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EXISTENCE RESULTS FOR FUNCTIONAL 
BOUNDARY VALUE PROBLEMS AT RESONANCE 

SVATOSLAV STANĚK 

(Communicated by Milan Medvěd!) 

ABSTRACT. Existence theorems for functional second order differential equa­
tions with nonlinear boundary conditions are proved by Leray-Schauder degree 
theory and the Borsuk theorem. T h e existence results are formulated simply by 
sign conditions. Some applications t o third and fourth order differential equations 
with nonlinear boundary conditions are given. 

1. Introduction, notation 

Let X be the Banach space of continuous functions on J = [0,1] endowed 
with the sup norm || • | | . Denote by V the set of all operators K: X —> X which 
are continuous and bounded (i.e., K(ft) is bounded for any bounded D e l ) . 
Let / C J be an interval, and AT be the set of all functionals 7 : X —> R which 
are 

(i) continuous, 7(0) = 0, 
(ii) increasing (i.e., x(t) < y(t) for t G I => 7(2;) < 7(2/)), 

(iii) lim ^(exn) = eco for each e G {—1,1} and any {xn} C X, 
n—• o o 

lim xn(t) = 00 locally uniformly on / . 
n—•oo 

In this paper, we consider the boundary value problem (BVP for short) 

x"(t) = f(t, x(t), (Fx)(t), x'(t), (Hx')(t)) , (1) 

a(x) = A, P(x'(l) -x')=B. (2) 

Here / : J x R 4 —> R satisfies the local Caratheodory conditions on J x R4 

(/ G Car(J x R 4 ) for short), F, H G V, a G Aj, /? G A[01), and A,B G R. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34K10, 34B15. 
K e y w o r d s : existence, functional boundary problem, Caratheodory conditions, sign condi­
tions, Leray-Schauder degree, Borsuk theorem, resonance. 
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By a solution of ( l) we mean a function x E AC1 (J) (having the absolutely 
continuous first derivative on J ) satisfying (l) a.e. on J . Special cases of (1) are 
the differential equations 

x" =g(t,x,x'), g E C a r ( J x R 2 ) , (3) 

x" = fifax^x'tX^xM) , fx E Car(J x R 4 ) , (4) 

and 

x" = f2(t,x,x',x+,x_,x'+,x'_), f2 E Car(J x R 6 ) , (5) 

where y+(t) = ma,x{y(t),0}, y_(t) = max{ — y(t),0} for t E J . Equation (4) is 
l 

obtained by setting (Fx)(t) = x(0), (Hx)(t) = Jx(s) ds and f(t,x,u,v,w) = 
o 

f^t^x^v^u, w+u), and then, equation (5) by setting (Fx)(t) = (Hx)(t) = x_^_(t) 
and f(t,xyu,v,w) = f2(t,x,v,u,u — x,w,w — v). 

EXAMPLE 1. Let <p,<Pj E C°(R) be increasing functions mapping R onto itself, 
(p(Q) = 0 = (fj(0) (j = 1,2, . . . , n ) . Let Jx, Jx C / ( C J ) , be a compact 
interval. The functionals belonging to the set Al can be given like this: 

max{<p(x(t)) : t e Jx} , mm{cp(x(t)) : ^ E J T } , 

Jip(x(s)) ds (t0,tx e l , t0<tx), 

to 
n 

52v>M*j)) (h<t2<-'<tm h9tnei). 
i = i 

Remark 1. Examples of operators belonging to the set T> are given in [4]. 

Remark 2. There exists a functional 7 E A3 satisfying the assumptions (i) and 
(ii) and I m 7 = R, but the assumption (iii) is not satisfied (see [7; Example 1]). 

Observe that the boundary conditions (2) are in general nonlinear, and 
BVP (1), (2) is at resonance (i.e., the corresponding homogeneous BVP x" = 0, 
a(x) = 0, (3(x'(l) — x') = 0 has nontrivial solutions). 

We find sufficient conditions for the existence of solutions of BVP (1), (2). 
The conditions are formulated only in terms of sign conditions. Our results are 
proved by the topological degree method and the Borsuk theorem (see, e.g., [1]). 
Applications to nonlinear BVPs for third and fourth order differential equations 
are given in the last section. 
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This paper is a continuation of papers [4] and [5]. In [4], BVPs for equation (1) 
with boundary conditions a(x) = A, x'(l) = B or a(x) = A, x'(0) = B or 
x(0) = A, x(l) = 0 were considered, where a: X —> R is linear increasing. 
BVPs for equation (1) with the Neumann or periodic conditions were studied 
in [5]. 

For other existence results without growth conditions, see, for example, pa-
pers [2], [3], [6] or [8]. 

NOTATION. For each Lx <0<L2, F,H eV and any bounded set ft C X 
we set 

o(F;ft) = sup{||.F:r|| : x G ft} , 

lLvL2\x = {x: x€x> INI ^ m a x l - L j , ^ } } , 

(L1,L2)X = {x : x e X, L1< x(t) < L2 for t G J} , 

[LVL2;F,H]R = {(x,u,w) : (x,u,w) G R3 , \x\ < max{—LVL2} , 

\u\ < Q(F; [LX,L2\X) , \w\ < Q(H; (LX,L2)X)} , 

and for each LX,L2,S,b ER, LX < 0 < L2, S > 0 we set 

[L1,L2,S,b;F,H]R = 

= < (x,u,w) : (x,u,w) G R3 , |x| < max{—LVL2} + S, 

\u\ < Q(F; [0 ,max{-L 1 ,L 2 } + S]x) , 

H < Q(H; (L, + 6(1 - sign(6)), L2 + 6(l + s ign(6) ) ) x )} . 

2. Lemmas 

LEMMA 1. Let a G AJ, ft G Ar0 xx, A,B G R. Then the system of nonlinear 
equations 

a(a + bt2) = A, £(26(1 - t)) = B (6) 

has a unique solution (a0,b0) G R2 . 

P r o o f . Define the continuous functions p: R2 —> R and q: R —> R by 
p(a, 6) = a(a + bt2), q(b) = /3(2b(l - t)) . Since 0 < 1 - t < 1 on [0,1), q is 
increasing on R and lim q(b) = =poo; hence there exists a unique 6n G R such 

b—>-q-oo 

that q(60) = B. The function p(- ,60) is increasing on R, lim p(a,b0) = -foo, 
a—•^f o o 

and therefore there exists a unique a0 G R with p(a0 ,60) = A. We see that 
(a0, b0) is the unique solution of (6). • 
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R e m a r k 3 . Let a G Aj, (3 G v4r01). If (3 (resp. a ) is homogeneous (resp. 

linear) and (cf. Lemma 1) (a0 ,b0) G R2 is the unique solution of (6), then 

b° = 20(1-t) ( r e s p - ao = (A~ &o<*('2))A*(l))- Thus 

is the unique solution of (6) provided (3 is homogeneous and a is linear. 

Remark 4. Let a G Aj, (3 G Ao,i)> -4,-B G R. Let (a0 ,b0) be the unique 
solution of (6), and set <p(t) = aQ + bQt2 for t G J. Then a(y?) = A, (3(^(1)-y') 
= B. 

L E M M A 2. Let u,v e X, a e A3, (3 e A[Q1), c e [o, l ] . Lei 

a(x + u) + (c - l)a(—x + u) = ca(u), (7) 

/3(y(i) - y + v) + (c - i ) /3 ( -y( i ) + y + ") = c / ?W (8) 

be satisfied for some x ,y G X. Then there exist £ G J and 77 G [0,1) such that 

x(0 = 0, y(l) = y(v). 

P r o o f . Define ax G Aj, j3x G -^[0,i) ky a ^ z ) = a ( z + u) + (c - l ) a ( - z 
+ u) - ca (n) , ^ ( 2 ) = p(z + v) + (c-l)(3(-z + v) - c/3(v) for 2 G X . Then 
(cf- (7), (8)) 

a 1 ( x ) = 0 , / 3 1 ( 7 / ( l ) - y ) = 0 . (9) 

Assume that x(t) ^ 0 on J , and y(l) - y(t) 7 - O o n [0,1). Then ax(x) ^ 0, 
/?! (y(l) - y) =£ 0, which contradicts (9). D 

LEMMA 3 . Lei u ^ £ X (i = 1,2), a e Aj, (3 e A[Q1), n G [0,oo) and 
A,B G R. T/ien i/iere exisi unique a,b G R such that the equalities 

a(a + be"* +ux) - fia(-a - be~* +u2) = A , 

f3(b(e-1 -1/e) + vx) - ///3(-b(e-* - l / e ) + v2) = B 

hold. 

P r o o f . Define the continuous functions p: R2 —> R and q: R —• R by 
p(a,6) = a ( a + be-t+w1)-/xa(-a-be-"*+w2), q(6) = f3(b(e~t -l/e) + vx) -
^ ( - b ^ - l / e ) +u2). Since 0 < e ~ * - l / e < 1 - l / e for * G [0,1), q is 
increasing on R and lim g(b) = +00 . Hence, qfio) = B for a unique b0 G R. 

6-+ -00 

Since p( . , b0) is increasing on R, and lim p(a,bQ) = +00, p(a0 ,b0) = A for a 
6—>-f °° 

unique aQ G R. D 
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Let u,v eX. We shall consider BVP (1), (10), where 

a(x + u)= a(u), P(x'(\) - x' + v) = f3(v). (10) 

We assume that / fulfils the assumption 

(Hj) There exist constants L1,L2 E K such that L 1 < 0 < L2 and 

f(t,x,u,L1,w) < 0 < f(t,x,u,L2,w) 

for a.e. t E J and each (x,u,w) E [L1,L2;F,H]R. 

To use the topological degree argument and the Borsuk theorem to prove an 

existence result for BVP (1), (10), we consider an auxiliary BVP defined below. 

We define the function /* E Car ( J x R 4 ) in the following way 

f*(t,x,u,v,w) = < for Lг <v < L2, 

f(t,x,u,L2,w) + v — L2 for v>L2, 

f(t,x,u,v,w) 

f(t, x,u,L1,w) + v — Lx for v < Lx, 

where (L = max{—L 1 ,L 2 } ) 

L for x > L , 

x = < x for |x | < L , 

—L for x < —L , 

. f t* for \U\<Q(F;[L1,L2]X), 

u = < 
l Q(F; [LX, L2]X) sign(u) for |u| > Q(F; [LV L2]X) , 

(w for |tu| <Q(H;(L1,L2)X), 

w = < 

I Q(H; (LX,L2)X) sign(iu) for |iu| > Q(H; (LX,L2)X) . 

Consider the auxiliary BVP (12), (10), where 

x"(t) = r(t,x(t), (Fx)(t),x'(t), (Hx')(t)) . 

( И ) 

(12) 

Let LX(J) (resp. AC1 (J)) be the Banach space of Lebesgue integrable func­
tions on J (resp. the Banach space of functions with an absolutely continuous 
derivative on J ) with the norm 

l 

| | x | | L i = J \x(s)\ ds (resp. | | x | U c l = | |x| | + | |x' | | + | | x " | | L i ) . 

Define the operators 

U,S,V: AC1(J)-+L1(J)x 
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by 

U: x y-> (x"(-) + x'(-),a(x + u) — a(—x + u), 

p(x'(l) -x' + v)- P(-x'(l) + x'+ v)) , 

S:x~(f(-, x(-), (Fx)(-), x'(-), (Hx')(-)), 

a(u) - a(-x + u), (3(v) - / 3 ( -x ' ( l ) + x' + v)\ , 

V: XH-> (x'(-),0,0), 

and consider the operator equation 

U(x)=c(S + V)(x) + 2(l-c)V(x), c e [ 0 , l ] . (13c) 

The operator equation (13c) is equivalent to BVP 

x"(t) = cf* (t, x(t), (Fx)(t), x'(t), (Hx')(t)) + (1 - c)x'(t), (14c) 

a(x + u) + (c — l)a(—x + u) = ca(u), 

0(x'(l) -x' + v)+(c- l)0(-x'(l) + x' + v) = c0(v), ( 1 5 c ) 

c € [ 0 , l ] , 

and we see that a; is a solution of BVP (12), (10) if and only if that is a solution 
of (13-.). 

LEMMA 4. The inverse operator U~l: Lx(J)xR2 -> AC1 (J) of U exists, and 
furthermore, U~l is continuous and odd. 

P r o o f . Let (z, A, B) G AC1 (J) x IR2 . Consider the operator equation 

U(x) = (z,A,B), (16) 

that is, the equations 

x" + x' = z(t), (17') 

a(x + u)- a(-x + u) = A, 

(3(x'(l) -x' + v)- P(-x'(l) + x' + v) = B . 

Since x(t) = a + be~t+w(t) is the general solution of (17'), where a, b are 
t s 

integration constants and w(t) = J J eT~s z(r) d r d s , by Lemma 3 (with ul = 
o o 

u + w, u2 = u — w, Ux = w'(l) — w' + v, v2 = —w'(l) + w' + U, /i -= 1), there 
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exist unique a0, b0 G R such that a0 + 60 e~~* +w(t) is the unique solution of (16). 
Hence, U~l: Lt(J) x R2 ~> AC1 (J) exists. 

If x G AC1 (J) is a solution of (16), then it follows from (17') and (17") that 
U(—x) = —(z,A,B) = —U(x), which proves that U is odd, and thus U~l is 
odd as well. 

To prove the continuity of U_1, let {zn,An,Bn} C LX(J) x R2 be a con­
vergent sequence {zn,An,Bn} —> {z,A,B} as n —> oo. Let us set xn = 
U~l(zn, An, Bn) (n G N) and x = U~x(z, A, B). Then there exist the sequences 
{an}, {bn} C R and a, 6 G R such that 

XnW = an + K e~* +™n(*) > *(0 = ^ + 6e_t +w(t) , 

where 

t s t s 

wn (t)= J j eT~a zn (T) 6T ds, w(t)= J J eT~* Z(T) AT AS , 

0 0 0 0 

and the equalities 

a(xn+u)-a(-xn+u) = An, n e N, (18') 

/ 3 ( x ; ( l ) - < + t ; ) - ^ ( - x ' a ( l ) + x ; + t ; ) = B n , n e N, (18") 

and (17") hold. Since lim to = w in A C ^ J ) , {6n} is bounded by (18"), and 
n—>oo 

{an} is bounded by (18'). Assume, on the contrary, that {6n} is not convergent. 
Then there exist convergent subsequences {bk } and {6 / r i}, lim bk = b*, 

lim 6, = 6, 6* 7-- 6. Taking the limits in the equalities (cf. (18")) 
n — • o o n 

(3(bn(e-t-l/e)+w'n(l)-w'n + v)-P(-bn(e-t-l/e)-w'n(l)+w'n + v)=Bn 

a s k„ —> oo and I —> oo, we obtain 
n n 7 

)S(6*(e-f - 1 / e) + u / ( l ) - u;' + u) - /3(-b*(e-f - 1 / e ) - w'(\) + w' + v) = B 

and 

/3( 6(e_ t - 1 / e) + T / / (1 ) - w' + v) - /?(-6(e"* - 1 / e) - ir/(l) + w' + v) = B 

respectively. Since (3 G ^4r0 ̂ , 6* = 6, hence {6n} is convergent, and then 
(cf. the second equality in (17")) lim 6n = 6. Similarly, {an} is convergent 

n — • o o 

and lim a = a. Hence, lim x = x in AC1 (J), and consequently, U-1 is 
n — • o o n—^00 

continuous, D 
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LEMMA 5. Let ft = {x : __ E ACl(J), \\x\\ < K, \\xf\\ < K, \xN(t)\ < 
q(t) for a.e. t E J}, where q E L 1 (J ) , and K is a positive constant. Then the 
operator 

U~l (cS + (2 - c)V) : ft -> AC 1 (J) 

is compact for each c 6 [0,1]. 

P r o o f . Fix c € [0,1]. We first show that the operator cS + (2 - c)V: 
ft —> LX(J) x R2 is compact. Let {xn} C ft. Then the sequences { | |z j |} and 
{llxnll} a r e bounded, and, moreover, { a ^ W } ls e c lu i c o n t inuous on J since 
|zn(£)l 5_ q(t) for a.e. t E J and each n E N. Applying the Arzela-Ascoli theorem 
there exist an x E Cl(J) and a subsequence of {xn}, which we denote by {xn} 
again, such that lim _cW = xM in X for i = 0 , 1 . Since F, H E V, a and /3 

n — • C X D n 

are continuous, and / E Car(J x R 4 ) , lim Fx = Fx, lim Hxf = Hx' in X , 
n—KX> n—->oo 

lim ( a ( t _ ) - a ( - x n + n ) ) = a(u)-a(-x+u), lim (/3(v)—/3(-x'n(l)+xn+v)) = 

(3(v) — (3(—x'(l) + x1 + v) in R, and there exists an h E LX(J) such that 
| / * (_ ,x n (_ ) , (FxJ ( t ) ,x ; ( t ) , (H . x /

n ) ( t ) ) | < h(t) for a.e. _ E J and each n E N. 
Consequently, an application of the Lebesgue dominated convergence theorem 
shows that 

nlim f* (t, x n ( t ) , ( -Fxj( t ) , x'n(t), (Hx'n)(t)) = / ' (t, x(t), (Fx)( i ) , _'(*), (if x')(i)) 

in Lr(J). Hence, lim 5 (x n ) = 5 (x) , lim V{xn) = V(x) in Lr(J) x R 2 , and 
n—•<_<) n — • o o 

since S and V are continuous in ft, the operator cS + (2 — c)V: ft —> LX(J) x R 2 

is compact. Now, by Lemma 4, U_1: Lx(J) x R 2 - > AC1 (J) is continuous, and 
consequently, U_1 (cS + (2 — c)V) : ft —• AC 1 (J) is compact. • 

3. Existence theorems 

LEMMA 6. Let f satisfy (H-J and 

\f(t,x,u,v,w)\ <p(t) 

for a.e. t E J ana7 each (x,u,w) E [L1 ,L2 ; F, H]R, \v\ < L with ape LX(J) and 
L = m a x { - L 1 , L 2 } . Let x be a solution of BVP (14c), (15c) for a c E [0,1]. 
Tften 

||x|| < L , \\xf\\ < L , 
(19) 

^ " ( t ) ! <p(_) + L + m a x { L - L 2 , L + L1} for a.e. t e J . 
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P r o o f . Fix n G N. Assume ma,x{x'(t); t G J} = x'(t0) > L + 1/n with 
a t0 G J. By Lemma 2, we can assume t0 G [0,1). Then there exists an e > 0 
such that x'(t) > L on the interval [t0,t0 + e] C J, thus (cf. (Hx) and (11)) 

t0+e t0+e t0+e 

x'(t0+e)-x'(t0) = J x"(t) dt > c J (x'(t)-L2) dt + (l-c) J x'(t) dt > 0 , 

to to to 

which is a contradiction. Similarly for m i n l V ^ ) ; t G J} < —L — 1/n. Hence, 
\\x'\\ < L + l/n for each n G N, and consequently, \\x'\\ < L . Since (cf. Lemma 2) 
x(£) = 0 for a £ G J , we see ||z|| < L. Then (cf. (11)) 

\x"(t)\ < c\r(t,x(t),(Fx)(t),x'(t),(Hx')(t))\ + (1 -c)\x'(t)\ 

< \p(t)\ + m a x { L - L2,L + Lx} + L for a.e. t G J . 

D 

LEMMA 7. Lei / satisfy (H x ) . T/ien BVP (12). (10) /ms a solution x satisfying 

\\x\\<L, \\x'\\<L, (20) 

where L = max{—Lx, L2} . 

P r o o f . Let p G Lt(J) be as in Lemma 6, and let e be a positive constant. 
Set 

n£ = {x: xeACl(J), ||x||<L + e, ||x'|| < L + e, 
\x"(t)\ < p(t) + L + max{L -L2,L + L J + e for a.e. t G J} . 

Then fi£ C AC1 (J) is an open bounded subset of AC1 (J) and symmetric with 
respect to 0 G-1 £ . Set W(c,x) = (U~1(cS+(2-c)V))(x) for (c,x) G [0 , l ]x f i £ . 
By Lemma 5 (with Q = fl£, K = L+e, q(t) = p( t )+L+max{L—L 2 , L+Lx}+e) 
and the Bolzano-Weierstrass theorem, W(c,x) is compact and W(c, x) ^ x for 
each (c,x) G [0,1] x dfl£ by Lemma 6. Hence, (see, e.g., [1]) D(l- U~l(S + V), 
Q£,0) = D(I-U-1(2V),Q£,0) , where " D " denotes the Leray-Schauder degree. 
Since U"1 is odd and V is linear, D(l - U~1(2V),n£,0) ^ 0 by the Borsuk 
theorem. Hence the operator equation x = (U~1(S + V))(x) has a solution x 
in £l£, and, by Lemma 6, x satisfies (20), which proves our lemma. • 

THEOREM 1. Let f satisfy (Hj) . Then BVP (1). (10) has a solution x satis­
fying 

\\x\\ < L , Lx< x'(t) <L2 for teJ, (21) 

where L = max{—L1, LA . 
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P r o o f . By Lemma 7, there exists a solution of BVP (12), (10) satisfying 
(20). To prove our theorem, it is enough to show that (cf. (11)) 

Lx < x'(t) <L2 for teJ. 

Assume L2 < L and L2 < ma,x{x'(t); t G J } = x'(tQ) for a tQ G [0,1) (see 
Lemma 2). Then there exists r > 0 such that x'(t) > L2 for t G [tQ, tQ + r] C J; 
hence, (cf. (H1)) 

t0+T 

*'(*o + T ) - x'tto) = / *"(*) dt 

to 
t0+T 

= J (r(t,x(t),(Fx)(t),x'(t),(Hx')(t))+x'(t)-L2) dt 
to 

t0+T 

> f (x'(t)-L2) dt>0, 

to 

which is a contradiction. Similarly, for min[x'(t); t G J} < Lx ( > —L). • 

COROLLARY 1. Let Lx, L2 be constants such that Lx < 0 < L2, and 

g(t,x,Lx) <0<g(t,x,L2) 

for a.e. t G J and each x G [—L,L\, where L = max{—LX ,L2}. Then 
BVP (3), (10) has a solution x satisfying (21). 

THEOREM 2. Let A,B e R and (aQ,bQ) G !R2 be the unique solution of (6). 
Let there exist constants LVL2 G K such that Lx < 0 < L2 and 

f(t, x, u, L± + 2bQt, w) < 2bQ < f(t, x, u, L2 + 2bQt, w) (22) 

for a.e. t G J and each (x,u,w) G [L 1 ,L 2 ,5 ,6 0 ; F, H]R with S = max{|a0 | , 
|a0 + b0|}. 

Then BVP (1), (2) has a solution x satisfying 

| | x | | < 5 + m a x { - L 1 , L 2 } , L1+2bQt < x'(t) < L2 + 2bQt forteJ. (23) 

P r o o f . Set <p(t) =aQ + bQt2 for t G J. Then |M| = S, and, by Remark 4, 
a(<p) = A, /3(<p'(l)-ip') = B. Define the operators F*,H*: X -> X by F*(x) = 
F(x + <p), H*(x) = H(x + <p'). Then F*,H* G V and 

o(F*; [LltL2]x) < g(F; [Lx - S,L2 + S]x), 

o(H*; (LX,L2)X) < g(H- (L, +bQ(l- sign(bQ)),L2 + 60(l + sign(bQ)))x) . 
(24) 

52 



EXISTENCE RESULTS FOR FUNCTIONAL BOUNDARY VALUE PROBLEMS 

Define the function h E Car (J x R4) by 

h(t,x,u,v,w) = f(t,x + (f(t),u,v + ipf(t),w) -2b0, 

and consider BVP 

x"(t) = h(t,x(t),(F*x)(t),x'(t),(H*x')(t)), (25) 

a(x + <p)=a(<p), P(x'(l)-x'+<fi'(l)-<p')=P(<p'(l)-<p'). (26) 

We see that x = xx + ip is a solution of BVP (1), (2) satisfying (23) if and only 
if xx is a solution of BVP (25), (26) satisfying (21) (with x = xx). Applying 
(22) and (24) we obtain 

h(t,x,u,Lx,w) < 0 < h(t,x,u,L2,w) 

for a.e. t E J and each (x,u,w) E [LvL2,F*,H*]R. So, by Theorem 1 (with 
f = h, F = F*, H = H*, u = (f, v = <p'(l) — <pf), there is a solution x of 
BVP (25), (26) satisfying (21). This completes the proof. D 

COROLLARY 2. Let A,BeR and (a0,b0) E R2 be the unique solution of (6). 
Let there exist constants LVL2 E R such that Lx < 0 < L2 and 

g(t, x, Lx + 2b0t) < 2b0 < g(t, x, L2 + 2bQt) 

for a.e. t E J and each \x\ < S+ max.{—L1,L2} with S = max{|a0 | , \a0 + b0|} • 
Then BVP (3), (2) has a solution x satisfying (23). 

EXAMPLE 1. Let £ E J and r > 0, e > 0 be constants. Consider BVP 

x"(t) = t + x(£) + (2 + r(x f(t2))2 + e\x(t)\)xf(t), (27) 

max{x(t) ; teJ}=A, xf(l) = B + x(l) - x(0). (28) 

If we set (Fx)(t) = x(£), (Hx)(t) = x(t2), a(x) = max{x(t); t E J} and 
l 

(3(x) = Jx(t) dt for x E X, we see that BVP (27), (28) is the special case of 
o 

BVP (1), (2) with f(t,x,u,v,w) = t + u+ (2 + TW2 + e\x\)v. One can verify 
that system (6) has the unique solution (aQ,bQ) = (A — \B(1 + signF?),F?). 
Assume 0 < A < B. Then (27) satisfies the assumptions of Theorem 2 with 
- L 1 = L2 = SB + 1, S < B, b0 = B. Hence for each 0 < A < B, r > 0 and 
e > 0, BVP (27), (28) has a solution x satisfying 

\\x\\ < 4 5 + 1, - 3 B - 1 + 2Bt < xf(t) <3B + l + 2Bt for t E J . 
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4. Applications 

In this section, we give some applications of the above results to BVPs for 
third and fourth order differential equations. 

Consider BVP 

x^ =p(t,x,x',x",x'"), (29) 

a(x) = 0 , P(x') = 0 , 7 (x" ) = 0 , 6(x'"(l) - x'") = 0 , (30) 

where p G Car (J x R4) and a, /? ,7 G Aj, 6 G An,i)-

THEOREM 3. Let Lx < 0 < L2 be constants such that the inequalities 

p(t, x, u, v, Lx) < 0 < p(t, x, 1/, v, L2) 

are satisfied for a.e. t € J and each (xyu,v) G [—L/2, L/2] x [—L/2, L/2] x 
[—L,L], L = max{—L 1 ,L 2} . Then BVP (29), (30) has at least one solution x 
satisfying 

\\x\\ < L / 2 , Hx'll < L/2, ||x"|| < L, Lx< x"'(t) <L2 forteJ. 

(31) 

P r o o f . L e t w E l . B y [4; Lemma 6], BVPs 

x" = u(t), a(x) = 0 , /3(x') = 0 (32) 

and 
x" = u(t), f3(x) = 0 , 7 (x ' ) = 0 (33) 

have a unique solution xx and x 2 , respectively. Moreover, 

K-H<IHI/2, IK||<|H|, j = \,2. (34) 

Define the operators F, H: X —> X by 

F(u) = xx, H(u) = x2 , 

where xx and x2 is the unique solution of BVP (32) and (33), respectively. 
Then F,H eV (see the proof of Theorem 7 in [4]) and Q(F; [LV L2]X) < L/2, 
Q(H\[L1JL2]X) < L/2. By the substitution u = x", BVP (29), (30) can be 
written as 

u"(t)=p(t,(Fu)(t),(Hu')(t),u(t), u'(t)), 7 ( « ) = 0 , 6(u'(l)-u')=0. 
(35) 

Set /(£, x, w, v, it;) = p(£, w, w, x, v) for (£, x, u ,u ,u ; )G J x R 4 . Then / satisfies 
the assumptions of Theorem 1 (with u = v = 0 in (10)), and consequently, there 
exists a solution u of BVP (35) such that \\u\\ < L, Lx < u'(t) < L2 for t G J. 
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Obviously, there exists a unique x E AC3(J) satisfying a(x) = 0, /3(x') = 0 
and x"(t) = u(t) on J . This function a: is a solution of BVP (29), (30) for which 
(31) holds. • 

Similarly, for BVP 

x"f = q(t,x,xf,x"), (36) 

a(x) = 0 , /?(*') = 0, 7 ( s " ( l ) - x") = 0 , (37) 

where q E Car(J x R 3 ) , a,(3 E .Aj and 7 E A 0 ^ , we can prove the following 
theorem. 

THEOREM 4. Let Lx < 0 < L2 be constants such that the inequalities 

q(t, x, u, Lx) < 0 < q(t, x, u, L2) 

are satisfied for a.e. t £ J and each (x,u) E [—L, L] x [—L,L], L = 
max{—L1,L2}> Then BVP (36), (37) has a solution x satisfying 

\\x\\<L, \\xf\\<L, Ll<x"(t)<L2 forte J. 
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