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QUASICONTINUOUS SELECTIONS 
FOR CLOSED-VALUED MULTIFUNCTIONS 

IVAN K U P K A 

(Communicated by Lubica Hold) 

ABSTRACT. We present a new result in the selection theory. A technique which 
worked only for the spaces Wl (equipped with a linear structure) is adapted and 
used in the topological context. The main result is: Let X be a regular topological! 
space which is a union of pairwise disjoint regularly semiopen precompact sets. 
Let Y be a topological space, metrizable by a complete metric. Let F: X —> Y be 
an l.s.c. multifunction with closed values. Then F has a quasicontinuous selection. 
Moreover, if X is a locally compact T2 space, then for any finite subset A of 
X there exists a quasicontinuous selection of F which is continuous at any point 
of A. 

1. Introduction 

The research in the selection theory was started by M i c h a e l in 1956 
(see for example [7], [8]) by proving several continuous selection theorems. 
Then, the problem of the existence of selections of various types (measurable, 
Caratheodory, Darboux e tc ) was studied in many papers. 

The first work dealing with the problem of existence of quasicontinuous se­
lections for multifunctions was a paper of M a t e j d e s [6]. The paper gives 
some conditions for the existence of quasicontinuous selections for multifunc­
tions F: X -> Y with compact values, where X is a Baire space and Y is a 
compact metric space. 

A reason for proving quasicontinuous selection theorems when we cannot 
prove continuous ones is the relatively good connection between the continuity 
and quasicontinuity in spite of the generality of the latter. In general, if a con­
tinuous multifunction F: X —> Y has nonconvex compact values, or even finite 
ones, it need not have a continuous selection ([3]). 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 54C65; Secondary 54C08. 
K e y w o r d s : continuous multifunction, selection, quasicontinuity. 
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Even if the spaces X and Y are extremely nice (let for example X = [a, b] be 
a compact interval in K. and Y = E) , an l.s.c, u.s.c. and Hausdorff-continuous 
multifunction F: [a,b] -» R need not have a continuous selection (see [5]). 

In this paper we prove some quasicontinuous selection theorems for multi-
functions with closed values. 

In 1988 B r e s s a n [1] applied a useful technique which enabled him to obtain 
some new results in selection theory. The idea behind the technique was to 
consider the space W1 as a union of a system of pairwise disjoint n-dimensional 
"intervals" which were "sufficiently small". 

In this paper we develop a similar technique. However, we introduce a topo­
logical concept of regularly semiopen set, which enables us to work with far 
more general spaces than Rn is. On these spaces only a topological stucture is 
considered. 

2. Notation and terminology 

In what follows we denote by N the set of all positive integers. 
In this paper by a uregular space1' we mean a topological space in which every 

point x and every nonempty closed set A not containing the point x can be 
separated by two disjoint open sets. So "regular" does not imply " T j " . 

If F: X -> Y is a multifunction from a given topological space X into the 
space of all nonempty subsets of a space V, then for any set A C Y we denote 

F~(A) = {xeX: F(.x)nA^0}, 

F+(A) = {xeX : F(x) C A) . 

A selection for F is any function f:X —•> Y such that f(x) e F(x) for all 
x e X. By int(.A) and A we denote the interior and the closure of .4, respec­
tively. 

Let X be a topological space. A set A C X is called regularly open if and 
only if A = hit ( A ) (see [10]). In what follows by r.o. we mean "regularly open". 

DEFINITION 1. Let X be a topological space. A set A C X is said to be 
semiopen if there exists an open set B C X such that B C A C B . A set 
A C X is said to be regularly semiopen (in what follows also r.s.o.) if there 
exists an r.o. set B C X such that B C A C B. 

Let P = {Aa : a e T} (where F is an indexing set) be a collectioi of 
pairwise disjoint regularly semiopen subsets of X such that Aa is compact for 
every a e P. Let K be a subset of X such that K = IJ Aa. Then P is called 

a<ET 

an r.s.o. (regularly semiopen) partition of K. A topological space A" with at 
least one r.s.o. partition of X will be called a pt-space. 
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For a later use, let us observe that a set A is r.s.o. if and only if A is semiopen 
and int(A) is r.o.. Of course, the space Rn equipped with the usual topology is 
a pt-space for every positive integer n . 

DEFINITION 2. Let A , Y be two arbitrary topological spaces. A function 
/ : X -> Y is said to be quasicontinuous at x G X if for any open set V such 
that f(x) G V and any open set U such that x G U there exists a nonempty 
open set W C U such that f(W) C V. If / is quasicontinuous at each point 
,r G Ar it is said to be quasicontinuous (on A"). 

R e m a r k 1. We shall use the following useful result of N e u b r u n n o v a [9]: 
a function f: X -> Y is quasicontinuous if and only if f~l(G) is semiopen for 
any open subset G of Y. 

3. Technical results 

Many results presented in this section may be known and proven elsewhere. 
Nevertheless, we list them and prove them in order to make this paper self-
contained. Namely the four propositions of this section contain many known 
assertions. The first three lemmas prepare the proof of Lemma 4. This lemma is 
important for proving our main results. It shows how to "cut" regularly semiopen 
sets which enables to construct their r.s.o. partitions. 

PROPOSITION 1. The following assertions are true. 

(i) An open set O is r.o. if and only if i n t (O) C O holds. 
(ii) The intersection of two r.o. sets is an r.o. set. 

(iii) For every closed set A the set int(.A) is r.o.. 

P r o o f . 
(i) It suffices to prove that every open set O satisfying i n t ( O ) C O is r.o.. 

Since O C O holds, then O = int(O) C int( O) is true. So we have O = int( O ) . 

(ii) Let A, B be two r.o. sets. Since A = i n t (A) and B = h i t (27) , we 
obtain int(_4n.B) C int( A Hi? ) = in t (A) n i n t ( B ) = AnB. According to 
(i) the set A n B is r.o. 

(iii) If A is closed, then the following holds: int(A) C int(A) C A = A. Hence 

int(A) C int( int(A)) C int(A) so int(A) = int( int(A)) holds, i.e. int(A) is r.o. 

• 
DEFINITION 3 . Let A be a topological space. A set A C A is said to be a 
regidarly closed set if and only if there exists an r.o. set B such that A = B. 
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PROPOSITION 2. The closure of any semiopen set is a regularly closed set. 

P r o o f . First we show that a closure of any open set is a regularly closed 
set. Let A be an open set. Let us denote O = int( A). Then O C A , so O C A 
and i n t ( O ) C int( A) = O. So we have in t (O) C O, and by Proposition l ( i ) , 
O is an r.o. set. Moreover A C O C A holds so we obtain A = O, i.e. A 
is regularly closed. Now, let C be a semiopen set. Then int(C) C C C int(C) 
holds, therefore C = int(C) . So the closure of C can be represented as a closure 
of an open set. Hence it is a regularly closed set. D 

PROPOSITION 3 . The complement of a regularly closed set is regularly open. 
The complement of a regularly open set is regularly closed. 

P r o o f . Let A be a regularly closed set, let A = O where O is an r.o. set. 
We need to prove X — A = int(X — A). Since O = i n t ( O ) the following holds: 

X-A=X-A=X-0 

= X-'mtO = int (A" - i n t ( O ) ) 

= int(X - int(A)) = mt(X - A) . 

So X — A is an r.o. set. 
Let B = int(B) be an r.o. set. Then X - B = X - int(B) = X - B holds. 

The set X — B is open, hence, by Proposition 2 the set X — B is regularly 
closed. D 

PROPOSITION 4. The following assertions hold. 

(i) Every regularly closed set is r.s.o.. 
(ii) A set Z is regularly closed if and only if Z = 'mt(Z) holds. 

(iii) A union of two regularly closed sets is a regularly closed set. 

P r o o f . 
(i) This is obvious. It suffices to examine Definition 3 and Definition 1. 
(ii) First let Z = int(Z) holds. Then by Proposition 2 the set Z is regularly 

closed. Now let us suppose that Z is a regularly closed set. Then there exists an 
open set B such that: B = 'mt(B) and Z = B. Hence Z = 'mt(B) = in t (Z) . 

(iii) Since A and B are regularly closed, their complements are regularly 
open sets and the intersection of these complements is a regularly open set 
(Proposition 1 (ii)). So according to Proposition 3 the set AUB = X — ((X — A) 
n (X - B)) is a regularly closed set. D 

LEMMA 1. Let A be an r.s.o. set and B be r.o.. Then the set Af)B is r.s.o.. 

P r o o f . Let A be an r.s.o. set and B be r.o.. Then B = i n t ( i ? ) , A C 

'mt(A) and 'mt(A) = int( int(A)) hold. Let C = 'mt(A) n B. Since C is an 
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intersection of two r.o. sets, C is r.o.. Let x be an element of B n A. Let O be 
an open neighbourhood of x. Since x is an element of B, the set O n B is an 
open nonempty neighbourhood of x. The point x is also an element of int(.A), 
therefore ( O n B ) n i n t ( A ) ^ 0 so O n (.Bnint(.A)) = O n C ^ 0 holds. Therefore 
x is an element of C. Hence C C A n B C C holds and by Definition 1, A n B 
is an r.s.o. set. • 

LEMMA 2. Let K, F be two r.s.o. sets. Let F CK holds. Then the set FnK 
is an r.s.o. set. 

P r o o f . Let II = FnK, D = in t (F)nint ( IO. The set D is r.o. since it is an 
intersection of two r.o. sets. Let c be an element of II. Let O be an arbitrary 
open neighbourhood of c . Then the set U = O n int(F) is nonempty, since 

c <E F C int(F) holds. The set U is an open subset of F. Since F C K = hit (/(.), 
then Un'mt(K) / 0. Hence (Onint(F ) )nint( IQ ^ 0 is true or, when we rewrite 
it differently, On (int(F) nint(AT)) = 0 n D ^ 0 h o l d s - Therefore the point c is 
an element of D and this implies D C II C D. That is, the set II is r.s.o.. • 

LEMMA 3. Let X be a topological space. Let K C X be an r.s.o. set and let 
i 

K = U -4?- where {A{ : i = 1 ,2, . . . , /} is a finite collection of r.s.o. sets. Let a 
i=l 

be an element of in t (A 1 )nint( I i ) C X. Then there exists a finite r.s.o. partition 
P = {II- : i = 1 ,2, . . . , /} of K such that H{ C A{ for i = 1 ,2, . . . , / holds and 
a is an element of int(IIj) n int(IQ . 

/ 
P r o o f . First observe that the equality K = [j Ai holds. Let C{ = Ai 

i=\ 
for i = 1,2, . . . , /. The sets Ci are regularly closed. Set Dx = Cx and for j = 

2 , 3 , . . . , / , D{ = Ci - ( U DjV Then for k = 1, 2 , . . . , / , Dk C ~A~k C K. From 

i 

the definition of the sets D{ it is easy to see that K = [J D{ and a G int(JD1). 

Next we prove by induction that the sets Dl,D2,...,Dl are regularly closed. 

1. The set Dx is regularly closed since Dx = Ax holds. 
2. Let for j = 1, 2 , . . . , 5 < /, the set D- be regularly closed. 

Since Ds+l - Cs+1 - (D, U • • • U Ds) = Cs+l n (X - (Dt U • • • U Ds)), we 
can see, that Ds+1 is a closure of the intersection of a regularly closed set (C s + l ) 
and a regularly open one. (The set X — (D1U- • -UDJ is r.o. by Proposition 3(iii) 
and by Proposition 4.) According to Lemma 1 this intersection is an r.s.o. set. 
So our set Ds+1 is a closure of an r.s.o. set and according to Proposition 2 it is 
regularly closed. 
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This finishes our proof by induction. 
Now, let us denote Fx = D[ and for 1 < i < /, F{ = D{ - \J Dj. The sets 

j<i 

Fi are r.s.o. since each of them is an intersection of a regularly closed set with 
an r.o. one. It can be seen that for i = 1,2, . . . , /, Fi C D{ C Ai holds and that 

i 

K = |J F- and a G i n t ^ ) n int(ii) are true. 
? = i 

Set H}: = F7; n K for i = 1,2, . . . , /. According to Lemma 2 the sets Ht are 
i 

r.s.o.. We have K = IJ H• and a G int(iif1) n in t ( i i ) . Since the sets Fi were 
;=i 

pairwise disjoint, the sets H{ are pairwise disjoint too. So the collection of sets 
P = {Ht : i = 1 ,2, . . . , /} is an r.s.o. partition of K. The proof of the lemma is 
now complete. • 

LEMMA 4. Let X be a topological space. Let A C X be an r.s.o. set and let 
{J5- : i = 1, 2 , . . . , / } be a finite open cover of A consisting of r.o. sets B{. 
Let a be an element of int(B1) n int(A) C X. Then there exists a finite r.s.o. 
partition P = {H{ : i = 1,2, . . . , /} of K such that H{ C B{ for i = 1, 2 , . . . , / 
and a is an element of int(ii1) n int(A). 

P r o o f . Set V{ = B{ n int(A) for i = 1,2, . . . , /. The sets V- are r.s.o. and 
a G in^Vj) n int (A). Since each of the sets Vi is a subset of K, the following 
holds: _ _ 

V - C A for i = l , 2 , . . . , / , (*) 

and since int(A) = IJ Vi, we obtain A' = int(A) = IJ V{. Using the inclu-
1 = 1 7 = 1 

sion (*) we obtain by Lemma 2 that for i = 1,2, . . . , / the set Ai = \] n K is 
r.s.o.. For each i G {1, 2 , . . . , / } , At C B{ holds, and a G int(A1) n int (A") and 

A = (J Ai hold too. According to Lemma 3 there exists a finite r.s.o. partit on 
7 = 1 

P = {Ht : i = 1, 2 , . . . , / } of A such that H- C Ai for i = 1 ,2, . . . , / and a_is 
an element of i n t ^ ) n 'mt(K). We see, that for i = 1 ,2, . . . , /, H{ C A • C B . . 
The proof is complete. • 

4. The main result 

THEOREM 1. Le£ Ar be a compact regular topological space (which need not be 
Tx), Y be a topological space, metrizable by a complete metric. Let F: X —> Y 
be an l.s.c. multifunction with closed values. Then for every point (a, b) of the 
graph of F there exists a quasicontinuous selection f of F such that f(a) = b 
and f is continuous at a. 
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P r o o f . Let d be such a metric, that (Y, d) is a complete metric space with 
the original topology of Y. 

We shall construct now by induction a sequence of functions { / y j ^ j , fn: 
X -> Y, a sequence {Dn}n^_1 of r.s.o. partitions of X and a sequence {^ j^Lj 
of finite collections of subsets of Y such that for every positive integer n the 
following will hold: 

(1) Dn is a finite r.s.o. partition of X, Dn = {Dn,...,Dn,,} and A" = 
l(n) 

U Dn. The collection Vn is a finite collection of open subsets of Y, Vn = 
i= i 
{Vn,..., Vn

M } and the diameter of every element of Vn is smaller then 2~n. 

For i = l,2,...,l(n), DfCF~(Vn) holds. 
(2) If n > 1, then for every element j of { 1 , 2 , . . . ,Z(n)} there exists an 

element k of { l , 2 , . . . , / ( n - 1)} such that Dn C Dn~l and Vn C VA
n_1. 

Moreover, if j = 1, then k = 1, so Dn C Dn~l. 
(3) The functions fn are constant on every element of Dn and fn(D

n) G Vn 

for ie{l,2,...,l(n)}. 
(4) The point a is an element of mt(Dn), and b is an element of Vn, where 

fn(D
n) = b holds. 
(5) If n > 1, then for every element x of X, d(fn(x), fn_1(x)) < 2~n. 

(6) For every element x of X, d(fn(x),F(x)) = inf {d(fn(x),y)} < 2~n . 
yeF(x) 

We note also, that (1) and (3) imply the quasicontinuity of the functions fn. 
Let us start by constructing f1. Let us consider such a metric on ] r , that 

diam(l') < 2 " 1 . Then we can define Dx = {A} ; V1 = {Y} = {/?(&,2"1)} = 
{{y e Y : d(b,y) < 2"1}} and /- (x) = b for all x from A . 

Now, let k e N. Let us suppose, that for j = 1, 2 , . . . , k the systems V-, D. 
and the functions / • are defined such that (1), (2), . . . , (6) hold for them. 

Let us define Dk+l, Vk+1 and fk_^_i as follows: When Dk = {Dk,..., Dk,k, } 

and Vk = {Vk,..., Vk
{k)} , we define for me {l , 2 , . . . , l(k)} : 

Im = {B(y,r) : y eY, r< 2~k-'2 and B(y,r) C Vk
n} , 

Jm = {F~(V): VelJ, 
Hm = {H : H is r.o. and there exists S from Jm such that H C S} . 

Since Dm is a compact subset of F~(Vm), Hm is an open cover of Dm from 
which we choose a finite subcover Rm = {C™,..., C1-} A. (This is the step 
where the regularity of A is needed. In nonregular spaces nothing guarantees 
that Hm is an open cover — or a nonempty set.) 

Moreover if m = 1, wre choose Rx = {C\,... ,Cl-,xA in such a way, that 

a £ C\ e Hx holds. This is possible since for Dk and Vk, (1) and (4) are 
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true, so a G int(Dk) C F~(Vk) and b G Vf hold. From the definition of H1 

and /-_ we see that there exist sets Bx G Hx and IV G Ii such that a G Bx, 
B^ C F"(W) and b G IV. Let us put C\ = Bx. Then a G C\ n int(.Df) holds. 

Let us extract a finite cover { C 1 , . . . , C1 ,^ } C ^ of the set Dk in such a way 

that C\ is the set mentioned above. 
From the definition of Hm and Im it follows that for every m from {l , 2 , . . . 

. . . , l(k)} there exists a finite collection of open balls { W™, . . . , W7^,} such 

that for every index o from { 1 , 2 , . . . , j(m)} the following holds: C™ C F~ (W™), 
W™ C V£, diam(IV0

m) < 2~k~l. 
In particular, we put W\ = W. 

For m = 1 ,2, . . . , l(k) the collection of regularly open sets Rm = {C™,... 
. . . , Cj?mx} is a finite cover of the r.s.o. set Dm. For m = 1, moreover, C\ is 
r.o. and a G int(C\) flint(Dk) holds. According to Lemma 4 there exists a finite 
r.s.o. partition Pm = {F?,..., FV[m)} of the set Dm such that FT* C Cf C 

F~(W1
j
n) fori = l,2,...,j(m) and, moreover, for m = 1, a G mt(F*)r\mt(Dk), 

b G IV/ and Fl C ~D\ hold. 
i{k) 

Set -D/.+! = (J Pm. Let /(A: + 1) be the number of nonempty elements of 
7 7 1 = 1 

D'k+1. Set Dk+1=F}. 

Let us denote all other nonempty elements of D'k+1 by D^^D^1,... 

•••.I>KV We put Dk+1 = {Dk+\Dk+\...,Dk
(i+1)}. 

We define a collection Vk+1 as follows: We put V^1 = W\. If o G 
{2,3, ...,l(k + 1)}, then there exist two positive integers s and t such that 
Dk+l = Fl

s. For such s and t let us denote V0*
+1 = W\. 

It is easy to verify now that for Dk+1 and Vk+1 = {V**1,..., V ' w ^ M , 

(1) and (2) hold. For o = 2 , 3 , . . .,l(k + 1) the sets V0
fc+1 are open balls and 

diam(V0
/c+1) < 2~ f c _ 1 holds. Let us denote the center of each of these balls Vk+l 

by Vo*1 • For o = 1 we put y^1 = b. We define a function fk+1: X -> Y as 
follows: 

For o=l,2,...,l(k + l), fk+1(x) = yk+1 if and only if x G F^1. 
From the way we constructed the collections of sets Dk+1, Vk+1 and the 

function fk+1; it follows that for n = k + 1 the conditions (1), (2), . . . , (G) are 
fulfilled. Our construction by induction is finished. 

We have constructed a sequence of quasicontinuous functions {/n}^Li, fn • 
X —.> Y, a sequence {Dn}

<^>
=1 of r.s.o. partitions of X and a sequence { V n } ^ i 

of finite collections of subsets of Y such that (1), (2), ... , (6) hold for them. 
By (5) the sequence {/n}^Li is Cauchy, and since (Y, d) is a complete metric 
space, there exists a function f: X —> Y which is a uniform limit of the func-
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tions fn. According to [11] the function / is quasicontinuous. Since each fn was 
continuous at the point a, the function / is continuous at a too. 

Next we show that for every x from X, f(x) G F(x). Let e > 0 be an 
arbitrary positive real number. Let us choose a positive integer n such that 
2 n < §. Let / G N be such that V(Jfc > l)\/(x G X)(d(f(x),fk(x)) < § ) . Let 
w = max{n, /} . Since, by (6), d(fm(x),F(x)) < + 2 ~ m , for every x from X, 
d(f(x),F(x))<d(f(x),fm(x))+d(fm(x),F(x)) < | + 2 - m < £ . The values of 
F are closed, therefore V(x G X)(f(x) G F ( x ) ) . This completes the proof. • 

We are now ready to present our main result. 

THEOREM 2. Let X be a regular topological space which is a pt-space. Let Y 
be a topological space, metrizable by a complete metric. Let F: X -> Y be an 
l.s.c. multifunction with closed values. Then F has a quasicontinuous selection. 
Moreover, if 

(M) X is a locally compact T2 space and {a1,a2,... ,an} is a finite sub­
set of X (a{ ^ a- for i ^ j), and {bx,b2,... ,bn} C Y is such that 
V ( i € { l , 2 , . . . , n } ) ( 6 . € E K ) ) , 

then F has a quasicontinuous selection f:X —> Y such that for all i G 
{ 1 , 2 , . . . , n} , / is continuous at the point a- arid f(a{) = b{. 

P r o o f . 

I. We show that if X is locally compact T2 , then for any finite subset 
{al,a2,..., an} of X with exactly n points there exists an r.s.o. partition P of 
Ar such that for all i, 1 — i = n, there exists A G P such that a{ G int(>l). 

Since X is a pt-space, there exists an r.s.o. partition Q = {A1 : 7 G F } . 
Since A' is locally compact and T2, there exists a finite system {Vx, V2,..., Vn} 
of pairwise disjoint regularly open subsets of X such that for all k, 1 ^ k ^ n , 
ak G Vk, Vk is compact and Vi fl V.; = 0 for i ^ j . 

n n 
The set K = IJ Vi = IJ T̂  is compact and regularly closed (see Proposi­

t i 2=1 
ton 2). Let us define P as follows: P = { Vv V2,..., Vn } U {A - K : A G Q}. 
For each A from Q the set A — K — A fl (X — K) is an intersection of an r.s.o. 
set and an r.o. set (Proposition 4). So by Lemma 1 it is an r.s.o. set. Since Q 
was an r.s.o. partition of X, P is also such one. 

II. Let X — U Aa where P = {Aa : a G F} is an r.s.o. partition of X. 

Let us consider an arbitrary index a G F. By Theorem 1 the multifunction 
F, restricted to Aa has a quasicontinuous selection fa: Aa —» Y, where we 
consider Aa endowed with the inherited topology. (Moreover, if (M) holds we 
can suppose, that the partition P is the one constructed in I. Then, according 
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Theorem 1, fa can be constructed on every Aa in such a way that if ai G Aa, 
then /Q is continuous in ai and / a ( a ? ) = b{.) 

Let us define a function / : X -> Y as follows: 

f(x) = fQ{x) <=> xeAa. 

It is obvious that / is a selection of F. We will show that / is quasicontinu-
ous. It suffices to verify that / satisfies the conditions of Definition 2. So let x 
be an arbitrary point of X. Let U be an open neighbourhood of x, let W be an 
open neighbourhood of its image f(x). There exists an index a G F such that 
x is an element of Aa. Let us denote V = U D Aa. The set V is a relathely 
open neighbourhood of x in the space Aa. Since the function fa: Aa —> Y is 
quasicontinuous, there exists a nonempty relatively open subset O' of the space 
Aa such that O' CV and f(0') C W. Since O' is relatively open, there exists 
an open subset P of X such that O' — Pn AQ . So the set O' is an intersection of 
an open set with a semiopen one. Therefore it is semiopen. So the set O = int(O' 
is a nonempty open subset of U. For the set O, / (O) = fa(0) C fa{0') C vV. 
So / is quasicontinuous at £, and since x was an arbitraiy point of X , / is 
proved to be quasicontinuous. 

Moreover, if (M) holds, / is continuous at each ai. Indeed, there exists an 
index a such that Aa = Vi (V{ as constructed in I) and / coincides on V-t with 
/ a , which is continuous at aj G int(T^.). Of course, / (a-) = / a («-) = 6? holds 
for each of our finitely many indices i. • 

The following example shows that the assumption of regularity of X in The­
orem 2 is essential. If X is not regular, there exist multifunctions F: X —» K 
which have no somewhat continuous selection. (A function f: X -* Y is some­
what continuous if and only if for every open subset V of Y the following holds: 
if f~l(V) 7-- 0, then i n t ( / _ 1 ( y ) ) •=/=- 0. So somewhat continuity is far weaker 
than quasicontinuity.) 

EXAMPLE 1. Let X — (N,T) be the set of natural numbers endowed with the 
cofinite topology T = {G C N : N - G is finite}. Let Y = R. Let us define a 
multifunction F : A r - > 7 as follows: 

V(keN)(F(k) = N-{k}). 

X is a compact topological space, Y is is a complete metric one. F is an l.s.c 
multifunction with closed values. But F has no constant selection and it is eas\ 
to sec that every somewhat continuous function / : X -» Y has to be constant. 

OPEN QUESTION. IS every regular, locally compact topological spac > a 
pt-space? 

R e m a r k 2. If X is E n , then the selection / can be constructed to be measur­
able if we choose the "right" partitions of A" consisting of measurable sets. More 
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precisely these partitions can be constructed with aid of cubes in Rn . (I.e. in 
the proof of Theorem 1 we could choose the sets H from Hm to be open cubes 
in En .) 

Remark 3. As the referee communicated to the author, in [2], B r e s s a n 
and Co l o m b o continued the work started in [1]. In [2], they do not need 
to work with linear structure. Their results are valid for paracompact spaces, 
so for T4 spaces. Theorem 1 in our article is valid also for non Tx spaces. The 
continuity property of a selection in our case is still the same: the selection is 
quasicontinuous and continuous in a chosen point. In [2], the type of generalized 
continuity of the selection depends on the topological properties of the space X. 
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