Mathematic Slovaca

Anton Škerlík
 Oscillation theorems for third order nonlinear differential equations

Mathematica Slovaca, Vol. 42 (1992), No. 4, 471--484

Persistent URL: http://dml.cz/dmlcz/129770

Terms of use:

(C) Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

OSCILLATION THEOREMS FOR THIRD ORDER NONLINEAR DIFFERENTIAL EQUATIONS

ANTON ŠKERLÍK

ABSTRACT. The oscillation criterion for the equation

$$
\left(r_{2}(t)\left(r_{1}(t) y^{\prime}\right)^{\prime}\right)^{\prime}+p(t) y^{\prime}+q(t) f(y)=0
$$

with nonnegative coefficients p and q is established. This result generalizes some oscillation criteria for third order nonlinear differential equations.

1. Introduction

This paper is concerned with the oscillatory behaviour of solutions of a third order nonlinear differential equation of the form

$$
\begin{equation*}
\left(r_{2}(t)\left(r_{1}(t) y^{\prime}\right)^{\prime}\right)^{\prime}+p(t) y^{\prime}+q(t) f(y)=0 \tag{QF}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}=(-\infty, \infty), r_{2}, r_{1}, p, q: I \rightarrow[0, \infty), I=[a, \infty) \subset \mathbb{R}$ are continuous, $r_{2}>0, r_{1}>0, q(t)$ not identically zero on any ray of the form $\left[t^{*}, \infty\right)$ for some $t^{*} \geq a>0$ and $x f(x)>0$ for $x \neq 0$.

We restrict our attention to those solutions of equation (QF) which exist on I and satisfy the condition

$$
\sup \{|y(t)| ; T \leq t<\infty\}>0 \quad \text { for any } \quad T \in I
$$

Such a solution is called oscillatory if it has arbitrarily large zeros, otherwise it is called nonoscillatory.

In paper [4] the oscillation theorem for a linear differential equation has been presented

$$
\begin{equation*}
y^{\prime \prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{L}
\end{equation*}
$$

[^0]
ANTON ŠKERLík

Theorem A. (Theorem 3.1 in [4]) If $p \geq 0, q \geq 0,2 q-p^{\prime} \geq 0$ and not identically zero in any interval and there exists a number $m<\frac{1}{2}$ such that the second order differential equation

$$
z^{\prime \prime}+[p(t)+m t q(t)] z=0
$$

is oscillatory, then (L) has oscillatory solutions. In fact, if y is any nonzero solution of (L) with

$$
0 \geq F[y(c)]=\left[2 y(t) y^{\prime \prime}(t)-{y^{\prime}}^{2}(t)+p(t) y^{2}(t)\right]_{t=c}
$$

for some $c \geq a$, then y is oscillatory.
The partial generalization of this theorem on third order nonlinear differential equations was presented in $[3,11,14,15,16,17]$ and others.
L. Erbe generalized Theorem A on the equation

$$
\begin{equation*}
y^{\prime \prime \prime}+r(t) y^{\prime \prime}+p(t) y^{\prime}+q(t) y^{\alpha}=0 \tag{A}
\end{equation*}
$$

where $\alpha>0$ is the quotient of odd positive integers and $r: I \rightarrow[0, \infty)$ is continuous.

Theorem B. (Theorem 4.9 in [2]) Let $r \geq 0, p \geq 0, q>0$ and $r p+p^{\prime} \leq 0$. Let y be a nontrivial solution of (A) with $F[y(c)] \leq 0$ for some $c>a$, where

$$
F[y(t)]=R(t)\left[2 y^{\prime \prime}(t) y(t)-y^{\prime 2}(t)+p(t) y^{2}(t)\right]
$$

$R(t)=\exp \left(\int_{c}^{t} r(s) \mathrm{d} s\right)$. Assume further that the equation

$$
\begin{equation*}
\left(R(t) z^{\prime}\right)^{\prime}+R(t)\left[p(t) z+\lambda^{\alpha} t^{\alpha} q(t) z^{\alpha}\right]=0 \tag{B}
\end{equation*}
$$

is oscillatory (that is, all solutions of (B) are oscillatory) for some $0<\lambda<\frac{1}{2}$. Then y is oscillatory.

It is therefore natural to ask whether the above results can be extended on more general differential equations than the equations (L) and (A).

Such a extension is possible for equations

$$
\left(r_{2}(t)\left(r_{1}(t) y^{\prime}\right)^{\prime}\right)^{\prime}+p(t) y^{\prime}+q(t) y=0
$$

and

$$
\left(r_{2}(t)\left(r_{1}(t) y^{\prime}\right)^{\prime}\right)^{\prime}+p(t) y^{\prime}+q(t) y^{\alpha}=0
$$

where $r_{2} \equiv r_{1}$, since we make use a change of variable to transform these equations into equations of the form (L) or (A), respectively, (see [6], also see [8]). In general, for $r_{2} \neq r_{1}$, such a change of variable does not exist. The purpose of this paper is to answer the question above in the affirmative, also see a similar open question of Philos and Sfic as [7, Remark 7]. The methods used patterns after those of Lazer [4], Erbe [2] and Waltman [17].

OSCILLATION THEOREMS ...

2. Basic lemma

For the sake of brevity, we denote

$$
\begin{align*}
& L_{0} y(t)=y(t), \quad L_{i} y(t)=r_{i}(t)\left(L_{i-1} y(t)\right)^{\prime}, \quad i=1,2 \tag{1}\\
& L_{3} y(t)=\left(L_{2} y(t)\right)^{\prime} \quad \text { for } \quad t \in I
\end{align*}
$$

So the equation (QF) can be written as

$$
L_{3} y+p(t) y^{\prime}+q(t) f(y)=0
$$

Remark 1. If y is solution of (QF), then $z=-y$ is a solution of the equation

$$
L_{3} z+p(t) z^{\prime}+q(t) f^{*}(z)=0
$$

where $f^{*}(z)=-f(-z)$ and $z f^{*}(z)>0$ for $z \neq 0$.
Definition 1. Let y be a solution of (QF). We say that the solution y has property V_{2} on $[T, \infty), T \geq a$ if and only if

$$
\begin{equation*}
L_{0} y(t) L_{k} y(t)>0, \quad k=0,1,2 ; \quad L_{0} y(t) L_{3} y(t) \leq 0 \tag{2}
\end{equation*}
$$

for every $t \in[T, \infty)$.
Define the functions

$$
\begin{equation*}
R_{2}(t, T)=\int_{T}^{t} \frac{\mathrm{~d} s}{r_{2}(s)}, \quad R_{12}(t, T)=\int_{T}^{t} \frac{R_{2}(s, T)}{r_{1}(s)} \mathrm{d} s \tag{3}
\end{equation*}
$$

$a \leq T \leq t<\infty$.
We assume that

$$
\begin{equation*}
R_{2}(t, a) \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty \tag{4}
\end{equation*}
$$

LEMMA 1. Let the assumption (4) hold and y be a non-oscillatory solution of (QF) such that $y(t) L_{1} y(t) \geq 0$ for every $t \geq T \geq a$. Then y has property V_{2} for all large t.

Proof. Suppose without loss of generality that $y(t)>0, L_{1} y(t) \geq 0$, $t \geq T$ (see Remark 1). From the equation (QF) we see that $L_{3} y(t) \leq 0, t \geq T$, and $L_{3} y$ not identically zero on any ray on the form $\left[t^{*}, \infty\right)$ for some $t^{*} \geq T$. So either y has property V_{2} for large t or there exists a point $t_{0} \geq T$ such that $L_{2} y\left(t_{0}\right)=A<0$. Hence $\left(L_{1} y(t)\right)^{\prime} \leq A / r_{2}(t), t \geq t_{0}$, (see (1)) and by integration of this inequality we obtain $L_{1} y(t)<0$ for large t, a contradiction.

ANTON ŠKERLíK

Lemma 2. Let (4) hold. Suppose that $r_{2} / r_{1}, p \in C^{1}(I, \mathbb{R})$ and

$$
\begin{equation*}
p^{\prime}(t) \leq 0, \quad\left[r_{2} / r_{1}(t)\right]^{\prime} \geq 0 \quad \text { for } \quad t \geq a \tag{5}
\end{equation*}
$$

Let y be a solution of (QF) and assume further that there exists $t_{0} \in I$ such that $F\left[y\left(t_{0}\right)\right] \leq 0$, where

$$
\begin{equation*}
\left.F[y(t)]=2 y(t) L_{2} y(t)-\frac{r_{2}(t)}{r_{1}(t)}\left(L_{1} y(t)\right)^{2}+p(t) y^{2}(t)\right) \tag{6}
\end{equation*}
$$

Then either y is oscillatory or y has property V_{2} for every large t.
Proof. Let y be a nonoscillatory solution of (QF) satisfying the condition $F\left[y\left(t_{0}\right)\right] \leq 0$ for some $t_{0} \geq a$. Suppose without loss of generality that $y(t)>0$ for every $t \geq T>t_{0}$. Then a calculation shows that

$$
\begin{gathered}
{[F[y(t)]]^{\prime}=-\left[r_{2}(t) / r_{1}(t)\right]^{\prime}\left(L_{1} y(t)\right)^{2}+p^{\prime}(t) y^{2}(t)-2 q(t) f(y(t)) y(t) \leq 0} \\
t \geq T
\end{gathered}
$$

So there exists a point $t_{0}^{*} \geq T$ such that $F[y(t)]<0$ for every $t \geq t_{0}^{*}$ and $\lim _{t \rightarrow \infty} F[y(t)]=F_{0}<0$ exists (finite or infinite). From (6) we obtain

$$
\begin{align*}
2 r_{2}(t) \frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{L_{1} y(t)}{y(t)}\right] & =\frac{2}{y^{2}(t)}\left[y(t) L_{2} y(t)-\frac{r_{2}(t)}{r_{1}(t)}\left(L_{1} y(t)\right)^{2}\right] \\
& \leq\left[2 y(t) L_{2}(t)-\frac{r_{2}(t)}{r_{1}(t)}\left(L_{1} y(t)\right)^{2}\right] y^{-2}(t)<-p(t) \leq 0 \tag{7}
\end{align*}
$$

$t \geq t_{0}^{*}$. Hence the function $L_{1} y / y$ is decreasing on $\left[t_{0}^{*}, \infty\right)$. This means that either $L_{1} y(t)>0, t \geq t_{0}^{*}$, and by Lemma $1 y$ has property V_{2} or there exists some $T_{1} \geq t_{0}^{*}$ such that $L_{1} y(t)<0$ for $t \geq T_{1}$. We shall prove that the case $y(t)>0, L_{1} y(t)<0, t \geq T_{1}$, is contradictory to assumptions of Lemma 2.

Let $y(t)>0, L_{1} y(t)<0, t \geq T_{1}$. From (4) and (5) we have $r_{2}(t) \geq A r_{1}(t)$, $t \geq a$, where $A=r_{2}(a) / r_{1}(a)>0$ and so

$$
\begin{gather*}
\lim _{t \rightarrow \infty} R_{1}(t, a)=\lim _{t \rightarrow \infty} \int_{a}^{t} \frac{\mathrm{~d} s}{r_{1}(s)}=\infty, \tag{8}\\
r_{2}(t) y^{\prime}(t) \leq A L_{1} y(t)<0, \quad t \geq T_{1}
\end{gather*}
$$

We consider the function $L_{2} y$. The case $L_{2} y(t) \leq 0$ cannot hold for all large t, say $t \geq T_{2} \geq T_{1}$, since by integration of inequality $y^{\prime}(t) \leq L_{1} y\left(T_{2}\right) / r_{1}(t)$, $t \geq T_{2}$ we obtain from (8) $y(t)<0$ for all large t, a contradiction.

Let $y(t)>0, L_{1} y(t)<0, L_{2} y(t) \geq 0$ for all large t, say $t \geq T_{3} \geq T_{1}$. We assert that $\lim _{t \rightarrow \infty} L_{1} y(t)=\underset{t \rightarrow \infty}{\limsup } r_{2}(t) y^{\prime}(t)=0$. (If $\limsup _{t \rightarrow \infty} r_{2}(t) y^{\prime}(t)<0$, i.e. there exist numbers $B<0$ and $T_{4} \geq T_{3}$ such that $r_{2}(t) y^{\prime}(t) \leq B, t \geq T_{4}$, then integrating the inequality $y^{\prime}(t) \leq B / r_{2}(t), t \geq T_{4}$, yields a contradiction for all large t). Otherwise, a calculation shows that

$$
\begin{array}{r}
0>F_{0}=\lim _{t \rightarrow \infty} F[y(t)]=\limsup _{t \rightarrow \infty}\left[2 y(t) L_{2} y(t)-r_{2}(t) y^{\prime}(t) L_{1} y(t)+p(t) y^{2}(t)\right] \\
=\limsup _{t \rightarrow \infty}\left[2 y(t) L_{2}(t)+p(t) y^{2}(t)\right] \geq 0
\end{array}
$$

a contradiction.
Finally, $y(t)>0, L_{1} y(t)<0, t \geq T_{1}$ and $L_{2} y$ changes the sign for arbitrarily large t. Denote

$$
G(t)=\left(r_{2}(t) y^{\prime}(t)\right)^{\prime}=\left(\frac{r_{2}(t)}{r_{1}(t)}\right)^{\prime} L_{1} y(t)+\frac{L_{2} y^{\prime}(t)}{r_{1}(t)}, \quad t \geq T_{1}
$$

The function G cannot be nonpositive on $\left[T_{2}, \infty\right)$ for some $T_{2} \geq T_{1}$, since there is $r_{2}(t) y^{\prime}(t) \leq r_{2}\left(T_{2}\right) y^{\prime}\left(T_{2}\right)<0, t \geq T_{2}$, and from (4) we obtain a contradiction with positivity of y for all large t. Let G change the sign. Hence there exists an unboundary sequence of zeros of the function G. Choose a sequence $\left(t_{n}\right)$, $n=1,2, \ldots$ from the set of zeros of G (i.e. $\left.G\left(t_{n}\right)=0\right)$ such that $a_{1} \leq a_{2} \leq$ $\cdots \leq a_{n} \leq \ldots$, where $a_{n}=r_{2}\left(t_{n}\right) y^{\prime}\left(t_{n}\right), n=1,2, \ldots$ are nondecreasing relative maxima of $r_{2} y^{\prime}$. It is clear that $\lim _{n \rightarrow \infty} a_{n}=0$. (If $\lim _{n \rightarrow \infty} a_{n}=a_{0}<0$, i.e. $r_{2}(t) y^{\prime}(t) \leq a_{0}$ for all $t \geq t_{1}$, then we obtain again a contradiction.) From (8) it follows that $\lim _{n \rightarrow \infty} L_{1} y\left(t_{n}\right)=0$. We see that $L_{2} y\left(t_{n}\right) \geq 0$ since $G\left(t_{n}\right)=\left[\left(r_{2}(t) / r_{1}(t)\right)^{\prime} L_{1} y(t)+L_{2} y(t) / r_{1}(t)\right]_{t=t_{n}}=0$. So a calculation shows that

$$
\begin{aligned}
0>F_{0} & =\lim _{t \rightarrow \infty} F[y(t)]=\lim _{n \rightarrow \infty} F\left[y\left(t_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[2 y\left(t_{n}\right) L_{2} y\left(t_{n}\right)-r_{2}\left(t_{n}\right) y^{\prime}\left(t_{n}\right) L_{1} y\left(t_{n}\right)+p\left(t_{n}\right) y^{2}\left(t_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[2 y\left(t_{n}\right) L_{2} y\left(t_{n}\right)+p\left(t_{n}\right) y^{2}\left(t_{n}\right)\right] \geq 0
\end{aligned}
$$

a contradiction, too. This completes the proof of Lemma 2.

ANTON SKKERLIK

DEFINITION 2. The equation (QF) is called weak superlinear if the function f has the property:
for any $u \neq 0$ there exists a number $m>0$ such that $u f(u) \geq m u^{2}$.
Let us note that any linear equation is weak superlinear with $m=1$.
Remark 2. If the equation (QF) is weak superlinear (linear, $m=1$), then the condition $p^{\prime} \leq 0$ in (5) of the Lemma 2 may be replaced by a weaker condition $2 m q(t)-p^{\prime}(t) \geq 0, t \in I$ and $2 m q(t)-p^{\prime}(t)$ not identically zero on any ray of the form $\left[t^{*}, \infty\right]$ for some $t^{*} \geq a>0$.

Remark 3. From Lemma 2 it follows that any nonoscillatory solution y of (QF) with $F\left[y\left(t_{0}\right)\right] \leq 0$ for some $t_{0} \in I$ is unbounded.

Example 1. Consider the differential equation

$$
\begin{gather*}
\left(t^{\frac{1}{2}}\left(t^{-\frac{1}{2}} y^{\prime}\right)^{\prime}\right)^{\prime}+\left(1 / 36 t^{2}\right) y^{\prime}+(5 / 108) t^{-(5 \alpha+4) / 3}|y|^{\alpha} \operatorname{sgn} y=0 \tag{9}\\
\alpha>0 \quad \text { and } \quad t>0
\end{gather*}
$$

The conditions of Lemma 2 are satisfied and the equation has the unbounded nonoscillatory solution $y(t)=t^{5 / 3}$.

3. Conditions of nonexistence of property V_{2}

We assume that the function \dot{f} satisfies conditions:
f is nondecreasing,
there exists a constant $C>0$ such that

$$
\begin{equation*}
|f(u v)| \geq C f(u)|f(v)| \quad \text { for } \quad u \geq 0, \quad v \in \mathbb{R} \tag{11}
\end{equation*}
$$

Suppose further that

$$
\begin{equation*}
R_{12}(t, a) \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty \tag{12}
\end{equation*}
$$

Let conditions (4), (10)-(12) hold and y be a nonoscillatory solution of $(Q F)$, say $y(t)>0$, with property V_{2} for $t \geq c \geq a$. By the third Kiguradze lemma (see Lemma 2 in [13])

$$
y(t) \geq \frac{R_{12}(t, c)}{R_{2}(t, c)} L_{1} y(t) \quad \text { for every } \quad t \geq t_{0}>c
$$

holds. Thus, for every $\lambda \in(0,1)$ there exists a number $T, T=t_{\lambda} \geq t_{0}$ such that

$$
\frac{R_{12}(t, c)}{R_{2}(t, c)} \geq \lambda \frac{R_{12}(t, a)}{R_{2}(t, a)}, \quad t \geq T
$$

since $\lim _{t \rightarrow \infty} \frac{R_{12}(t, c)}{R_{2}(t, c)} \frac{R_{2}(t, a)}{R_{12}(t, a)}=1$. Using conditions (10) and (11) we obtain

$$
f(y(t)) \geq f\left[\lambda \frac{R_{12}(t, a)}{R_{2}(t, a)} L_{1} y(t)\right] \geq C f(\lambda) f\left[\frac{R_{12}(t, a)}{R_{2}(t, a)}\right] f\left(L_{1} y(t)\right)
$$

for some $C>0$ and every $t \geq T$. Substituting $f(y)$ by the estimate above we obtain

$$
L_{3} y(t)+\frac{p(t)}{r_{1}(t)} L_{1} y(t)+C f(\lambda) f\left[\frac{R_{12}(t, a)}{R_{2}(t, a)}\right] q(t) f\left(L_{1} y(t)\right) \leq 0
$$

and so

$$
\begin{gather*}
L_{1} y(t)\left\{L_{3} y(t)+\frac{p(t)}{r_{1}(t)} L_{1} y(t)+C f(\lambda) f\left[\frac{R_{12}(t, a)}{R_{2}(t, a)}\right] q(t) f\left(L_{1} y(t)\right)\right\} \leq 0 \tag{13}\\
\text { for every } t \geq T
\end{gather*}
$$

It is clear that the inequality (13) for a negative solution y of (QF) with property V_{2} holds, too.

Let conditions (4) and (12) hold and the equation (QF) be weak superlinear. Let y be a nonoscillatory solution of (QF). Similarly as above we derive the inequality

$$
\begin{equation*}
L_{1} y(t)\left\{L_{3} y(t)+\left[\frac{p(t)}{r_{1}(t)}+m \lambda \frac{R_{12}(t, a)}{R_{2}(t, a)} q(t)\right] L_{1} y(t)\right\} \leq 0 \tag{13'}
\end{equation*}
$$

for every $t \geq T>a$.
Theorem 1. Let conditions (4) and (10)-(12) hold and assume that the equation

$$
\begin{equation*}
\left(r_{2}(t) z^{\prime}\right)^{\prime}+\frac{p(t)}{r_{1}(t)} z+C f(\lambda) f\left[\frac{R_{12}(t, a)}{R_{2}(t, a)}\right] q(t) f(z)=0 \tag{14}
\end{equation*}
$$

is oscillatory (that is, all solutions of (14) are oscillatory) for some $0<\lambda<1$ and $C>0$. Then no nonoscillatory solution y of (QF) has property V_{2} for all large t.

Proof. Let y be a nonoscillatory solution of (QF) with property V_{2} for all large t. Thus inequality (13) holds for all large t. By Theorem 1 in [10] the

ANTON ŠKERLÍK

equation (14) is oscillatory if and only if the inequality

$$
\begin{equation*}
z\left\{\left(r_{2}(t) z^{\prime}\right)^{\prime}+\frac{p(t)}{r_{1}(t)} z+C f(\lambda) f\left[\frac{R_{12}(t, a)}{R_{2}(t, a)}\right] q(t) f(z)\right\} \leq 0 \tag{15}
\end{equation*}
$$

is oscillatory, too. This is a contradiction, since $z=L_{1} y$ is a nonoscillatory solution of (15) for large t.

Remark 4. Under the hypotheses of Theorem 1 it is clear by the generalized Sturm comparison theorem (see Theorem 2 in [10]) that any criterion which guarantees that

$$
\begin{equation*}
\left(r_{2}(t) z^{\prime}\right)^{\prime}+\frac{p(t)}{r_{1}(t)} z=0 \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(r_{2}(t) z^{\prime}\right)^{\prime}+C f(\lambda) f\left[\frac{R_{12}(t, a)}{R_{2}(t, a)}\right] q(t) f(z)=0 \tag{17}
\end{equation*}
$$

for some $0<\lambda<1$ and $C>0$ is oscillatory, also guarantees that (14) is oscillatory.

Oscillation criteria for (16) may be found in [1], [5], and [12], for example.
Example 2. The equation (9) from Example 1 has the solution $y(t)=t^{5 / 3}$ with property V_{2}. Both, the equation

$$
\begin{equation*}
\left(t^{1 / 2} z^{\prime}\right)^{\prime}+(1 / 36) t^{-3 / 2} z=0 \tag{16'}
\end{equation*}
$$

and the equation

$$
\begin{gather*}
\left(t^{1 / 2} z^{\prime}\right)^{\prime}+\frac{5}{108}\left(\frac{\lambda}{6}\right)^{\alpha}\left[3 t^{1 / 2}-a^{1 / 2} t-a t^{1 / 2}-a^{3 / 2}\right]^{\alpha} t^{-(5 \alpha+4) / 3}|z|^{\alpha} \operatorname{sgn} z=0 \\
t \geq a \tag{17’}
\end{gather*}
$$

are not oscillatory. The equation (16') is nonoscillatory since its general solution is $z(t)=t^{1 / 4}\left(C_{1} t^{\sqrt{5} / 12}+C_{2} t^{-\sqrt{5} / 12}\right)$. The equation (17') is not oscillatory (that is, there exists at least one nonoscillatory solution; see $\S 4$ in [18]) by the generalized Atkinson theorem (Theorem 4.1 in [18], $\alpha>1$) or generalized Belohorec theorem (Theorem 4.7 in [18], $0<\alpha<1$), respectively, since
$\int^{\infty} 2\left(t^{1 / 2}-a^{1 / 2}\right)\left[3 t^{3 / 2}-a^{1 / 2} t-a t^{1 / 2}-a^{3 / 2}\right]^{\alpha} t^{-(5 \alpha+4) / 3} \mathrm{~d} t<\infty \quad$ for $\quad \alpha>1$
or
$\int^{\infty} 2\left(t^{\frac{1}{2}}-a^{\frac{1}{2}}\right)^{\alpha}\left[3 t^{3 / 2}-a^{1 / 2} t-a t^{1 / 2}-a^{3 / 2}\right]^{\alpha} t^{-(5 \alpha+4) / 3} \mathrm{~d} t<\infty \quad$ for $\quad 0<\alpha<1$.

DEFINITION 3. The equation (QF) is called superlinear if the function for every $\varepsilon>0$ satisfies

$$
\begin{equation*}
\int_{ \pm \varepsilon}^{ \pm \infty} \frac{\mathrm{d} u}{f(u)}<\infty \tag{18}
\end{equation*}
$$

and (QF) is called sublinear if f satisfies

$$
\begin{equation*}
\int_{0}^{ \pm \varepsilon} \frac{\mathrm{d} u}{f(u)}<\infty \quad \text { for every } \quad \varepsilon>0 \tag{19}
\end{equation*}
$$

Let us give examples of the functions which satisfy the conditions (10), (11), and (18) or (19).

Example 3. The functions f_{1} and $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$, where $f_{1}(u)=|u|^{\alpha} \operatorname{sgn} u$, $\alpha>0$ and $f_{2}(u)=\frac{|u|^{2 \alpha} \operatorname{sgn} u}{1+|u|^{\alpha}}, \alpha>0$ are continuous on \mathbb{R}, satisfy $u f(u)>0$ for $u \neq 0$ and conditions (10), (11). Further, the function f_{1} satisfies (18) for $\alpha>1$ and (19) for $0<\alpha<1$. The function f_{2} satisfies (18) for $\alpha>1$.

COROLLARY 1. Let conditions (4) and (10)-(12) hold and assume that

$$
\begin{equation*}
\int^{\infty} f\left(R_{2}(t, a)\right) f\left[\frac{R_{12}(t, a)}{R(t, a)}\right] q(t) \mathrm{d} t=\infty \tag{20}
\end{equation*}
$$

if (QF) is sublinear
or

$$
\begin{equation*}
\int^{\infty} R_{2}(t, a) f\left[\frac{R_{12}(t, a)}{R_{2}(t, a)}\right] q(t) \mathrm{d} t=\infty \tag{21}
\end{equation*}
$$

if (QF) is superlinear.
Then no nonoscillatory solution y of (QF) has property V_{2} for all large t.
Proof. Condition (20) is sufficient for oscillation of all solutions of (17) in the sublinear case (that is, f satisfies (19)), see Theorem 1.8 in [9]. Likewise, condition (21) is sufficient for oscillation of (17) in the superlinear case (see Theorem 4 in [10]). Therefore, the Corollary 1 follows by Remark 4 and Theorem 1.

ANTON SKERLÍK

TheOrem 2. Let conditions (4), (10)-(12) hold and the equation (QF) be sublinear. If

$$
\begin{equation*}
\int^{\infty} f\left(R_{12}(t, a)\right) q(t) \mathrm{d} t=\infty \tag{22}
\end{equation*}
$$

holds, then no nonoscillatory solution y of (QF) has property V_{2} for all large t.

Proof. Let y be a positive solution of (QF) with property V_{2} on $[c, \infty)$, $c \geq a$. By the third generalized Kiguradze lemma (see Lemma 2 in [13])

$$
y(t) \geq R_{12}(t, c) L_{2} y(t) \quad \text { for every } \quad t \geq t_{0}>c
$$

holds. Thus, for every $\lambda \in(0,1)$ there exists a number $T=t_{\lambda}, T \geq t_{0}$ such that

$$
R_{12}(t, c) \geq \lambda R_{12}(t, a), \quad t \geq T
$$

since $\lim _{t \rightarrow \infty} R_{12}(t, c)\left(R_{12}(t, a)\right)^{-1}=1$. Using conditions (10) and (11) we obtain

$$
f(y(t)) \geq f\left[\lambda R_{12}(t, a) L_{2} y(t)\right] \geq C f(\lambda) f\left(R_{12}(t, a)\right) f\left(L_{2} y(t)\right)
$$

for some $C>0$ and every $t \geq T$. Dividing (QF) by $f\left(L_{2} y(t)\right)$ and integrating from T to $t \geq T$, we get

$$
\int_{T}^{t} \frac{L_{3} y(s)}{f\left(L_{2} \dot{y}(s)\right)} \mathrm{d} s \leq-C f(\lambda) \int_{T}^{t} f\left(R_{12}(s, a)\right) q(s) \mathrm{d} s
$$

Since equation (QF) is sublinear, we have

$$
\int_{T}^{t} \frac{L_{3} y(s)}{f\left(L_{2} y(s)\right)} \mathrm{d} s=-\int_{L_{2} y(t)}^{L_{2} y(T)} \frac{\mathrm{d} u}{f(u)} \geq-\int_{0}^{L_{2} y(T)} \frac{\mathrm{d} u}{f(u)}>-\infty
$$

contradicting the condition (22). This completes the proof of the theorem.
Remark 5. The condition (22) is weaker than the condition (20) because $f\left(R_{12}\right)=f\left(R_{2} \frac{R_{12}}{R_{2}}\right) \geq C f\left(R_{2}\right) f\left(\frac{R_{12}}{R_{2}}\right)$.

OSCILLATION THEOREMS ...

Theorem 3. Let conditions (4) and (12) hold and the equation (QF) be weak superlinear. If the equation

$$
\begin{equation*}
\left(r_{2}(t) z^{\prime}\right)^{\prime}+\left[\frac{p(t)}{r_{1}(t)}+m \lambda \frac{R_{12}(t, a)}{R_{2}(t, a)} q(t)\right] z=0 \tag{23}
\end{equation*}
$$

for some $m>0,0<\lambda<1$ is oscillatory, then no nonoscillatory solution y of (QF) has property V_{2} for all large t.

The proof is similar to that of Theorem 1 (see (13^{\prime})) and hence is omitted.
Remark 6. Let conditions (4) and (12) hold. By the generalized Kneser theorem (Theorem 2.3 in [5]) or by the criterion Moore-Ráb (see Theorem 11 or Theorem 12 in [1] with $\left.u=\left(R_{2}\right)^{\delta}\right)$, respectively, the equation (23) is oscillatory if the condition

$$
\liminf _{t \rightarrow \infty} r_{2}(t) R_{2}^{2}(t, a)\left[\frac{p(t)}{r_{1}(t)}+m \lambda \frac{R_{12}(t, a)}{R_{2}(t, a)} q(t)\right]>\frac{1}{4}
$$

or

$$
\int^{\infty}\left(R_{2}(t, a)\right)^{\delta}\left[\frac{p(t)}{r_{1}(t)}+m \lambda \frac{R_{12}(t, a)}{R_{2}(t, a)} q(t)\right] \mathrm{d} t=\infty, \quad 0 \leq \delta<1
$$

holds.
Theorem 4. Let the function f satisfy the condition

$$
\begin{equation*}
\liminf _{|u| \rightarrow \infty}|f(u)|>0 \tag{24}
\end{equation*}
$$

If

$$
\begin{equation*}
\int^{\infty} q(t) \mathrm{d} t=\infty \tag{25}
\end{equation*}
$$

then no nonoscillatory solution y of (QF) has property V_{2} for large t.
Proof. Let y be a positive solution of (QF) with property V_{2} on $[T, \infty)$, $T \geq a$. Since $y L_{1} y>0$ on $[T, \infty), \lim _{t \rightarrow \infty} y(t)$ exists. If $\lim _{t \rightarrow \infty} y(t)=\infty$, then from (24) and (25) we obtain

$$
\begin{equation*}
\int^{\infty} q(t) f(y(t)) \mathrm{d} t=\infty \tag{26}
\end{equation*}
$$

If $\lim _{t \rightarrow \infty} y(t)=K<\infty$, then from (25) and the continuity $f(26)$ holds, too. Integrating the inequality $L_{3} y+q(t) f(y) \leq 0$ from T to $t \geq T$ and using (26) we get $L_{2} y(t)<0$ for all sufficiently large t, a contradiction. This completes the proof of the theorem.

ANTON SKKERLÍK

4. Main result

The last theorem is an oscillation criterion for (QF). It generalizes not only Theorem A and Theorem B but some partial generalizations of Theorem A for third order nonlinear differential equations, too (see [11, 14, 15, 16, 17]). See also Corollary 3.4 in [3].

We recall that

$$
\begin{gathered}
R_{2}(t, T)=\int_{T}^{t} \frac{\mathrm{~d} s}{r_{2}(s)}, \quad t \geq T \geq a \\
L_{1} y(t)=r_{1}(t) y^{\prime}(t), \quad L_{2} y(t)=r_{2}(t)\left[L_{1} y(t)\right]^{\prime}, \quad(\text { see }(1))
\end{gathered}
$$

and

$$
F[y(t)]=2 y(t) L_{2} y(t)-\frac{r_{2}(t)}{r_{1}(t)}\left[L_{1} y(t)\right]^{2}+p(t) y^{2}(t)
$$

Assume further that $r_{2} / r_{1}, p \in C^{1}(I, \mathbb{R})$.
Theorem 5. Let $p \geq 0, q \geq 0,\left[r_{2} / r_{1}\right]^{\prime} \geq 0, p^{\prime} \leq 0$ on $I, R_{2}(t, a) \rightarrow \infty$ as $t \rightarrow \infty$. In addition assume that the hypotheses of any theorem $1-4$ are fulfilled. Let y be a solution of (QF) which exists on the interval $[T, \infty), T \geq a$. Then y is oscillatory if and only if there exist a point $t_{0} \geq T$ such that $F\left[y\left(t_{0}\right)\right] \leq 0$.

Proof. If $F[y(t)]>0$ for all $t \geq T$, it is clear that y cannot have any zeros for $t \geq T$. Hence y is nonoscillatory.

Now suppose that $F\left[y\left(t_{0}\right)\right] \leq 0$ for some $t_{0} \geq T$. By the Lemma 2 either y is oscillatory or y is nonoscillatory with the property V_{2} for all large t (see (2)). On the other hand applying some of Theorems 1-4 we get that a nonoscillatory solution y has not property V_{2}. Consequently y is oscillatory. This completes the proof of theorem.

Remark 7. Any solution y of (QF) which has a zero (that is, $y\left(t^{*}\right)=0$ for some $t^{*} \geq T$) satisfies $F\left[y\left(t^{*}\right)\right] \leq 0$. So by Theorem 5 any solution which has a zero is oscillatory.

Remark 8. The assertion of Theorem 5 can be written as: Then y is nonoscillatory if and only if $F[y(t)]>0$ for all $t \in[T, \infty)$.

Remark 9. Let us recall that if the equation (QF) is weak superlinear, (see Definition 2), then the condition $p^{\prime} \leq 0$ of Theorem 5 may be replaced with a weaker condition $2 m q(t)-p^{\prime}(t) \geq 0, t \in I$ and $2 m q(t)-p^{\prime}(t)$ not identically zero any ray of the form $\left[t^{*}, \infty\right]$ for some $t^{*} \geq a>0$, (see proof of Lemma 2).

OSCILLATION THEOREMS .

Example 4. Consider the weak superlinear equation

$$
\begin{equation*}
\left(t\left(t y^{\prime}\right)^{\prime}\right)^{\prime}+\left(t^{2}-1\right) y^{\prime}+\frac{3 t}{2+\sin 2 t}\left(y+y^{3}\right)=0, \quad t \geq a>0 \tag{26}
\end{equation*}
$$

All the conditions of Theorem 5 (see Theorem 3 and Remark $9, m=1$) are satisfied since the equation

$$
\left(t z^{\prime}\right)^{\prime}+\left[\frac{t^{2}-1}{t}+\frac{\lambda}{2}\left(\ln \frac{t}{a}\right) \frac{3 t}{2+\sin 2 t}\right] z=0, \quad \text { some } \quad 0<\lambda<1
$$

is oscillatory (see Remark 6). Hence any solution of (26) with $F\left[y\left(t_{0}\right)\right] \leq 0$ (e.g. if $y\left(t_{0}\right)=0$, then $F\left[y\left(t_{0}\right)\right] \leq 0$) is oscillatory. An example of such solution is $y(t)=\sin t+\cos t$.

REFERENCES

[1] COPPEL, W. A.: Disconjugacy. Vol. 220, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
[2] ERBE, L.: Oscillation, nonoscillation and asymptotic behavior for third order nonlinear differential equations, Ann. Mat. Pura Appl. 110 (1976), 373-391.
[3] HEIDEL, J. W.: Qualitative behavior of solutions of a third order nonlinear differential equation, Pacific J. Math. 27 (1968), 507-526.
[4] LAZER, A. C.: The behavior of solutions of the differential equation $y^{\prime \prime \prime}+p(x) y^{\prime}+q(x) y=0$, Pacific J. Math. 17 (1966), 435-466.
[5] OHRISKA, J.: On the oscillation a linear differential equation of second order, Czechoslovak Math. J. 39(114) (1989), 16-23.
[6] PHILOS, CH. G.: Oscillation and asymptotic behavior of third order linear differential equations, Bull. Inst. Math. Acad. Sinica 11 (1983), 141-160.
[7] PHILOS, CH. G.-SFICAS, Y. G.: Oscillatory and asymptotic behavior of second and third order retarded differential equations, Czechoslovak Math. J. 32(107) (1982), 169-182.
[8] RAO, V. S. H.-DAHIYA, R. S.: Properties of solutions of a class of third-order linear differential equations, Period. Math. Hungar. 20(3) (1989), 177-184.
[9] SEMAN, J.: Oscillation and Asymptotic Properties of Solutions of Differential Equations with Deviating Argument. (Slovak) Dissertation, Department of Mathematics and Physics VŠT, Prešov, 1988.
[10] SEMAN, J.: Oscillation theorems for second order delay inequalities, Math. Slovaca 39 (1989), 313-322.
[11] SINGH, Y. P.: Some oscillation theorems for third order nonlinear differential equations, Yokohama Math. J. 18 (1970), 77-86.
[12] SWANSON, C. A.: Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New.York-London, 1968.
[13] ŠEDA, V.: Nonoscillatory solutions of differential equations with deviating argument, Czechoslovak Math. J. 36(111) (1986), 93-107.

ANTON ŠKERLÍK

[14] ŠKERLÍK, A.: Oscillatory properties of solutions of a third-order nonlinear differential equation. (Slovak) In: Zborník ved. prác VŠT v Kos̃iciach, 1987, pp. 365-375.
[15] ŠOLTÉS, V.: Oscillatory properties of solutions of a third order nonlinear differential equation. (Russian), Math. Slovaca 26 (1976), 217-227.
[16] ŠVIDROŇOVÁ, E.-ŠOLTÉS, P.-SEILER, J.: Oscillatory properties of solutions of the third-order nonlinear differential equation. (Slovak) In: Zborník ved. prác VŠT v Kos̃iciach, 1982, pp. 33-44.
[17] WALTMAN, P.: Oscillation criteria for third order nonlinear differential equations, Pacific J. Math. 18 (1966), 386-389.
[18] WONG, J. S. W.: On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339-360.

Received October 1, 1990
Revised November 23, 1991

Department of Mathematics
Faculty of Mechanical Engineering Technical University
Švermova 9
04187 Košice

[^0]: AMS Subject Classification (1991): Primary 34C10. Secondary 34C15.
 Key words: Nonlinear differential equations, Nonoscillatory solution, Second order nonlinear oscillation.

