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ABSTRACT. The complex K-theory of the oriented Grassmann manifold Gn k 

is computed. The techniques involve the representation theory of Spin(n) , and the 
Hodgkin spectral sequence. Applications are given to the (stable) parallelizability 
of Gn k, the existence of (weak) almost complex structures on Gn k, and the 
existence of weak almost complex structures on oriented flag manifolds. 

1. Introduction 

The complex K-theory of Gnk = SO(n)/SO(k) x SO(l), where n = k + l, 
can, in principle, be calculated for n odd or k even from theorems of A t i y a h — 
H i r z e b r u c h [2] and P i 11 i e [16] (we only consider fc, / > 1 since the case 
Gn x -= Gn n _ 1 = Sn~l is well known). However, detailed results for these cases 
do not seem to be available and require substantial calculations. The situation 
where n is even and k odd is more delicate, mainly because here SO(k) x 
SO (I) is no longer a subgroup of maximal rank in 50(ra) , and no results on 
K*(Gnk) seem to be available in this case. In some sense, this case is also 
the most interesting, since spanG^ k = 0 unless ra is even and k odd (cf. [11; 
Theorem 3.1.16]), and we use the H o d g k i n spectral sequence to carry out the 
calculations here. For the real and complex K-theory of the complex Grassmann 
manifolds CGn fc, the reader is referred to [9]. 

In §2 and §3, the calculation of K*(Gnk) for ra even, k odd is carried out. The 
final result is given as Theorem 3.6. In §4, the slightly easier cases ra even, k even, 
or ra odd are completed. The main results are Theorem 4.1 and Theorem 4.3. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 55N15; Secondary 19L64, 53C15, 57R25. 
K e y w o r d s : Grassmann manifold, K-theory, almost complex structure. 

Research supported in par t by a grant to the second named author from the Natural Sciences 
and Engineering Research Council of Canada. 
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The a-construction (cf. [2], [8], or [17]) is then applied in §5 to identify 
the (stable) tangent bundle of Gnk in K(Gnk), in terms of the (K-theory) 
Pontrjagin classes px, g1. As a first consequence, we obtain an easy proof of the 
following. 

THEOREM 1.1. Apart from the spheres Gnn_1 = Gnl = 5 n _ 1 , the only 

stably parallelizable Gn k are G4 2 and G6 3 , while the only parallelizable Gn k 

are G21 = S1, G4 3 = G41 = S3,G87 = G81 = S , and G6 3 . 

We remark that this result was incompletely proved in [15], and a complete 
proof first given in [19]. R. K u 11 z e [12] has found a proof of the above theorem 
using (ordinary) Pontrjagin classes. The present proof is purely K-theoretic and 
very short. 

The existence of almost complex structures on Gn k was studied and nearly 
solved (up to about ten undecided cases) in the work of several authors, notably 
[4], [5], [18], [21], and [22]. Just as with the parallelizability results, we are again 
able to apply our techniques to give a short and direct (purely K-theoretic) proof 
of the following theorem, which completely solves this problem. 

THEOREM 1.2. Apart from the spheres G n l = Gnl = Sn~l, the only 
oriented Grassmann manifolds admitting a weak almost complex structure are 
G6 3 , Gn 2 for any n. Of these only S2 , S6 , Gn 2 , n > 4 , admit almost complex 
structures. 

This theorem is readily applied to completely settle the existence of (weak) 
almost complex structures on oriented flag manifolds, cf. Theorem 5.7. 

2. Representation rings and the restriction map 

We assume some familiarity with the (complex) representation ring of 
Spin(n), and the use of the Hodgkin spectral sequence in computing K* (G/H), 
where LI is a closed subgroup of a compact connected Lie group G with TT1(G) 

torsion free. A brief summary of these techniques is found in [1], and our nota­
tion will also be similar to that used in this reference. For further references on 
this material, see [6], [8], [10], [17]. 

Let n > 6 be even, 3 < fc < n — 3 be odd. Write n = k + / = 2(s + t + 1), 
where fc = 2s + l , Z = 2£ + 1, s,t > 1. The oriented Grassmann manifold 
Gnk is precisely the homogeneous space SO(n)/SO(k) x SO(l). To apply the 

Hodgkin spectral sequence, we lift this to Gn k = G/H, using the double cover-
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ing (/>: Spin(n) -» SO(n), where 

G = Spin(n), 

H = (t>~1(SO(k) x SO(l)) C Spin(n) . 

It is easy to see that H « Spin(fc) x z ,2Spin(Z), where Z/2 acts on Spin(fc) x 

Spin(Z) by the involution 9(x,y) = (—x, — y). 
The complex representation ring RG = R Spin(n) is conveniently expressed 

as a polynomial algebra with generators all in the kernel of the augmentation 
map e: RG ^ Z as RG = 2 ^ , . . .,Va+t_vXn,6+]. 

Here Vi (also pi, q{) denotes the ith Pontrjagin class (VQ = 1), Xn = 
A+ — A~ , 8+ = A+ — 2 s + t , and An are the standard spinor representations 
(of degree 2s+t). 

Note that 9 is not a group homomorphism, but does preserve conjugacy 
classes. Hence RH is readily calculated as the Z/2 invariant part of R(Spin(k) x 
Spin(Z)) « ItSpin(k)(g)itSpin(Z) = Z\p1,... ,pa__1,6 jb]®Z[g1,.. • , g t _ 1 , 5 / ] , where 
<5fc == Afc — 2s, <5Z = Aj — 2*. The Pontrjagin classes are all induced from cor­
responding orthogonal representations by the double cover </>, and hence are 
Z/2-invariant. On the other hand, Ak, A-, arise from certain Clifford modules 
and are Z/2-equivariant (Afc(—x) = —Afc(x)), so it is clear that RH is gen­
erated by the classes p x , . . . , p s _ 1 5 A^, g x , . . . , 9 t_1? A^, A f cAj . To obtain a class 
in Kere , write 8k L = A^A^ — 2s^~t, and we now have the following convenient 
description of RH. 

LEMMA 2 . 1 . RH ~ Z [p 1 , . . . , p 5 , g x , . . . iqt^ki\/~> w ^ ^e single defining 
relation 

6h = E (4r Ep.-A- i)--'+ t + 1*., i- (-) 
0<r<s-f£ i+j—r 

P r o o f . Since p s = A£ - £ 4*p . (cf. [1; p. 33]), the subalgebra of 
i = i 

J?Spin(fc) generated by p 1 ? . . . , p s 1 , A^ is the same as the polynomial al­
gebra Z [ p 1 , . . . , p J , and similarly, for i?Spin(Z). Then RH is isomorphic to 
Z [ p j , . . . , p s , <71?..., qv 8k J modulo the ideal generated by the minimal polyno­
mial of 8k j , which is easily seen to be the relation (1) from 

£ , = ( A , A - 2 ' + ' ) 2 

= Aj ;A; ! -2 - , + t + 1 A f c A, + As+t 

= ( E 4ťP-*)( E 4 _Л+4-+í-2'+t+Ҷдłдl-2'+V--4<' 
^ o<?:<.s ' ^ o<7<í ' 

1-H-t 

= E { 4 i + J P - ^ * - i : 0 ^ ^ 5 > 0 < j < 6 , 2 + j < 5 + t } - 2 S 

(note that the term in the sum where i = s, j = t is simply 4tS_l~t). • 

"+ t +Ч.i 
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COROLLARY 2.2. RH « P[Skl]/~, where P = Z\p1,...,ps,q1,...,qt), and 
the relation is again (1). 

Now that RH and RG are known, the next step is to determine the structure 
of RH as an iiG-module, i.e., to calculate jf̂ : RG —> RH, where j : H c-> G. 
To do this, the standard method of restricting to maximal tori is used. 

Recall </>: Spin(n) -» SO(n) is the well known double cover. Then, follow­
ing well-known methods (cf. [10; Ch. 13, §8]) the maximal tori of Spin(n) and 
SO(n) are respectively the s + t + 1 tori T ' , T , where (<f> \ T'):T' -» T 
is a double cover. Following the same reference (or [1; §4]), we have RT — 
Z[u1,u1 , . . . ,Lt5_h t+1 , ix s+ t+1J, RT = [u1,u1 , . . . ,us+t+1,us+t+1,u1u2 • . . . 
. . . - i x a + t + 1 ] , with <f>*(u2)=u2. 

To find a suitable maximal torus for FT, let </>|̂ 7 = <p: H -» SO(k) x SO(l). 
As maximal torus for SO(k) x SO(l) we select T0 C T , where relative to a 
standard basis e 1 , . . . , e n £ Kn , T0 fixes efc, efc+1 and preserves all 2-planes 
span{e2 •_1, e2 • } , 0 < j < 5 + t + 1. Thus T0 consists of diagonal blocks 

cos . sin 0 • 
— sin 0 • cos 0 • 

J J -I 

0 < j < 5 + t + 1, 

with 0 S + 1 = 0 (corresponding to the fixing of efc, e f c + 1) . Then take T0 = 
(p_1(Tc) C T ' as maximal torus of H (it is a torus since it is a finite cover of 
T0 , and clearly, has maximal rank). We have 

RTQ = Z[u?,u72 : l<i<s + t + l, i ^ s + l ] , 

RTQ^Z^^U'2,^-...>us'Us+r ...-us+t+1: l<i<s + t + l, i^s + l). 

By considering first the inclusion TQ ^ T, then j : T0
 c—> T', it is now clear that 

Ѓ(uì) = { "ľ for І ф s + 1 ђ 

for i = s + 1 . 

P R O P O S I T I O N 2.3 . We have 

(a) j*(Vr)= £ P.9,-, l<r, 
%+j—r 

(b) j#(XJ = o, 

P r o o f . Identifying representations in the customary way with their restric­
tions to the maximal torus, and letting ar denote the r th symmetric polynomial, 
for r > 0 we have 

Vr = ar(u\ + u~2 - 2 , . . . , u2
s+t+1 + uj2

t+1 - 2) 

= °V(zi> • • • iZs+t.+\) ' 
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where zi = u\ + u{
 2 — 2. 

Then 

j*Vr = ar(zv ...,zs,0, zs+2,..., zs+t+1) 

= <Jr\Zl-> • • • > Z s + l > • • • iZs+t+l) 

= E C7i(ZV-'Zs)-CTj(Zs+2T--'Zs+t+l) 
i+j=r 

= E m > 
i+j=r 

proving (a). 
For (b) and (c), first note these are equivalent to showing j#(A+ — A~) = 0, 

j # ( A + ) = A f c A / . 

A : = E «; ,---«:;v-+i1. A ; = E «r-----«.+
+.+i. 

n=.=+- n-*=-i 
where e, = ± 1 , implies 

f/s+1 • • ? / £ s + t + 1 
us+i • • • as+t+l J*(K)=J*(K)= E <1' 

= n K+^r1)- n (uj+uji)=AkAl, 
l<i<s . s+2< j<5+ t+ l 

giving the desired results. • 

Remark . We will write V[ = j # ( 7 ^ ) € RH. Also note that although I?Spin(n) 
= Z[V1,..., Vs+t_1,Xn,6n~], the classes Vr are in this ring for any r > 0; thus 
(a) holds as stated for r > 1. 

In much the same way as in the proof of Lemma 2.1, the relation Vs+t = 

A + A - - _ Ak~lVs+t+l_k, in RSpin(n), implies 
2<k<.s + t + l 

A~Z[PlJ...JV3+t] C i t S p i n ( n ) . 

We also write L for the subalgebra Zf 'P j , . . . , Vs+t_1] of A. From Proposi­
tion 2.3(a), j ^ : A - > P c itPf, hence RH has a A-module (and L-module) 
structure induced by j # . 

LEMMA 2.4. RH is free as a A-module. 

P r o o f . From Corollary 2.2, RH is free as a P-module (on generators 
l,<5fcZ), so it will suffice to show that P is A-free. For the purpose of this 
proof (and a few times later), we introduce gradings on these rings by letting 
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w(p{) = w(qi) — w(V{) = i, i > 1. Then j * : A —» P is a homomorphism of 
L/j-graded algebras, and we can rewrite 2.3(a) in graded form as 

1 + V[ + • • • + 7 ^ + t = (1 + Pl + • • • + p j ( l + q1 + ...+qt). 

Now consider the fibration p: B(U(s) x t/(t)) = BU(s) x 5/7(1.) -> BU(s + t) 
with fibre C G s + t s = U(s + t)/U(s) x £7(£). The cohomology structure of these 
spaces is well known, but in any case following [19; Ch. 5, §7], we note first 
that the bundle admits a cohomology extension of the fibre with Z coefficients, 
whence the Leray-Hirsch theorem implies that H*(BU(s) x BU(t)]Z) is a free 
H*(BU(s + i); «Z)-module via p*. But apart from notation, A is the same as 
H* (BU(s +1)-, Z) , P the same as H* (BU(s) x BU(t); Z) , and j # the same as 
p*. Hence P is A-free. • 

COROLLARY 2.5. RH is free as an L-module. 

3. Calculation of K*(Gnk), n even and k odd 

Having determined the structure of RH as an i?G-module, we now turn to 
calculating Tor*RG(RH, Z), the E2 term of the Hodgkin spectral sequence. First 
we reduce this to a simpler calculation by applying a change of rings theorem. 

DEFINITION 3 .1 . Let A = RG/(VV . . . , Va+t_x), B = RH/(V[,..., Va+t^) -

Notice that B becomes an A-module, the structure induced by j # : RG —> RH 
(recall V[ = j^(V{)), and also that A is just the polynomial algebra A w 

z[*».tf]-
L E M M A 3.2. Tor^G(RH , Z) « Tor^(B , Z) . 

P r o o f . Following [7; Ch. 16, Theorem 6.1] and the related definitions, we 
wish to apply the change of rings spectral sequence 

Tovn(Tor^(M,K),C) = > T o r r ( M , C ) , (2) 

where $ = L = Z[Pt,... ,Va+t_x], T = RG, M = RH, K = C = Z, n = T//y> 
with <p: L '—> RG. We check that 

(a) <p is supplemented since the composition e<p: L —> Z is the same as 
e: L-*Z. 

(b) RG = L[Xn,6+] is clearly L-flat. 
(c) (p is normal since BO is commutative. 

Now Q, = T//<p = T / r • (<pIL) = RG/(IL), where IL is the augmentation 

ideal Kere . Thus 
Q = RG/(V1,...,Vs+t_1) = A. 
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Substituting into (2), we have Tor^(Tor£(BH ,Z) ,Z) ==> Tor*RG(RH,Z). 

Recall, by 2.5, that BH is L-free. Therefore 

Tor^(BH , Z) = Tor°L(RH, Z) « RH ®L Z « RH/(V'_,..., Va+t__) = B , 

since L acts trivially on Z. The spectral sequence thus collapses and gives 
Tor^ (B, Z) « Tor^G (BH, Z). • 

Since A = Z[Xn,6
+] is a polynomial algebra, the Koszul resolution can be 

applied to compute Tor^(B .Z) (cf. [14; p. 205]). 

D E F I N I T I O N 3 .3 . Let Hst = Z\p _,..., Ps, qv..., qt]/(V[,... ,V's+t). Note 
that as a graded algebra via w (as in the proof of 2.4), we can write 

Hs,t =Z[p_,...,ps,q_,..., qt]/((l + p_ + • • • + ps)(l +q1 + ---+qt)-l). 

Note, also, that as a graded algebra, Hs f is isomorphic to the integral co-
homology ring H*(CGs+t <s; Z), which is well known to be free as an abelian 
group. 

THEOREM 3.4. Tor^G(ItIJ,Z) « E_\[X]®H t , where E_\[X] is exterior alge­
bra over Z on the generator X. The isomorphism is an isomorphism of graded 
algebras with degX = 1. degp^ = dega = 0. 

P r o o f . Tor*RG(RH, Z) « T o r ^ ( 5 , Z) by 3.2, so we compute the latter . 

*>s+t + lc B = Z[p_,...,Ps,q_,...,qt,6k,] (V'_,...,V's+t__,6ll + 2 

£ 4 r X) Ps-iЧt-
0<r<s+t i+j—r 

A = Z[Xn,6+), 

and B is an A-module via 9: A —> B (induced by j # ) , where, by 2.3, 0(Xn) = 0 

and 0(6+) = 6k z , writing 6k t for the class of 6k t in B. The Koszul complex of 

A is E* = A*A[X,D], degX = degD = 1, d(x) = Xn, d(D) = 6+. Together 

with e(Xn) = e(6„) = 0, this gives E* -» Z, a free yl-resolution of Z . Then 

T o r ^ H Z ) = H^(B®A E*) = H„(A*B[X,D]) 

with d(X) = 9(Xn) = 0, d(D) = 8(6+) = 6kl. We have thus to compute the 
homology of the chain complex 

0 — • B -^B®B ----> B—>0 
XAD X,D 1 

with d_(X) = 0, d2(D)=6kl, d_(XAD) = 0-D-X-6kl =-6kl-X. Clearly 

Hi = 0, i > 2, and Hx « HQ « B/(6kl), where H0 is generated by 1, and Hx 

by X . Thus 
Tor*A(B,Z)*E*z[X]®(B/(6ktl)). 
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To complete the proof, we simply note 

E ^ E Ps-U-j = E ^Ut+r (by 2.3) 
0<r<s+t i+j=r 0<r<s+t 

= z + t + E 4S+t~JVJ > 
l<j<s+t-l 

hence, 

B/(6ktl)*qplt...tpatqlt...tqt]/(Vlt...tPa+t_lt E 4 r E Ps-iQt-j 
1 x 0<r<s+t i+j=r 

*Z\p1.....Pa.q1.....qt]/(V[,...,V^^^ 

D 

COROLLARY 3.5. The Hodgkin spectral sequence for Gn k collapses. 

P r o o f . Since E2 is 0 unless p = 0 , 1 , by 3.4, all differentials vanish for 
dimensional reasons. D 

THEOREM 3.6. K*(Gnk) « E_l[X]®Haj, where degX = 1 and degHst = 0. 

P r o o f . One applies the techniques of [1; 6.1-6.5], which solve the extension 
problem to reconstruct K* from E^ = E2 • D 

4. K*(Gnk), n odd or k even 

We are now in the situations where IF is a subgroup of maximal rank in G, 
so the answer is given at least in theory by a theorem of P i 11 i e [16] (or see [8; 
p. 81]): 

K(Gn>k) = K(G/H)*iRH®RGZ> 

K\Gntk) = 0. 

Here RG acts on RH by restriction and on Z by dimension. It is also proved 
there that RH is now a free i?G-module, which is easily seen to imply that 
K(Gn J i s a free abelian group (as far as its additive structure) and, in partic­
ular, is torsion free. 

In spite of this simplification of the work as compared to §2 and §3, it is still 
non-trivial to determine the precise structure of K(Gn k) here, due mainly to 
algebraic complications. We will first state and prove the result for n even, k 
even, then handle the n odd case. 

Let n = 2ra = k + I, ra>3, k = 2S, Z = 2t, s,t > 1, u — s + t — 1. 
Recall RSp'm(k) has the Pontrjagin classes px,p2,... as well as A ^ , A~ , and 
similarly, i?Spin(Z) has qx,q2,... , A/", A.T . Defining H3t exactly as in Defi­
nition 3.3, and setting A + + = Aj"A^ , A + _ = A^A^T , we have the following. 
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THEOREM 4 . 1 . K(G2s+2U2s) « H5)t[(A+)2,(A+)2,A++,A+-]/~, where 
the relations are derived from (a) - (f) below, and the torsion freeness of 
K(G2s+2t,2s): 

(a) 2 s + t - 1 A + + = 5 s ( A + ) 2 + 5 t ( A + ) 2 , 

(b) 2 - + ' " ^ + - = -gs(At)2+gt(At)2 + ftgs, 
(c) Ps((At)*-gt)=0 = qt{(At)2-gs), 
(d) (A+) 4 = / s ( A + ) 2 - 5

2 , 
(e) (A+) 4 = / t ( A + ) 2 - 5 t

2 , 
(f) (A+) 2 (A+) 2 = 5 t ( A + ) 2 + g3(Aty - gs9t, 

S 

with gs = E 4 « - V s _ i € Bs>t, / , = p s + 2 5 s e HSjt, and gv ft _ Hst are 

defined similarly. 

R e m a r k . It is not necessary to change to augmentation 0 classes (<5^)2, etc. 
here since the Koszul resolution will not be needed. We could similarly replace 
the Pontrjagin classes by exterior powers, but this seems less convenient so is 
not done. The notation fs, gs, ft, gt is slightly ambiguous if s = t, but the 
correct interpretation should always be clear. 

P r o o f of T h e o r e m 4.1. As in §2, Gnk = G/H, where G = Spin(n), 

H = Spin(fc) x z / 2 S p i n ( 0 , and RG = TL\PX,..\ ,Vs+t_2, A+ , A " ] (recall m = 

n/2 = s + t). 

Also, as in §2, we calculate RH as the Z/2-invariant part of 

R(Spin(fc) x Spin(l)) = Z [p x , . . . ,ps_2, qv ...,qt_2, A+, As", A+, A " ] . 

Now recall 

i=2 \6) 

P.S = ( A + - A ; ) 2 , 

and similarly for qt_1, qt (cf. [1; p. 33]). Proceeding as in §2, it is now clear that 
RH is generated by Pl,... ,ps_2, qv ... ,qt_2, (A+) 2 , ( A j ) 2 , ( A + A j ) , (A+) 2 , 
( A " ) 2 , A + A " , A + A + , A + A " , AjA t +, A j A " . Equivalently, using (3) and the 
notation A£ri = A^Aj' for e,n 6 {+ , — } , RH is generated by px,... , p s , q1,... 
. . . , q t , ( A + ) 2 , ( A + ' ) 2 , A + + , A + - , A - + , A - - . 

R e m a r k . The argument thus far really only holds for 5, t > 1. However, in the 
somewhat trivial case 5 = 1 or t = 1, it is easy to check directly that the last 
set of generators given for RH is still correct (recall A ^ A ^ = 1). A similar 
statement applies in the proof of Theorem 4.3. 
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Again using (3), 
( A ; ) 2 = / S - ( A + ) 2 , 

A + A ; = 9s,
 (4j 

and similarly for ( A ^ ) 2 , A + A ^ . 
The subalgebra P of RH generated by {pvqA is clearly a polynomial 

algebra. Furthermore, the elements 1, (A+) 2 , (A+) 2 , (A+) 2 (A+) 2 , A++, A+~, 
A h, A - - generate RH as a free P-module, due to the following relations: 

(i) (A+)4 = / s ( A + ) 2 - 5
2 , (A+)4 = / t ( A + ) 2 - 5

2 , 
(ii) (A+)2 A+" = fs A+" - gs A " " , (A+)2 A£+ = ft A

e+ - fft A c " , 
where £,77 G {+ , — }, 

(iii) (A+)2A"" = gsA+*>, (A+)2Ae" = S fA
£+, 

(iv) A++A+- = <7t(A+)2, 
(v) A + + A - + = 5 s ( A + ) 2 , (5) 
(vi) A + + A ~ = &+-&-+=gs9t, 

(vii) A - A + - = 5 s ( / t - ( A + ) 2 ) , 
(viii) A - A " + = 9 t ( / s - ( A + ) 2 ) , 

(ix) (A++)2 = (A + ) 2 (A + ) 2 , 
(x) (A+")2 = ( A + ) 2 ( / t - ( A + ) 2 ) , 
(xi) (A-+)2 = ( A + ) 2 ( / s - ( A + ) 2 ) , 

(xii) ( A - ) 2 = ( / s - ( A + ) 2 ) ( / t - ( A + ) 2 ) . 
Most of these relations are very easy to verify. For example, let us prove (i) 

and (ii), the others are even easier. 

(A+ ) 4 = ( (A + ) 2 + (AJ ) 2 ) (A + ) 2 - ( A + A ; ) 2 = / S ( A + ) 2 -g] , using (4). 

(A+)2A+" = ( / . - (A7 ) a )A+A? 

= /.,A+" - A + A ; AJ A? = / S A + " - gaA"" , again using (4). 

Turning to the restriction map j ; * : RSpm(n) —> RH, the fact that II has 
maximal rank in G = Spin(n) means they have the same maximal torus. It is 
then easily calculated that 

J*(K) = £ Pi«j> r ^ l' 

j # ( A + ) = A + + + A - - , 

j # ( A - ) = A + - + A - + . 

As an immediate consequence 

K(G2s+2tt2s) « BH ®HG Z » Ha>t [(A+)2, (A+)2 , A + + , A + - ] / - , 

where the relations comprise all of (5) together with A = 2" — A + + , A h = 
2U - A + - (recall u = s + t-l). 
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This is essentially Theorem 4.1, apart from a tedious but fairly routine task 
of showing that the 22 relations involved reduce to the relations (a) - ( f ) in 
Theorem 4.1 (note (d), (e) are identical to (i)). Rather than giving all details of 
this calculation, we will outline the derivations of (a), (b), (c), (f) and leave it 
to the reader to either take on faith or to verify that all the 22 relations can in 
turn be derived from (a)- ( f ) , the relation in Hst, and the torsion freeness of 

^-(^Jr2.s+2t,2.s) • 

To do this, first recall (1 +px + • • • +ps)(l +q1 H \-qt) = 1 is the relation 
(in the graded sense) in Hs t. Then it is not hard to derive the following helpful 
formulae in Hs f: 

fs9t + ft9s = 4" , 

Ps9t + Qt9s+*9s9t = *u, (6) 

/ , / t + 4 ^ = 2 . 4 " , j y z t = 0 . 

Combining (iv), (v), and (vii) gives (substituting for A h , A ~ ~ ) 

A + + A + - = gt(Af)2 = -gs(At)2 + 2 U A + + = <?S((A+)2 - ft) + 2 " A + ~ ; 

(a) and (b) follow at once by solving for 2 " A + + , 2 u A + ~ . 
Similarly, from (vi) and (ix), 

( A + + ) 2 = ( A + ) 2 ( A + ) 2 = 2UA++ - gs9t, 

(Af)2(At)2=gs(At)2+gt(Af)2-gsgt, giving (f). 

Also 

( A + + ) 2 = ( A + ) 2 ( A + ) 2 

= (2U - A'')2 = 4U - 2 U + 1 A — + ( A — ) 2 

= Au_ 2u+i{2u _ A + + ) + f J t _ fAA+)2 _ / t ( A - ) 2 + ( A
+)2(A-)2 

from (xii), giving 

0 = - 4 " + 2(9s(At)2 + 9t(Af)2) + fjt - fs(At)2 - ft(A;)2 -4U + fjt 

= Qt(K)2 + ps(K)2 • 

Similarly, using the relations (x), (vi), (xi), one derives 

4u-2gJt = -qt(At)2+ps(At)2. 

These last two formulae can easily be proved to be equivalent to the relations 
(c), using the fact that K(Gn k) is here torsion free. • 

329 



P. SANKARAN — PETER ZVENGROWSKI 

COROLLARY 4.2. Q ® K(G2s+2t 2s) « (Q ® Hst)[a, /3]/~, relations being 

ps(3 = qta = afi = 0, a2 = ps(a + gs), (32 = qt(P + 9t) • In particular, Q®Hst 

is a subalgebra, so H t is a subalgebra of K(G2sJ_2t 2s). 

This is evident upon setting a = (A+) 2 - gs, (3 = ( A ^ ) 2 - gt. 

As an example, Q®K(G4 2) ~ Q ® ^ : [ a , / 3 ] / ~ with relations px(5 = qxa — 

a/3 = 0, a 2 = F!(o;+55), /32 = Qi(P+9t). One readily finds that as a vector space 

over Q, { l ^ - a . , ^ } is a basis. This corresponds to the fact G42 = S2 x S2, 

and K ( 5 2 x S2) is well known to b e Z 4 . 
Since Gn k = G n ^, for the remaining case with n odd it suffices to consider 

k even. Let n = 2s + 2t + 1, k = 2s, I = 2t + 1, 8 > 2, t > 1. Then i t Spin(fc) is 
as before, while R Spin(Z) now has q^..., qt_1,At. With Hst,fs,gs as before, 

let A+ t = A + A t , A7ft - A ; A t , and set ht = £ 4 V i -

THEOREM 4 .3 . # (G 2 a + 2 t + 1 | 2 a ) « # s , t [(A+)2 , A+ t ] / ~ wtfJi nefatums (A+) 4 

= / 5 ( A + ) 2 - g2 , 2s+t A+ t = / i t ( (A+) 2 + gs) and torsion freeness. 

P r o o f . Proceeding as in the previous case, one concludes that 

BH = Z [ p 1 ) . . . , p , , g 1 , . . . ) g t , ( A + ) 2 , A +
t , A - t ] 

C Z\px,..., ps_2, q, , . . . , ^ , A + , A ; , A t] = R(Spin(k) x Spin(Z)) . 
Again, the subalgebra V of RH generated by the p i and q- is a polynomial 
algebra. One also has the following formulae in RH: 

(A7)2 = / S - (A + ) 2 , 
A + A ; = f f s ) (7) 

A2 = V 
Then RH « P [ ( A + ) 2 , A +

t , A j t ] / ~ , with relations 

0) (A+)4 = /s(A+)2-5
2,' 

(ii) ( A +
t )

2 = /x t (A + ) 2 , (8) 

(iii) A +
t A - t = p s / i t ) 

(iv) ( A - t ) 2 = ( / . - ( A + ) 2 ) ! l t , 

(v) ( A + ) 2 A - t = 9 s A +
t , 

(vi) ( A + ) 2 A + t = / s A + t - ^ A - t . 
The proofs of these relations are again quite easy, we remark only that (i) is 

the same as in the previous case, and for (vi) one first uses (A+) 2 — fs — ( A ~ ) 2 . 
The restriction map satisfies 

j*cpr)= E p.^' 
i+j=r 

j#(As+t) = A +
t + A - t . 
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So clearly, K(G2s+2t+1 2s) « Hs t [(A+)2 , A * t ] / ~ , where the relations consist 

of those in (8) together with A+ f + Ast = 2V, v = s + t. 

This is essentially Theorem 4.3, apart from an algebraic exercise (much easier 
than in the previous case) showing that the 7 relations reduce to the two stated 
in the theorem. Again, we spare the reader the details and merely note that the 
relation (fs + 2gs)ht = 4V follows from the defining relation in Hs t and is useful 
in the reduction. • 

C O R O L L A R Y 4 .4 . Q® K(G2s+2t+12s) * (Q® Hs)t)[a]/(a2 =Ps(a + gs)). 

In particular, Q ® Hs t is a subalgebra, so Hst is a subalgebra of 

^(^2_+2 .M - l ,2s ) ' 

For the applications, the fact that Hs t is in all cases a subalgebra of K(Gn k) 
will be important . It will also be useful to have a complete set of relations 
for K(G2s+2t 2s) (without the extra assumption of torsion freeness). This is 
easily done by removing A •", A~~ from all twenty relations in (5), using 
A ~ + — 2U — A-1 , A~~ = 2U — A + + , then discarding any redundant relations. 
We simply state one such set of relations without proof in the next result; again 
it is tedious but routine to verify that these relations are equivalent to those 
in (5). 

PROPOSITION 4 .5 . K(G2s+2t<2s) « Hst [(A+)2 , (A+)2 , A++, A + " ] / ~ , where 
the relations are (a) -(f) in Theorem 4.1, and: 

/., A++ + 2gs A + - = r ((As+)2 + gs) = fsA
+~ + 25 sA++ , 

/ t A + + - 2 < 7 t A + - = 2 " ( ( A + ) 2 - « 7 t ) , 

/ t A + - - 2 5 t A + + = 2 U ( - ( A + ) 2 + / t -gt) , 

( A + ) 2 A + + = 2 " ( A + ) 2 - 5 . A + - , 

( A + ) 2 A + - = 2 u ( A + ) 2 - 5 . A + + , 

( A + ) 2 A + + = 2"(A+)2 + gtA
+~ - 2ugt, 

( A + ) 2 A + - = 9t A
+ + , 

A + + A + " = 9tA++ > 

( A + + ) 2 = 5 t ( A + ) 2 + 3 . ( A + ) 2 - 5 . 5 t , 

+ \ 2 _ „ (\ + \2 
(A+')2 = (1* - 9t){At) " 9siAt) + 9s9t' 
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5. The tangent bundle of Gnk 

Let 7 be the universal oriented k-plane bundle over Gn k, "j- its orthogonal 
complement (an oriented /-plane bundle), and r the tangent bundle. It is well 
known (cf. [13]) that 7 0 7 1 « ne and 7 ® j - « r , where ne is the rank n 
trivial bundle. 

Let \k be the first exterior power representation on Spin(fc), which can 
be thought of as id: SO(k) —» SO(k) induced up to Spin(k), so \k = 4>: 
Spin(k) -» SO(k). It is clear that the a-construction on \\ is just [7] G 
itX>(GnA.), and similarly, a(\}) = [^]. Thus 

As usual, c: KO —> X denotes the complexification homomorphism. 

L E M M A 5 .1 . [CT] = pxqx + k<7x + lpx +kl G # M c if(Gn ? f c) . 

P r o o f . We simply use the above formula, giving [CT] = OL(C\\ ® c\j), the 
relations cA£ = p1 + k, cÂ 1 = ^ + Z, and the fact that a is a homomorphism of 
rings. • 

PROPOSITION 5.2. For k, n — k > 2. Gnk stably parallelizable implies 
(n,fc) = (6,3) or (4,2) . 

P r o o f . Taking advantage of the w grading of Hs t, as remarked after 3.3, 
we see that CT is trivial if and only if p1q1 = 0 and kq1 + lpx = (I — k)p1 = 0. 
The relations in Hs t show pxqx = 0 only when s = t = 1, while (Z — k)px = 0 
implies k = I. This leaves k = I = 2 or fc = Z = 3 as the only possibilities. • 

THEOREM 1.1. Apart from the spheres Gnn_1 = Gn?1 = Sn~l, the only 

stably parallelizable Gn k are G4 2 and G6 3 . TD/iiZe the only parallelizable Gn k 

are G21 = S1, G43 ^ G41 = S3, GSJ = GS1 = S7, and G63. 

P r o o f . Excluding the well-known results for spheres, Proposition 5.2 shows 
only G6 3 and G4 2 can be stably parallelizable. Now G4 2 = S2 x S2 is obviously 
stably parallelizable but not parallelizable (indeed, has non-zero euler charac­
teristic, hence span zero). For a proof that G6 3 is parallelizable, cf. [15] or [19]. 

• 

We now turn to the non-existence proofs for weak almost complex struc­
tures on Gn k. The knowledge of complex conjugation within K(Gn k) will be 
essential, and this is accomplished by the next two lemmas. 

332 



K-THEORY OF ORIENTED GRASSMANN MANIFOLDS 

LEMMA 5 .3 . Let T: BSpin(2m) —> BSpin(2m) denote the ring automorphism 
induced by complex conjugation. Then 

r ( p j = p^ 0<i<m, 

i ( Alt i Tn even, 
r(A+j = ^ m ' m) l A - , m odd, 

r(A-) = ( A - ' m e u e n ' 
m [ A+ , m odd. 

P r o o f . In the maximal torus, r ( i^ ) — ui — u~ , and the formulae in the 
lemma follow immediately from the formulae for pi, A + , A ^ in term of the u{ 

(cf. proof of Proposition 2.3). • 

The next result is an easy consequence of Lemma 5.3 and the definitions of the 
various generating classes, and the proof is omitted. We also use an obvious short­
hand notation, e.g., (9) will be written T(A^) = A ^ , where s,ef E { + , — }, 
and e' — e for m even, e' ^ e for m odd. 

LEMMA 5.4. In K*(Gnk) one has the following formulae (when the class in 
question is defined, and using the above notations). 

(0 r(p2)=P ? ; . r(q.) = qi9 

(ii) T(A^)2 = (A* ) 2 . where e' = e, s even, and e' ^ e, s odd, 

(iii) T(AET1) — A£ v , where e' is as in (ii), and rf = r\ for t even, rj' ^ r\ 
for t odd, 

(iv) T(A^ t) = Ae
st, e' again as in (ii). 

Before proving the main theorem on weak almost complex structures, let us 
recall that for any complex vector bundle £ one has cp(£) ~ £ + r £ , where p is 
realification. Also for any real vector bundle a one has pc(a) ^ 2a , in particular, 
twice any real vector bundle admits a complex structure. Finally, for the case 
(*2s+2t 2.s (that appears most delicate), we will use K(G2s+2t2s) eg) (Z/2) and 
the following lemma. 

LEMMA 5.5. Let Hsf = (Z/2)\pxl... ,ps,qv ... ,qt]/~, the relations being 

(1 + P1 + • • • + ps)(l + qx + • • • + qt) = 1 , p3qt-x = Ps^qt = 0 . 
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Then # ( G 2 s + _ t _J<_,( Z / 2 ) « HS)t[(A+)2, ( A + ) 2 , A++, A + - ] / ~ with relations: 

0 = p 5 _ 1 ( A + ) 2 + g t _ 1 ( A + ) 2 = P s ( A + ) 2 = , t ( A + ) 2 = P s A + + 

= p 8 A + - = 9 t A + + = g t A + - , 

^ ) 4 = P s ( A + ) 2 + p 2 _ 1 , 

W ) 4 =, t (A + ) 2 + g t

2_1, 

( A + + ) 2 = ( A + ) 2 ( A + ) 2 = ( A + - ) 2 = P s _ 1 g t _ 1 , 

Д + + Д + - _ 
Яt-liЮ 

2 

( A ^ ) 2 A + ~ = P S : A + + , 

( A + ) 2 A + + = P S _ I A + - ) 

( A + ) 2 A + - = ( 7 t _ i A + + , 

( A + ) 2 A + + = g t _ i A + - . 

F r o o f. I n Proposition 4.5, we have a complete set of relations for' 

K v^25-f2t,2s) a s the quotient P / J of the polynomial algebra 

P = Z [ P l , . . . , p s , Q l , . . . , g t , ( A + ) 2 , ( A + ) 2 , A + + , A + - ] 

by the ideal J = (Fv ..., F19), where the E. are the relations in 4.5 together 

with the (graded) relation in Hst. Let 

7r:P^P®(Z/2) = (Z/2)[Pl,...,ps,q1,...,qt,(A+f,(A+f,A++,A+-} 

be the usual epimorphism, and let J2 be the ideal in P eg) (Z/2) generated by 
7TF 1 5 . . . , 7rF 1 9 . Using the result of a problem in [3; p. 31, #2] (taking A = P , 
3 = J , M = P (g) (Z/2) in the notation used there), we see at once that 

* ( G „ + „ , „ ) ® (Z/2) « P ® ( Z / 2 ) / ( T T F 1 , . . . , 7TE19) . 

Thus we simply take the mod 2 reductions TT of all the relations in 4.5 to get 
the relations giving K(G2s+2t2s) <g> (Z/2). Noting that irfs = p 5 , 7rgs = p s _ x , 
7r/̂  = c7̂ , ngt = g t - 1 , and also that taking TT of relations (a), (b) immediately 
gives ps_1qt — 0 ( s o a i S O PsQt-i = 0)> while no further relations occur in rFs t 

itself, the remainder of the proof is just the routine rewriting of the 7rP?. • 

THEOREM 5.6. Let n — k + l > 7. k,/>3. Then Gn k is not almost complex. 

P r o o f . Suppose Gn k is weakly almost complex, i.e., 

[r] -kl = P(0 e KO(Gnk) 
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for some £ G K(Gn k). Using Lemma 5.1 for C[T], taking c gives 

Pi9i = ( f c - 0 P i + £ + r £ . (io) 

The remainder of the proof depends on the parities of s, t, where k = 2s or 
25 + 1 and I = 2t or 2t + 1. However, the idea in each case is generally to find 
r £ , using Lemma 5.4, and show that (10) then leads to a contradiction in the 
graded subalgebra Hst (or H t). The fact that Gnk = Gnl, which renders 
certain cases redundant, is used without mention below. 

Casel. For k, I even K(G2s+2t<2s) = Hs>t [(A+)2 , (A+) 2 , A++, A + " ] / ~ 
as given by Theorem 4.1. Then 

£ = a0 + a^A.1) 2 + a 2 (A+) 2 + a3A++ + a4A+~ , a. e HM. 

To compute r £ , various subcases are necessary. 

Case ( la) . Let s, t both be even. Note s,t > 2, and, from Lemma 5.4, 
r f = £, so (10) reduces to p1g1 = 2(s - t) + 2£. In # ( G 2 s + 2 t ? 2 s ) <g> (Z/2) , this 
gives pxqx = 0, and, from Lemma 5.5, this is impossible for s,t > 2. 

Case ( lb) . Let s, t both be odd, s,t > 3. Here 

r f = a0 + a x ( A ; ) 2 + a2(A,7)2 + a 3 A ~ + a 4A~+ . 

Using (4), (10), and A + + + A~~ = 2U = A+~ + A " + , where u = s + t-l>5, 
we find 

PlQl = 2 [(S ~ *)Pl + a0 + ai^s + a 2 ^ + 2 n _ 1 ( a 3 + a
4)] + aiPs + a 2 ^ ' 

Now passing to K(G2s+2t2s) ® (Z/2) and looking at grading 2 in Hat (note 
s,£ > 3, and the relations in Hs f are homogeneous, so do not alter grading), 
we find p1r/1 = 0, which is the same contradiction as in (la). 

Case (lc). Let s be even, t odd, so s > 2, t > 3. Write t' = i - 1 > 2. The 
usual inclusion 2 = G2s+2t\2s *""* *^2s+2£ 2s sat1si1es 

* (T2.s+2t,2.s) ~ r2s+2t',2s © 2 7 > 

where 7 is the universal 2s-bundle over G2s+2t, 2s. Since 27 is almost complex 
(as remarked before the statement of the theorem), we see that i^(r2s+2t2s) is 
weakly almost complex if and only if r2s+2ti^2s 1s weakly almost complex. Using 
Case (la) it follows that neither bundle is weakly almost complex, hence also 
r2s+2t 2.s ls n o t w e a k l y almost complex. 

Case 2. Let k = 2s, I = 2t + l. Here K{G2s+2t+h2s) « II<SJ(A+)2, A + ^ -

as given in Theorem 4.3. Then £ = a0 + a 1 ( A ^ ) 2 + a 2 A+, , ai € Hs,ti a n d 5 > 2 . 

i > 1. 
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Case (2a). For s even T£ = £, and we have 

plQl = (2s - 2 t - l)Pl + 2a0 + 2a x (A+) 2 + 2 a 2 A J t . 

Multiplying through by 2V~~1, where v -= 5 + 1 , and using the relation on 2^A+ t 

in Theorem 4.3, we find 

2V-1P191 = 2v~\2s - 2 t - l)Pl + 2va0 + a2htgs + (2va, + a2ht)(A+)2 . 

Now Corollary 4.4 implies that { l , a } forms a basis for Q <g> K(G2s+2t+12s) as 

a (Q ® Hs t)-module . Since a = (A+) 2 - gs, ( l , ( A + ) 2 } is also a basis, and 

hence, the submodule of K(G2s+2t+1 2s) generated by ( l , (A+) 2 } is free as an 
Hs ^-module. In particular, from the last equation, 

2v"1Pi9i = 2"_ 1(2s - 2t - l)Pl + 2"a0 + a2htgs . 

Noting that il = s + £ > 3 , w e find in gradings 0, 1 that 

(K9sr = 4 - 1 = 2 2 - 2 , (ht9s)^=0. 

Hence, in grading 1, 

0 = 2"~1(2s - 2t - l)Pl + 2va{
0
1] + 2 2 v " 2 a ^ , 

0 = (25 - 2t - l)Pl + 2aJ)
1) + 2 • 2"-2a^1) , or Pl = 2b in H{

SJ . 

This relation is impossible in HSJ, which is the free abelian group generated 

by Pi-

Case (2b). For 5 odd, s > 3 , let v = s + 1 > 4 . We find 

plQl = (2s - 2t - l)Pl + 2a0 + alPs + 2(al9s + 2 v " 1 a 2 ) , 

again impossible in grading 1. 
Case 3. Let fc = 2s + 1, Z = 2< + 1 both be odd. Without loss of generality, 

we may suppose 1 < s < t and t > 2. By Theorem 3.6, we have £ — aQ £ Hs f, 
Y£ = £, giving p ^ = 2(s — £)px + 2a0 , again a contradiction. • 
Remark . Case (lc) could also be handled by the If-theory, but with somewhat 
more work than the "inclusion" method used above. 

Combining Theorem 5.6 with the well-known results about almost complex 
structures on Gnk for fc = 1,2 (cf. [5], [21]), Theorem 1.2 is immediate. 

THEOREM 5.7. Let n1 > •• • > ns > 1 be integers, s > 3 , and let n = 

nx + ••• + ns . Let M denote the oriented flag manifold G ( n 1 , . . . , n J = 
SO(n)/(SO(nx) x • • • x SO(ns)) . Then M admits a weak almost complex struc­
ture if and only if at least one of the following holds: 

(i) nx arbitrary, n2<2; 

(11) ni < 3 . 
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P r o o f . The necessity follows from the observation that M is fibred by 
G + — G(nvn2), which is not weakly almost complex by Theorem 1.2 if 
rij > 4 and n2 > 3 . 

The sufficiency can be deduced using the description of the tangent and 
normal bundles of M as in [13], and the following facts: 

(a) A2(£) ~ eR , A2(r/) « rj if £ and 77 are orientable real vector bundles with 
rank £ = 2, rank 77 = 3, 

(b) any oriented rank 2 real vector bundle admits a complex structure, 
(c) for any two real vector bundles £ and 77, £ ®R 77 admits a complex 

structure if £ admits a complex structure. 

We omit the details. • 

R e m a r k . Recent work of T a n g Z i - Z h o u (cf. [22]) shows that the (unorien-
ted) Grassmann manifold Gnk, 2 < k < n / 2 , admits a weak almost complex 
structure if and only if n = 2k — 4 or 6. It is known that G4 2 does not admit 
any almost complex structure (cf.[18; Lemma 3.1]). 
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