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(Communicated by Milan Pastéka )

ABSTRACT. Some elementary properties of the arithmetical function
ap(n) (= ordy, n) are studied in this paper.

Introduction

Let p be a prime number. Then the function a, is defined in the following
way: a,(1) = 0 and if n > 1, then p®( || n ie. p®™ |n, but pt(+yqy.
In this paper we shall study some fundamental properties of the arithmetic
function a,, .

1. Elementary properties of a, and the average order of «,

The function a,, is obviously completely additive, i.e.

ap(ny - n2) = ay(ny) + ap(ns)

for arbitrary ny,ne € N.

First of all we shall prove two simple results on a,, .
PROPOSITION 1.1. Let p be a fixed prime number. Then the series
i ap(n)
nt
n=1
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TIBOR SALAT

converges for t > 1 and diverges for t < 1.

Proof. Let t > 1. Since p®(™ |n (n > 1), we get

logn
ap(n)§@ (n:1,2,)

Hence

Let ¢t <1. Then

n=1 niap(n)21

If a,(n) 2 1, then n = kp, k = 1. The series on the right-hand side contains
each term

a,,(k'p)

=L k=>1).

oy (F=Y

Therefore A
- aP(”) > - ap(kp) > L - L_
LT Bl Ty Ep

a

In the following result we shall describe the behaviour of the differences
("‘I’(” + 1) - U'p(”) (rL = 1, 2, . )

PROPOSITION 1.2. The set

(a,p(n +1) - (L,,(n));

of all limit points of the sequence (ay(n + 1) — (zp(n))”:1 contains +>c and

oll integers if p is an odd prime number and it contains +oo and all non-zero
integers if p=2.

Proof. First of all observe that, if ny = p* —1 (k=1.2,...), then

Alim (a,,(nk, +1)— ap(nk,)) = klim k= 4o00.

Further, let k& be a fixed positive integer. We put n, = sp’ — 1. where s
runs over all positive integers which are not divisible by p. Then we get
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ON THE FUNCTION a,, p»™ ||n (n>1)

ap(ng +1) —ap(ng) =k

for each s. The assertion for —k < 0 can be proved by choosing n, = sph.

If p > 2, then we put n, = sp+ 1, where p{s. Then a,(ns+1) —a,(n,) =
0-0=0.

Finally, it can be easily checked that as(n+ 1) —az(n) # 0 for every n € N.
O

Put

ap(l) +a,(2) +--- +ay(n)

n

S(ap,n) = (n=1,2,...).

THEOREM 1.3. We have

. oy 1
71121(}0 S((l,,,fl) o p— 1°

Proof. On account of the complete additivity of a, we get

n

S(ap,n) = —71; Zap(k) = l—l—ap(n!).

n
k=1

But for a,(n!) we have
bn
ap(n!) = Z [T—i] ,

log n
log p
Using this fact a simple estimation yields

bn
1_(11)> b
n C
—L T < S(a,,n) <
1 " (ap,n) =

P

where b,, = [ ] (cf. [3; p. 342, Theorem 416]).

b‘”
- (3)
___\p’
Y
p

"=

From this the assertion follows at once. O
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2. Level sets of the function «,
"For k20 we put

Ty ={n: ap(n) =k} =a, ' ({k}).

THEOREM 2.1. We have

Tp(z) p—1
k+1

d(Ty) = lim (k=0,1,2,...)

r—00 T p

(d(T}y) denotes the asymptotic density of Ty, ).

Proof. Let Ty(z) (x > 0) denote the number of elements of 7} which
are not greater than x. A positive integer n belongs to Ty if and only if it has
the form bp* , where p{b. From this we get

b
pk

p

e = 5]

A simple estimation gives

The theorem follows. ]

Remark 2.1. In [2] (see also [4]), the concept of statistical convergence
is introduced. A sequence (x,)2%, of real numbers is said to be statisticallv
convergent to x € R (shortly: limstat z,, = ) provided that for each = > 0 we
have d(A(g)) = 0, where A(e) = {n: |z, — x| Z €}, d being the asymptotic
density. Theorem 2.1 says that

1

d(Tk):Z——_;—;M) (k=0,1,...).

From this it easily follows that (a,,,(n))zil is not a statistically convergent

sequence.
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ON THE FUNCTION a,, p®(™ [|n (n>1)
3. Sets {n : ay(n)|n}

In the paper [1], the sets of the form My = {n: f(n)|n} are investigated,
where f is an arithmetical function with integer values. In [1], the density of
M is determined for various functions f (e.g. for w(n) - the number of distinct
primes that divide n, s(n) -- the digital sum of n a.s.0.). In connection with
these results we prove the following theorem.

THEOREM 3.1. For each prime number p we have

d(M,,) = (p—1) Z —m+( 2D

(k,p)= (k,p)>1

1

kpk—.sk.+l )

where p* || k.

Proof. Obviously we have

al, U Bls ) (l)

k=1

where
By ={n: ay(n)=kAk|n} (k=1,2,...).
Let & > 0. We shall try to calculate the number By (z) of all n € By not
exceeding x.
For k& we have two possibilities: l.ptk, 2. plk.
1. Let p 1t k. A positive integer n belongs to By if and only if it has the
form n = kp*ny, where p{n;. From this we get

kakJ; [7“2—"] — enlz).

BA(J‘) =

[IA

2. Let p|k. Then there is an sg, 1 < sg

[log Af.—}, such that p™ || k.
log p

A positive integer belongs to By if and only if it has the form n = kp* =% n, |
where pfng.
From this we get
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Since the sets on the right-hand side of (1) are pairwise disjoint, we get

M,, () = Z cp(x) + Z dp(z) = Si(x) + Sa(x). (2)

(k,p)=1 (k,p)>1

log @
log p

The summands corresponding to k’s greater than m, = {2 ] are zero.

J

This is evident for Sy(x) and for Sy(x) it can be seen as follows. If ——— < I.
P
then di(z) = 0. Since s, < [E?i} < ﬁ, we have ki < L Hence. if
logp 2 prT ok p2

log

<1 teif k> 2

, then dj(x) = 0. So we can suppose that & < m,. .
o og k() Pl = m.

So we get

Si(x) = Z cr(T), (3)
k<mg, (k,p)=1
Sa(x) = Z di(z). (4)

kS<mg, (k,p)>1

Simple estimations give

p—1 . ) ’.p——l
;L‘W—Z<C/€(£> <1W+2,
p—1 . N op—1
Tt 2 < @) <oy + 2.
So we get
() =P L A el
(,k,(x)f.llkpk_H +0(1), dk(.l.)—ubkpkisk*_l +O(1). (5

From (3), (4), (5) we obtain
. 1
Si()=az(p-1) > iy T O0(ma).
k<mg, (k,p)=1 p

: 1
bQ(.’L’) = J}(p — 1) Z WW + O(‘”L.,g) .
k<mg, (k,p)>1
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ON THE FUNCTION a,, p®(™ ||n (n>1)

Hence, according to the definition of m, ,

- 1 1
£ IA[(,p(.’I,‘):([)*l) Z k—pk"i'_l-—{_(p_l) Z W+O(l)

k<m,, (k,p)=1 k<mg, (k,p)>1

By r — oo, we get from this
. A[a ,(2) 1
([(/\1(,‘,) = ,I-IBI;C —;— =(p—1) Z kpk"'l Z kp k—9k+l ’
(k,p)=1 (k,p)>1
where p** || k. o

I'he following result on the behaviour of the sequence (d(]\lap))p (p runs

over all primes) is a simple consequence of Theorem 3.1.

THEOREM 3.2. We have lim d(M ) 0.

p—co
Proof. Simple estimations yield

1 - 1
(l(/\l,,p) (p— 1)<-p—2+ L kp""‘“)

k=2, (k,p)=1

1 , ,
+(])-—1)<1—)pj+ Z m>251+b2

k>p, (k,p)>1

Further,

oo
p— p—1 p—1
S < - 1) =— , 0 b — 00,
LT v 2/’“ T logp vor

., p—1 1
52 - [)P+1 -‘*_( o 1) Z kpkr*‘sk-'f'l ’
k>p, (k,p)>1

But & —sp 2k — {logk} ]‘- for k> p. Thus
log p

1 — p—1
S;<— p—1 = +2 — 0 by p— oo.
’ prt! )/p> ppl p%logp o
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4. Density and statistical convergence

a,(n) \™
of the sequence <1ogp b >
n=2

logn

In[5] O.Strauch has proved the following result:

THEOREM 4.1. The sequence <logp ap(1)

oo
> is dense in the interval (0.1).
logn / _,

Proof. We shall outline the proof of O.Strauch.

Let n runs over all numbers of the form p®¢”, where ¢ is a fixed prime
number different from p and «, 3 are positive integers.

Let x € (0,1). Then z = 1i , where y > 0. Let £ > 0. The density of

rational numbers in R implies the existence of positive 1ntegels «. 3 such that

‘1 _ PBlogg

(57)
alogp
If n=p*¢?, then we have
a,(n) 31 !
et 4 — , « _ Llogq ) 57)
log logn log p alogp + Blogg (1 + alog p> (
From (57), (5”) we get
ap(n) 1 1 3logyq R
— . y — 2969 | ¢
v~ logp log n I+y 14+ E%ﬁ \ alogp
alogp
The theorem follows. t
THEOREM 4.2. We have
lim stat log Plosn p( ) =0.
Proof. Let € >0, put A(e):{n>1 logp ()Z }
’ logn =
Let > 0. Choose an integer K > 0 such that
p K <. (6)
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ON THE FUNCTION ap, p*(™ ||n (n>1)
Then there exists an ng such that for n > ny we have
n® > pf . (7)

Let n € A(e), n > ng. Then, according to (6), (7), we have elogn > K logp

and a,(n) 2 clogn > K . Therefore
log p

Ae) £{2,3,...,no}U{n>ng: p¥|n}. (8)

It follows from (8) and (6) that

A(e 1
limsupi)—@—) S = <n.
n—oo n p
Since 71 > 0 is an arbitrary positive number, we get d(A(E)) =0. O
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