q) with \S\ > £ (ord(e-) - l) - [-*] . By our above con-
i = l 

siderations it follows that there exists some i G [l ,r] and a subsequence T of 5 
such that irL(g) ^ 0 for each g \ T and \T\ > o rd(eJ . We consider the block 
B = U Ay^T). Clearly, B G Sl(Q,T). For each g \ T we have et | A and 

9\T 

\T\ > o rd(eJ . Thus it follows that e°rd(^) | B. Consequently, B has at least 
two different factorizations into atoms and Q(Q,T) <f_ TX(G). D 

r 

THEOREM 4.2. Let k G N and G = @ Cp. &e an elementary group with 
\G\ > 3 . T/ien <=1 

Ьfc(G) - (* - 1) m а x t ø : i Є [1, r]} + ] [ > г - 1) - [ 
r2(G) 

u>, - -; - | 

P r o o f . Without restriction assume px < • • • < pr. We set s = r 2 ( G ) . 
First we prove that the expression on the right hand side is a lower bound 

for bk(G). In case s = r , i.e., G = C£, the statement is just [6; Proposition 9]. 
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Thus assume s < r. By repeated application of Lemma 3.1.(2) we have that 

r - l 

bfc(G)>b1(C72')+ Y. bi(C
Pj)+

bdC
PJ-

The result follows since r2(G) = s by definition, b1(C : |) = [f J by [6; Proposi­
tion 9], and bk(C ) = kp — 1 for p > 3 by [6; Proposition 8]. 

We proceed to prove that the expression is an upper bound. This is done 
by induction on k. Let Q C G with \Q\ = 1 + r*(G) such that Q \ {0} is 
independent. Note that since G is elementary, Q is a generating set and the 
orders of the elements of Q are uniquely determined. 

Let k = 1 and S G .^(G \ Q) with | 5 | > E f o - 1) - [ ^ 1 s u d l t h a t 

2 = 1 I 

Vl(Q, 5) ^ 0. By Proposition 4.1 there exists a subsequence T of S with |T| < pr 

and ft(Q,T) (£ TX(G). The result follows from Lemma 3.2. Let k > 2 and 

S G T(G \ Q) with | 5 | > (k - l)pr +J2(Pi-l)- [ ^ 1 • Again by Proposi­
t i ' 

tion 4.1 there exists a subsequence T | S with |T| < pr and Q(Q,T) (£ TX(G). 
By induction hypothesis n ( ( 2 , T _ 1 5 ) <f_ Tk_x(G) and the result follows from 
Lemma 3.2. • 

5. Cyclic groups of prime power order 

We start with a technical lemma. We use the following notations. For subsets 

Al,..., As C G and n G N we set _^ A • = { _^ a • : a • G A • | , but n_4 = {na : 
2 = 1 ^ 2 = 1 J 

flGi} and not the n-fold sum of A. 

LEMMA 5.1 . Let G be a cyclic group of prime power order pm with m > 2. If 
S G T(G \ {0}) and \S\ > 2p — 1, then there exists a zero-sumfree subsequence 
T of S with \T\ < p such that a(T) epG\ {0}. 

P r o o f . Let S £ T(G\{0}) and | 5 | = 2p - 1. We assume S £T(G\pG), 
since otherwise the result follows by setting T = g with g G pG\ {0}. Further, 
let 7r: G —T G/pG denote the canonical projection. 

We note that it suffices to show that there exists a subsequence T of S such 
that a(T) epG\ {0}. Suppose T is such a sequence. Then vr(T) G T(G/pG), 
the sequence obtained by projecting each element of T , is a zero-sum sequence. 
We consider its factorization into atoms, say Ux,..., Us are sequences such that 

s 

n U{ — T and 7i(U{) is an atom for each i G [ l , s ] . It follows that U{ is zero-
i 1 
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sumfree and \U{\ < p for each i G [1,5], and since a(T) ^ 0, there exists some 
j G [1,5] such that a(Uj) / 0. 

We assert that for every R G T(G \ pG) we have |E(ii) U {0}| > 

mm{\R\ + l,pm} and |£(TT(.R)) U {0}| > min{|it | + l , p } . Let R = f\ gt and 
j 1=1 

for each j <G [l,r] we set A, = _^{°>#J- We have \AX\ = 1^(^)1 = 2. Bv 
i = i 

I. Chowla's theorem (see for example [21; Theorem 2.1]) it follows for each 
j G [2,r] that l^-l ^ m i n j I A ^ J + l , ^ } and ^ ( A , ) ! > m i n j l T r ^ J I + l , / ) } . 
thus \Aj\ > m i n { j + l , p m } and \TT(AJ)\ > m i n ^ + l , ^ } . Since S(i t) U {0} = A, 
and ~](TT(R)) U {0} = ~(Ar), the assertion follows. 

Let S = S±S2 with \SX\ = p and \S2\ = p - 1. Since | E ( 5 J U {0}| > 
p + 1 > |G/p(j?|, there exist two, possibly empty and not necessarily disjoint, 
subsequences Tx , T[ of Sx such that 7r(O(T1)) = n(a(T[)) but cr(T1) 7-= a(T[). 
Moreover, since E ^ S ^ ) ) U {0} = GjpG, there exists a subsequence T2 of 5 2 . 
such that 7i(O-(T2)) = -v(a(Tx)). We have a(T{T2),a(T[T2) G pG and 
O-(T1T2) ^ (J(T[T2), thus setting T = T{T2 or T = T;T2 the result follows. 

• 
As the following example shows, the value 2p — 1 in Lemma 5.1 is best 

possible. 

E X A M P L E 5.2. Let G be as in Lemma 5.L The sequence (—g)v~1gp~1, for some 
generating element g G G, has length 2p — 2 and no subsequence with sum in 

PG\{0}. 

The following proposition will be the main tool in the proofs of Theorems 5.4 
and 6.1. 

PROPOSITION 5.3. Let G be cyclic of prime power order pm with ra > 2 and 
S G T(G \ {0}) with \S\ >pm+ pm~x -1. For each n G [1, ra-1]. there exist 
pm-n _|_ pm-n-i _ -̂  disjoint, zero-sumfree subsequences T of S with \T\ < pn 

and a(T) G pnG \ {0} . 

P r o o f . Let S e T(G\{0}) and \S\ > pm + p m " 1 - 1. We prove the result 
by induction on n. Let n = 1. We note that 

pm + pm~l - 1 = (pm~l + pm-2 -2)p + 2p-l. 

Thus the result follows by repeated application of Lemma 5.L Let n > 2. 
By induction hypothesis we know that there exist disjoint zero-sumfree sub­
sequences T. of S with |T.| < pn~l and a(T) G pn~lG \ {0} for each 
i G [ l , p m _ n + 1 + p m _ n —l] . Let S' denote the sequence formed by the a(T-). 
The sequence S' is a sequence in pn~1G \ {0}. Since pn~1G is a cyclic group 
with p m ~ n + 1 elements and | 5 ' | = pm-n+l + p?n-n _ i w e c a n apply the result 
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for "n = 1" to the group pn~1G and obtain that for i G [l,pm~n-hpm-n-1-i\ 
there exist disjoint subsets J{ C [i^pm-n+1-\-prn-n — ij such that \J{\ < p, the 

sequence \[ a(T,) is zero-sumfree and a( Yl '(?,)) G p(pn~1G) \ {0}. We 
jeJi yjeJi J 

consider the sequences _] T, for i G [l,pm~n+pm~n~~1 — lj . Clearly, these are 
jeJi 

disjoint subsequences of S. For the length we have | __ T,\ < \Ji\p
n~1 < pn 

jeJi 
and for the sum a( Yl T,) = a( Yl ~(Ti)) € VnG \ {0}. We factorize 

KjeJi JJ KjeJi J 

Yl T, = S{B{ where B{ is a zero-sum sequence, possibly the empty se-
jeJi 
quence, and Si is zero-sumfree. It follows immediately that \S{\ < pn and 
O-(S-) G pnG \ {0} for each i G [ l , p ™ - n + p m - n - i _ ^ _ ---

Now we are ready to prove the main result of this section. 

THEOREM 5.4. Let k G N and G be a cyclic group of prime power order p171. 
Then 

bk(G) = kpm+pm~1-2. 

P r o o f . For m = 1 the result is a special case of [6; Proposition 8] (or 
Theorem 4.2), thus we assume m > 2. Let g G G be a generating ele­
ment, Q = { O , ^ - 1 ^ } and S = (-gf^^g^'1'1. We assert that 0 ^ 
0(Q, 5) C Jr

k(G). This proves the lower bound. First we determine the atoms 
A eA({Q,g,-g,pm~1g}) that satisfy vg(A) ^p™'1-! and v_g(A) < kpm-l, 
i.e., can occur in a factorization of a block in Q(Q,S). If A is an atom with 
v (.4) > 0 and v_ (A) > 0, then clearly A = (-g)g. Since there cannot 
exist a zero-sum sequence gJ(pm~1g)k with 0 < j < p m _ 1 , it follows that 0, 
(-g)pTTl (pm~1g), (—g)pm , (pm~1g)p and (—g)g are the only atoms with the 
prescribed properties. 

Since a(S) = pm~1g, it follows that ft(Q, S) is non-empty. Let £ G -1(Q, 5) 

and let B = [{ cX be a factorization into atoms. It follows that exactly 

pm l — 1 of the atoms are equal to (-g)g. Thus it suffices to consider blocks 
m m - 1 n 

in Q(Q, (—g)kp ~p ) . Let B' be such a block and __ T̂  a factorization into 
i=l 

atoms. We have that 

V{ e {0, t-gYm~\pm-lg), (-g)pm,(pm-1g)p} for each i e [ i , n ] . 

Thus the factorization is determined by giving the number v of i G [l,n] such 
that V; = (-g)p™. Clearly, z/ G [ 0 , k - l ] and therefore ^ (B 7 ) ! < k-

We prove the upper bound by induction on k. First we prove a preparatory 
assertion. Let {0} C Q C G with \Q\ = 2 and S G T(G \ Q) with | 5 | > 

31 



WOLFGANG A. SCHMID 

pm
 -L .^™- 1 — 2. Then there exists a subsequence T of S with \T\ < pm such 

that Sl(Q,T) (jtT^G). 
We have Q = {0,plg} for some generating element g £ G and / £ [0,p—1]. 

We apply Proposition 5.3 with n = m — 1 and obtain that there exist p disjoint 
subsequences T 1 ? . . . ,Tp of 5 such that |T-| < p771"1 and a(T.) £ pm'lG \ {0} 
for each i £ [ l ,p] . Let b{ £ [ l , p - l ] such that cr(T-) = —bip

m~1g and we set 

B ^ r , ^ ) ^ - 1 " 1 . 

We set T = n T ; and 5 = f] 5 - . Since B £ 0(Q, T ) , it suffices to show that 
i=l i=l 

P m-l 

\Z(B)\ > 1. We have ^ bi> p and therefore (yg ) p | B. On the other hand 
z = l 

we note that (plg)pTn \ Bi. Thus there exists a factorization of 5 in which 
the atom (plg)pTn does not occur. This implies that there exist at least two 
different factorizations of B and proves the assertion. 

The inductive argument is a simple application of our assertion and Lemma 3.2. 
For k = 1 the statement is now obvious. Let k > 2 and further let {0} C Q C G 
with \Q\ - 2 and 5 £ T(G \ Q) with \S\ > kpm + pm~l - 2 such that 
Q(Q, S) 7̂  0. By our assertion there exists a subsequence T of S with |T| < p777 

and ft(Q,T) £ ^ ( G ) . It follows that \T~1S\ > (k - l)pm + pm~l - 2 and 
tt(Q,T-lS) ^ 0. Thus by induction hypothesis Q(Q,T-lS) £ Tk_x(G) and 
by Lemma 3.2, this implies ft(Q, S) (£ Tk(G). • 

6. A further class of groups 

In the following theorem we show that a combination of Theorem 4.2 and 
Theorem 5.4, respectively the proofs, can be used to determine bk(G) for groups 
that are direct sums of an elementary and a cyclic group of prime power order 
(with the restriction that the orders of the two direct summands have to be 
co-prime). 

THEOREM 6 .1 . Let k £ N. G' be an elementary group and G = Cprn 0 G' 
with p\ \G'\. Then 

bk(G) = (k - 1) m a x ^ p ' } + bx (Cp m) + bx(G'), 

where p' = max{p £ P : p \ \G'\] . 

P r o o f . By Lemma 3.1.(2) we have 

bk(G) > m&x{bk(Cpm) + .,,(£'), b,(C7pm) + bfc(G')} 
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and thus, by Theorem 4.2 and Theorem 5.4, we have bk(G) > (k—1) max{pm ,p '} 
+ bx(C m) + bx (G

1). Since for m = 1 the group G is elementary, we can assume 
m > 2. 

Let {e0,e1,... , e r } be an independent generating set of G with maximal 
cardinality and such that (e0) = G m and ( { e 1 5 . . . , e r}) = G'. Let {0} C Q C G 
such that |Q| = 1 + r*(G) and Q \ {0} is independent. 

For each g G Q\ {0}, since ord(g) is a prime power and p \ |G' | , we have 
g = ae0 for some a G N or O G G' . Therefore we may assume, possibly after 
replacing e0 by a'e0 with a' G N co-prime to p , that Q = {ple0} U Q' with 
/ G [0 , ra - l ] and Q' C G'. We have Q' \ {0} is independent with maximal 
cardinality r*(G'). Since G' is an elementary group, it follows that (Q') = G'. 

We consider k = 1 and prove a slightly more general statement in order to 
be able to prove the general case with an inductive argument. 

Let 5 G F(G\Q) with | 5 | > bx(Gp™) + bx(G') and Q(Q,S) ^ 0 . We 

show that there exists a subsequence T of S such that Q(Q,T) (£_ ^ ( G ) and 

|T| < m a x { p m , p ' } . 
Every g G G has a unique representation g = c +h with c = 7r0(O) G C -

and h ~G'. We consider the subsequence T of 5 of those elements g \ S with 
7r0(a) = 0. Note that if |G'| = 2, then, since g <£ Q, it follows that T is the 
empty sequence. 

We distinguish two cases. 
Case 1: \T\ > bx(G'). 
Since T G .^(G' \ Q') with |T| > bx(G') , itjollows by Proposition 4.1 and 
Theorem 4.2 that there exists a subsequence T' of T with |T ; | < p ' such that 
0 ^ H ^ , ? 7 ) £ ^ i ( G ' ) . Since ^ ( G ' ) = /3(G') n ^ ( G ) and - l ^ ' , ? 7 ) c 
n(Q,T), this implies, using Lemma 3.2, that - l ( Q , T ) £ ^ ( G ) . 
Case 2: |T |<b 1 (G / ) . 
Then IT"1.?! > b ^ G ^ ) . We consider the projection R = ^ ( T - 1 . ? ) , the se­
quence in Cpm obtained by applying ~0 to each element of T~lS. We note 
that if 7r0(g) = ple0, then hg ^ 0. The argument is now almost the same as in 
the proof of Theorem 5.4. Note that in Proposition 5.3 the only condition on 
the sequence is that the elements are non-zero, thus the possible occurrence of 
ple0 in R causes no problem. We obtain that there exist disjoint subsequences 
T l 5 . . . , T p of It such that \T{\ < p™'1 and a(T-) G p m _ 1 G p m \ {0} for each 
i G [l ,p] . Let bi G [ l , p - l ] such that O"(T.) = —bip

rn~le0 and we set 

B^Ttfg)*'-1-'. 

Let Ti denote the subsequence of T~l S such that Ti is obtained by projection 
of T-. The sequence T{(p

lg)biprn is in general no zero-sum sequence. However, 
there exists a uniquely determined zero-sumfree sequence Fi G J~(Q') such that 
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-1-1 — и 

Bz = F{T\(plg)bipTn is a zero-sum sequence. We set T = JJ T\ and B = 
P _ _ «=i 

f [ B . . Clearly, we have \T\ < pm. Since H G ft(<2, T), it suffices to show that 
i=i _ 

|Z(H)| > 1. This follows since (plg)pm~l | B but (plg)pm~l \Bl. 

This proves the result for k = 1, and the result for general k follows from 
Lemma 3.2 and the usual inductive argument, as in the proofs of Theorem 4.2 
and 5.4. • 

7. Lower bounds 

In Theorem 7.1 we establish lower bounds for bk(G) valid for arbitrary fi­
nite abelian groups. Then, in Example 7.2, we compare these bounds for cyclic 
groups. 

First, we recall the definition of Davenport's constant and some results. For 
a finite abelian group G, Davenport's constant D(G) is defined as the maximal 
length of a minimal zero-sum sequence, i.e., D(G) = max{|yl| : A E A(G)} . 

Let G =" 0 C with 1 < nx \ • • • | nr. Then 
i=l 

r 

D(GO>I + _ : K - I ) (t) 
i=l 

and it is known that equality holds if r < 2 or nr is a prime powrer (i.e., G 
is a p-group) (see [29], [22], [23]). However, it is also known that equality in 
equation (f) does not hold in general. More precisely, for each r > 4 there are 
known infinitely many groups with rank r such that equality does not hold (see 
[11]) and the problem to determine D(G) in general is wide open. It is even 
open whether for groups with rank 3 equality in (f) holds or not (see [3], [1] for 
recent results). 

r 

THEOREM 7.1. Let G = 0 C ^ with prime powers p™' and \G\ > 3. 
i=l 

(1) Let k Є N and r 2 = | {i Є [1, r] : pŢ{ = 2} | . Th en 

Ъk(G) > (k - 1) m a x { p Г : i є [l,r]} + _ ( p Г +PГ'1 - 2) 
І = l 

(2) Ь 1 ( G ) > D ( ø O , r . - i ) . 
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P r o o f . 
(1) The result follows from Lemma 3.L2, Theorem 4.2 and Theorem 5.4. 
(2) Let { e 1 5 . . . , e r } C G be an independent generating set with ord(eJ = 

p7/1{ for each i G [ l , r ] . Further, let Q = {0} U {pfi~lei : i G [l , r]} and 

G' = (Q). We note that \Q\ = 1 + r*(G) and G/G' = 0 G m,- i . 
2 = 1 Vi 

First we show that there exists a sequence 5* G F(G\Q) with | 5 | = D(G/G') 
such that O-(5) G G7 but O-(T) g G7 for every proper 1 ^ T \ S. If D(G/G7) = 1, 
we set S = g for some g € G\Q. Thus we assume D(G/G') > 2. By definition 

of D(G/G') there exists a minimal zero-sum sequence S = I I #2 ^ T(G/G') 
_ _ *=1 

with | 5 | = D(G/G'). Let 5 G ^ ( G ) such that 5 is the projection of 5 , i.e., 
/ _ 

s = I I 9i s u c h t h a t 9i + Gf = gi for each i G [1,/]. Since a(S) = 0 G G/G ' , 
i-i _ 

wre have a(S) G G7, and since 5 is a minimal zero-sum sequence, we have 
a(T) £ G' for each proper 1 / T \ S. Since D(G/G7) > 2, it follows that 
Sef(G\G')cf(G\Q). 

It suffices to show that 0 / -1(Q, 5) C ^ ( G ) . The set Q\{0} is independent 
and generates G', thus for every h € G' there exists a uniquely determined 
zero-sumfree sequence F G ^*(Q) with O~(F) = h (for /i = 0 this is the empty 
sequence). Since a(S) G G7, it is clear that Q(Q,S) ^ 0. Let B G fi(Q,S) and 

n 

B = Y\ Ui be Si factorization into atoms. Without restriction let U0 £ A(Q). 

Thus V 0 = S'F' with 1 ^ S7 | S and F 7 G J"(Q). It follows that a(S') G G7 and 
therefore S' = S. Moreover, F' is zero-sumfree and thus uniquely determined. 
Since U0

lB G /5(Q) and 5(Q) is factorial, the atoms Ux,...,Un are uniquely 
determined as well and |Z(£*)| = 1. • 

The following example shows that there exist groups for which the bound in 
(1) yields better estimates than the one in (2), and vice versa. 

r 

E X A M P L E 7.2. Let n = Yl PT1 w l t n mz; ^ ^ an<^ different primes p{. First we 
2 = 1 

note that if p7/li = 2 for some i G [1, r], then the lower bounds for Cn are equal 
to those for C* . Thus we assume that p™1 7- 2 for i G [ l , r ] . 

By Proposition 7.1.(1) we get 
r 

b 1 ( C J > ^ ( p m i + p m i - 1 - 2 ) , 
2 = 1 

but (2) yields 

\{cn) > D( e cp?i-i) = D(c f t ) = n p r - . 
i = l * 2 = 1 
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Thus depending on n either the former or the latter estimate is better. 
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