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DOMINATION IN CUBES 

BOHDAN ZELINKA 

ABSTRACT. The graph of the n-dimensional cube is the graph whose vertex set is 
the set of all n-dimensional Boolean vectors and in which two vertices are adjacent if 
and only if they differ in exactly one coordinate. In the paper the k-domatic number 
and the edge-domatic number of these graphs are studied. 

The graph Qn of the n -dimensional cube is the graph whose vertex set is the 
set of all ^-dimensional vectors (v,, ... ,r„), where v, = 0 or v, = 2 for / = 1, ... 
..., rz, and in which two vertices are adjacent if and only if they differ exactly 
in one coordinate. 

We shall study the edge-domatic number and the k-domatic number of these 
graphs. 

The domatic number of an undirected graph G was introduced by E. 
Cockayne and S. T. Hede tn iemi in [1]. The edge-domatic number and 
the k-domatic number were introduced by the author of this paper in [2] and [3]. 

A subset D of the vertex set V(G) of a graph G is called dominating if for each 
vertex x e V(G) — D there exists a vertex y e D adjacent to x. If k is a positive 
integer and if for each vertex x e V(G) — D there exists a vertex y e D whose 
distance from x in G is at most k, then the set D is called k-dominating. If D is 
a subset of the edge set E(G) of G and for each edge e e E(G) — D there exists 
an edge fe D having a common end vertex with e, the set D is called a 
dominating edge set of G. 

A partition of V(G), all of whose classes are dominating (or k-dominating) 
sets in G, is called a domatic (or k-domatic respectively) partition of G. A 
partition of E(G), all of whose classes are dominating sets in G, is called an 
edge-domatic partition of G. The maximum number of classes of a domatic (or 
k-domatic, or edge-domatic) partition of G is called the domatic (or k-domatic, 
or edge-domatic respectively) number of G. The domatic number of G is 
denoted by d(G), the k-domatic number by dk(G), the edge-domatic number by 
ed(G). 

In the following the vector (v,, ..., vn) will be denoted simply by v, ... vn. The 
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symbol (v] ... v„, v\ ... v'„) will denote the edge in Qn joining the vertices 
v, ... v„, v\ ... v'„. 

Theorem 1. Let k, n be integers, let \ _\ k _\ n. Then 

dk(Qn)_z2k~]d(Qn_k+]). 

Proof. Denote d(Q„_k + ]) = p. Take the cube graph Qn_k + ] and choose 
a domatic partition 2 of it with p classes Z),, ..., Dp. Now let M be the set of 
all ordered k-tuples (/, h], ..., hk_ ,) of integers, where \ = i = p and each h} is 
0 or 1. The cardinality of M is 2k~ ]p. Consider the cube graph Qn. We shall 
construct a partition 2* of the vertex set of Qn whose classes will be Dm for all 
elements me M. Every vertex v} ... v„ will be in L>* such that m = (v„ _ k + 2, ..., v„), 
where / is the number such that v] ... v„_k + ] e D/m Q„_k + ]. We shall prove that 
2* is a k-domatic partition of Qn. Let m = (1, h], ..., hk_]) e M and let 1/ = 
= vx ... v„ be a vertex of Qn. Suppose that v <£ Dm. Let w = vx ... v„_k + ]h] ... 
... hk_x\ this is a vertex of Q„. As the vectors v, w differ in at most k — 1 
coordinates, their distance in Qn is at most k — 1. In Qn _ k + , consider the vertex 
v' = vx ... v„_k +,. This vertex either belongs to D, or is adjacent to a vertex 
z' e Dj'm Q„_k+], because D, is a dominating set in this graph. In the first case 
l/has the distance at most k — 1 from a vertex of Dm in Q„, namely the vertex 
v, ... v„_k + ]h] ... hk_]. In the second case let zbe the vector obtained from z' 
by adding k— 1 coordinates h,, ..., /^_, after the coordinates of z'. The 
vertices w, z are adjacent in Q„ and therefore the distance between v and z is 
at most k, while ze Dm. The set Z)„7 is dominating in Q„. As m was chosen 
arbitrarily, 2* is a k-domatic partition of Q„ with 2k~]p = 2*~ ]d(Qn_k: +,) 
classes, which implies the assertion. • 

It was proved in [4] that if n = 2s, where s is a positive integer, then 
d(Qn- i) = ^(G/i) = n- We have a corollary. 

Corollary. Let s, k be positive integers, let n = 2s + k. Fherz dj(Qn_2) = 2s + k~], 

Theorem 2. Lel n be a positive integer divisible by 3. Then 

ed(Q„) = 4n/3. 

Proof. First consider n = '. There exists an edge-domatic partition of Q3 

consisting of the set {(000, 100), (010, 011), (101, 111)} and the sets obtained 
from it by the iterations of the peimutation given by 000 i—> 100 i—̂  HOi—• 
i-> 010 i-> 000, 001 i-> 101 i-> 111 h-> 011 i-> 00V (In geometry this permutation 
is the 90° rotation of the cube around its vertical axis.) This set has 4n/3 = 4 
elements. Now consider the cube graph Q„, where n is divisible by 3 and n = 6. 
For i = 1, ..., n/3 let F{ be the set of edges which join vertices differing in the 
(3/ — 2)-th, the (3/ — l)-th or the 3/-th coordinate. The sets F^, ..., F„3 form a 
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partition of E(Qn). The spanning subgraph of Qn having the edge set F, is a graph 
having 2" 3 connected components which are all isomorphic to Q3; denote this 
graph by H,. The vertex set of each connected component of H} consists of 
vertices for which the coordinates v4, ... ,vn are the same. We shall call such a 
component even (or odd) if among the coordinates v4, . . . , vn there is an even 
(odd, respectively) number of those which are equal to 1. In each even com­
ponent of H, we take the set of edges (000v4... vn,\ 00v4 . . . v„), (010v4... v,7, 011 v4 

... v,7), (101 v4 ... vn, \\\v4 ... v„), in each odd component of H, we take the set 
of edges {(100v4 ... v,„ 110v4 ... vn), (000v4 ... v,„001v4 ... vn), (01 lv4 . . . v„, l l l v 4 , 
... v„)}. Let D be the union of all these sets for all connected components of / / , . 
Consider the set M of vertices of Qn which are incident with no edge of D. It 
consists of all vertices 001 v4, ... v,7, 110v4... vn, where the number of coordinates 
equal to 1 among v4, . . . , vn is even, and 010v4 ... v,7, 101v4...v„, where this 
number is odd. It is easy to see that M is an independent set in Qn. Hence each 
edge of Qn is incident with at most one vertex of M and with at least one vertex 
of V(Qn) — M. This implies that each edge of Qn either belongs to D, or has a 
common end vertex with an edge of D and thus D is a dominating set in Qn. We 
use the permutation given by 000v4 ... vn\—> 100v4 ... v,7i—>110v4 ... 
... 010v4 ... vn .—> 000v4 ... vn, 001v4 ... v,,i—>101v4 ... v„h->lllv4 ... vn i—• 
i—> 01 lv4 . . . vn i—> 001v4... vn for any values of v,, . . . , vn. By this permutation and 
its iterations from D we obtain four pairwise disjoint dominating edge sets in Qn 

(including D itself)- Instead of 77, we may take other //, and proceed analogous­
ly. In this way we obtain an edge-domatic partition of Qn with 4«/3 classes, 
which implies the assertion. • 
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