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ON CONNECTIVITY POINTS
LUBOMIR SNOHA

Recently, Rosen [5] has proved that if f is a bounded real-valued function with
the domain an open interval, then the set of points at which f is connected and the
set of points at which f is Darboux are G; sets.

This theorem remains true for the set of points at which f belongs to class % and
for the set of points at which f belongs to class % (definitions see below). The
proofs of these results are similar to the proof of the theorem of Rosen and are
therefore omitted.

In [4], Lipinfiski has shown that the following conjecture of Ceder is right: If C
and D are G; sets with C < D, then there exists a function f in the second Baire
class such that the set of points at which f is continuous and the set of points at
which f is Darboux are the sets C and D, respectively.

In the present paper it is shown that if Ac R is a G; set, then there exists
a bounded real-valued function f such that f is discontinuous at every point and the
set of points at which f is connected is the set A. Similarly for the classes €ted and
D, D and %, % and % (definitions see below). .

We shall use the following notations and definitions. Let Q be the set of all
rational numbers. The cardinal number of the set M is denoted by M, c is the
cardinality of the continuum. Let € be the first ordinal number of the cardinality of

the continuum. The set M is said to be c-dense in itself, provided InM=c for
every open interval I which meets the set M. All functions in this paper are of the
type R— R. No distinction is made between a function and its graph. The symbol
fIM denotes the restriction of the function f to the set M. For any subset M of the
plane R X R, (M)x denotes the X-projection of M. For any point z of the X axis,
M, denotes the set of points of M which have the X coordinate equal to z. We
denote closed and open intervals with end points @ and b by (a, b) and (a, b),
respectively. However, (a, b) may also be a point of the plane. For any function f
and any x € R we write

R D=1 (=30 5+3))» R G2= (7 ((m5+3))

n=1 n=1

and similarly R™(f, x). We denote the closure of the set M by M. Further,
Fr(M)=Mn(R\M). A continuum is a compact connected set.
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Let € (€ted, @) denote the class of continuous (connected, Darboux) functions.
We denote the uniform closure of the class & by . Let %, be the class of functions
which are Darboux in the sense of Radakovi¢. The definitions and the properties of
the classes €ted, 9, ¥ and % see in [1, 2, 3].

In [1], Bruckner and Ceder describe what it means for a real function to be
Darboux at a point, and later in [3], Garrett, Nelms, and Kellum introduce the
idea of a function connected at a point.

Definition 1. A function f is said to be connected from the left (right) at a point

z (we write fe Cted (z) (fe 6ted*(2))) if and only if

(i) (z, f(2)) is a limit point of f from the left (right)

(ii) whenever (z, a) and (z, b) are two limit points of f from the left (right), then
the continuum M contains a point of f whenever (M)x is a non-degenerate set
with right (left) end point z and M, is a subset of the vertical open interval with
end points (z, a) and (z, b).

The function f is connected at a point z (we write f € €ted (z)) if f is connected from

both the left and the right at z.

If each such M is a horizontal interval instead, then one obtains the definitions of

Darboux from the left (right) at a point and Darboux at a point. We write fe D (z)

(fe 2*(2)) and fe D(z).

Definition 2. We define the class %*(z) just as the class 9*(z), but we write
“contains a point of the closure of f|{z, ®)\A whenever the set A< R has the
cardinality less than c¢” instead of “‘contains a point of f”. Similarly we define % (z)
and %(z).

Definition 3. If we replace “contains a point of f” in the definition of the class
P*(z) by “contains a point of the closure of f|{z, ®)”, we obtain the definition of
the class U;(z). The classes Uo(z) and %(z) are similarly defined.

It can be proved that f € €ted if and only if f € €ted (x) for every x € R (see [3]),
and similarly for & (see [1]), % and %.

Further, €(x) g 6ted (x) & D(x) & %(x) E %(x) for every x € R. (%(x) denotes
the class of functions which are continuous at x.)

Lemma 1. Let I be an interval and let X be a first category set. Then the set NX
has the cardinality of continuum.

Proof. Let X=|J X, where X, are nowhere dense sets. If A=N|J X, were
n=1 n—1

countable, then CJ X, would be a second category set. Hence A is uncountable. On

n=1
the other hand A is a Borel set, hence A has cardinality c.
Lemma 2. Let X< R be a first category set. Then there exists a transfinite
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sequence { A¢}e<o Of the subsets of the set R\X such that the sets A; are countable,
dense in R and mutually disjoint.
Proof. Let
I, L, ..., L,.. (L#I for i+j)

be a sequence of all non-degenerate closed intervals with rational end points. Since
the set X contains no interval, all the sets

L\X, L\X, .., L\X,... ' (1)
are non-empty. Thus there exists a set
Ao = {aoo, oty -.., Qoiy -..: o € INX for every i}.

Clearly, Ao is countable and dense in R. Let us suppose {Aq}a<q, Where ¢ < Q is
defined. We are going to define the set A,. Since the ordinal number ¢ has
cardinality less than ¢ and all the sets A., @ <@ are countable, the set | J A. has

. a<eg
cardinality less than c. On the other hand, according to lemma 1, all the sets (1)
have cardinality c. Thus all the sets

Io\(XU U A,,) , L\(Xu U A.,) s I,.\(Xu U A.,) .

a<@ a<@ a<@

are non-empty. Then there exists a set

A,,,={a.,,o, Aoty ovny Agiy o0t a.,,,-eI,-\(XuU A,,) for every i} .

a<@
Clearly, the set A, is countable, dense in R and disjoint with every set A,, a< @,
which finishes the proof.

Lemma 3. Let B = R be an uncountable Borel set. Then there exist non-empty,
bounded, perfect, nowhere dense and mutually disjoint subsets Px(k=1, 2, ...) and

Q(k=1,2,...) of the set B such that for every open interval I for which Bnl=c
there exists such n that P, c InB and Q, < In B and the sets P, and Q, are nowhere
dense in BNI.

Proof. Since the continuum-hypothesis holds for Borel sets, we can write
B = B,U B,, where the set B, is countable and the set B, is a Borel set c-dense in
itself. Now it suffices to use the proof of lemma 4.1 in [2].

Theorem 1. Let Ac R be a G; set. Then there exists a bounded function f:
R— R such that f is discontinuous at every point and f € €ted(x) if and only if
x€A.

Proof. The complement of the set A is an F, set. Thus there exist closed sets F;
(k=1,2,...) such that :
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R\A =FuFu .. where FicF,c

Letusput F =@and B, F.\F; . (k—1,2,...) Since the boundary of a closed set
1s nowhere dense the boundary of every B is nowhere dense. Hence

B —Q, ((B NFr(B.)u((int B)n Q))

is a fir t category t. According to lemma 2 there exists a transfinite sequence
{ At} e<o of the subsets of the set R\B such that the sets A; are countable, dense in
R and mutually disjoint.

Further, let {M:}: o be a tran finite sequence of all continua which are subsets
of the set R x (0, 1) and have non degenerate X projection

Let us define a function f: R— R as follows"

min {y € R: (x, y)e M;} If xe As, E< and the set {ye R:
(x, y) € Mt} 1s non empty

1
f(x)= 1+; if there exists su h natural k that
x € (B«nFr(By))u((int B)n Q)
0 otherwi e.

Cle rly, f is a bounded function. We shall prove the other properties.

The function f is discontinuou at every point, because it meets every continuum
from the equence {M:}: o.

Let us take ze A. We are going to show that fe $ted(z). First of all
f(z) €0, 1). It follows from the definition of the function f that (z, f(z)) is a limit
point of f from both the right and the left. Further, the function f attains values
greater thanorequ 1to 1 +% on the set Fx only. Moreover F; is closed and disjoint
with A, hence for e ery natural k there exists a neighbourhood of the point z such

that all the v lues of the function f are less than 1 +% in this neighbourhood. It

follows from this th t a, b (0, 1) when ver (z, a) and (z, b) are hmit points of f.
Let M be a continuum such that (M)x is a non-degenerate set with left end-point z
and M, is a sub et of the vertical open interval with end-points (z, a) and (z, b). If
the continuum M is a subset of the set R X (0, 1), then M = M for some &, which
implies that f meets M. If M is not a subset of the set R X (0, 1), then there exists
a continuum M* = M such th t M* is a subset of the set R x (0, 1) and (M*)x is
a non degenerate set. Then f meets M* and hence f meets M. We have proved
fe €ted (z). Similarly fe €ted (z).

Let us take z ¢ A. We are going to show f¢ ted(z). There exists exactly one
natural k such that zeBi. Cearly, ze(B«nFr(B«)) u ((intBi)nQ) or
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1
k
neighbourhood of z contains some points of the set (int B«)n Q. Thus we have

z € (int B.)n(R\Q). In the first case we have f(z) =1 +-. In the second case every

1 . . .
1 +Ee R(f, z) in both cases. Further, the function f meets every continuum from

the sequence {M;}e<qa, whence (0, 1) = R(f, z). Hence R(f, z) is not an interval
(see definition of f), which implies f¢ €ted(z). This completes the proof of
theorem 1.

Theorem 2. Let A = R be a G; set. Then there exist bounded functions u, v, w in

the second Baire class such that

(i) u¢ Gted(x) for every x€ R and ue B(y) if and only if ye A
(i) v ¢ D(x) for every xe R and v e %(y) if and only if y€ A
(iti) wé¢ %(x) for every xe R and we %(y) if and only if y€ A.

Proof. Let the sets B« (k=1, 2, ...) have the same meaning as they have in the
proof of theorem 1.

According to lemma 3 there exists a sequence of bounded, perfect and nowhere
dense (and non-empty in the case of uncountability of A) sets {P.}:-1, P.c A
(n=1, 2, ...) such that every interval intersecting the set A in the set of cardinality
of continuum contains at least one of the sets P,. Similarly for every natural k there
exist sequences of bounded perfect and nowhere dense (and non-empty in the case
of uncountability of Bi) sets {Pi}n-1, PmcB: (n=1,2,...) and {Qu}n-1,
Quwc B (n=1, 2, ...) such that for every interval I intersecting the set B in the
set of cardinality of continuum there exists a natural n with the property:
P., c InBx and Q. = InBxi. Moreover, each two of the sets P, Px,, Qu: (n, k=
1,2, ...) are disjoint.

Let us define the sets J and Ji (k=1, 2, ...) as follows. Let J=0 or let J be the
set of all natural numbers if the set A is countable or uncountable, respectively.
Similarly for Ji and Bk.

Let h, (neJ) and hw, (k=1,2,... and neJ;) be the Cantor step functions
defined on P, and Pi, such that 4,(P,) = hx.(Pis) = {0, 1). (Such functions can be
easily defined because each of the sets P,, Pi. is homeomorphic to the Cantor set.)

Let us define the function g: R— R as follows:

h.(x) if there exists such n that xe P,

hix(x) if there exist such k, n that x € P,
9(x)=

1+% if there exists such k that xeBk\fJ P..
n=1

0 otherwise.

Let us notice some properties of the function g. First of all, every interval
intersects at least one of the sets A and Bx (k=1, 2, ...) in the set of cardinality of
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continuum. Consequently, every interval contains at least one non-empty set out of
P, (n=1,2,...) or P, (k,n=1,2,...). Hence for every z€ R we have

(O’ 1>C(R+(g, z)nR‘(g, Z)) (2)

Further we are going to prove that g€ 9(z) if and only if ze A. Let z€ A.
Clearly g(z) € (0, 1) and (z, g(z)) is a limit point of g from both the right and the
left. In a similar way as in the case of the function f (see proof of theorem 1) it can
be proved that a, b € (0, 1) whenever (z, a) and (z, b) are limit points of g. Now it
follows from (2) that g € 2(z).

Let z ¢ A, i.e. z€ By for exactly one natural k. There are two possibilities. If

zeBk\O P.., then g(z)=1 +%. If z € P., for some natural n, then each neigh-
n=1

bourhood of z contains at least one set out of Qi (n=1, 2, ...). It is a consequence
of the fact that all the sets P, are taken out of a subset of the set Bx c-dense in itself
(see proof of the lemma 3). Hence 1 +%e R(g, z) in both above mentioned cases.
Thus R(g, z) is not an interval and consequently g ¢ 9(z).

The function g belongs to the Baire class 2, because the sets g '((a, ®)) and
g '((—>, a)) are of the type Gs, for every a€ R. In fact, it is easy to see that
g ( 1 +%) is a Gs, set for every natural k, g7'(1) is countable and g '(0) is also
a Gs, set. Further, for every a, be(0, 1), a<b we have

g7 (@ b)) =U (@, b)0U U hil((a, b))

The functions A, (n€J) and A, (k=1, 2, ... and n € Ji) defined on the closed sets
P, and P., are continuous. In view of it g"'((a, b)) is a G;, set, which completes the
proof that g is Baire 2.

(i) Let us define the function u: R— R as follows:

. 1 1.
g(x) if g(x)#=§+z sin x

u(x)= (3)
0 otherwise.
That the function u is connected at no point follows from (2), (3) and from the
. . 1.
fact that the graph of the restriction of the function s(x) =%+Z sinx to a closed

interval is a continuum.

We have shown that g € @(z) if and only if z€ A. It is easy to see that this
property remains true in the case of the function u.

The function g is in the second Baire class. Further, gns is a planar F, set. The
sets (gns)N((—», ®) X (a, ®)) and (gNs)n((—®, ®) X (—, a)) also are of the
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type F, for every a € R. Therefore (gns)~'((a, ®)) and (gns)~'((—», a)) are F,
sets for every ae R. Now it is not difficult to show that u is a Baire 2 function.
(ii) Let us define the function v: R— R as follows:

[ o(x) if g(x)#5
v(x)=

otherwise.

4

That the function v is Darboux at no point follows from (2) and (4).

Let z € A. We are going to prove that v € #*(z). Clearly v(z) € <0, %) V) (%, 1>
and (z, v(2)) is a limit point of v from both the right and the left. Similarly as in the
case of the function f (see proof of theorem 1) we can prove that a, b e (0, 1)
whenever (z, a) and (z, b) are limit points of v. Let y€ (0, 1), let §>0 and let
M c R be a set of cardinality less than c. It suffices to prove that there exists a point

xo such that (xo, y) € v|({z, z+ 8 )\M). The interval (z, z+ &) contains at least -
one non-empty set from among the sets P, (n=1,2,...) or Pw, (k,n=1,2,...).
Let, e.g., there exists such an n that @+ P, < (z, z+6) (in the remaining case the
proof is analogous). Denote P* = P,\(h,'(3)uM). The function 4, is defined on the

set P,, the planar set A, is closed and c-dense in itself and 4,'(3)uM< c. These

facts imply h,[P%=h,. However, h.|P%*=v|P% Thus it suffices to choose
xo € h;'(y). This ends the proof that v € %*(z). In the same way we can prove that
ve U (2).
Now let z ¢ A, i.e. z € By for exactly one natural k. Similarly as in the case of the
function g it can be proved that 1 +%
1

from the interval (1 +—F, 1+ ) is a value of v. Therefore v ¢ %(z).

€ R(v, z). Further 1 € R(v, z) but no number

k+2’ " k+1
The function v is Baire 2 because it differs from the Baire 2 function g on
a countable set only.
(iii) Let us define the function w: R— R as follows:

g(x) if g(x)eQ
otherwise.

wix)={% ©

Denote the set w™’ ((%,%)) by the letter S. Clearly S< c, because S is

countable. In view of (2) and (5) the numbers 0 and 1 are contained in R(w, z) for

Z) is a value of the function

every z€ R. But no number from the interval (3 3

w|R\S. Therefore w ¢ %(z) for every z€ R.
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Let z € A. We are going to prove that w € %;(z). Clearly w(z)€ (0, 1)nQ and
(z, w(z)) is a limit point of w from both the right and the left. Further, a, b € (0, 1)
whenever (z, a) and (z, b) are limit points of w. Let y€(0, 1) and let §>0. It

suffices to prove that there exists a point x, such that (xo, y) e w|(z, z+8). The
interval (z, z+ 8) contains at least one non-empty set from among the sets P,
(n=1,2,..)) or P, (k,n=1,2,...), which the function w maps onto the set
(0, 1) nQ. From this and from the fact that (z, z+6) X {y} is a planar compact
set, it follows that there exists such an x,. This ends the proof that w € %;(z). In the
same way we can prove that we % (z).

Now let z¢ A. That w ¢ %(z) can be proved similarly as v & %(z).

We are going to prove that w is a Baire 2 function. The set of all values of w is
countable. Hence it suffices to prove that w™'(a) is a Gs, set for every value a of w.
It is not difficult. In fact, w™'(a) is countable for every a € (0, 1)n Q. Further,

w! (1 +—11;) is a G; set for every natural k. Finally we have

w“(0)=<A\"L;jjh;‘(O\{0})>u kq U AE((R\Q)U{0)).

The set A is of the type Gs and Q\{0} is countable. Further, (R\Q)u{0} is a G;
set and the functions A« (k=1, 2, ... and n € Ji) defined on the closed sets Py, are
continuous. From these facts it follows that w™'(0) is a Gs. set, which finishes the
proof that w is Baire 2.

Theorem 2 is proved.

We finish our paper by the following problem, which does not seem to be easily
solvable:

Problem. Characterize the sets A = R for which there exists a function ¢: R— R
such that the following conditions are fulfilled simultaneously:
(i) @€ €é(x) at no point xe R
(ii) @€ Gted(y) if and only if ye A
(il)) @€ D(z) at every point z € R.
(Such a function @ does not exist if A = R\{x,}, where x, € R. Hence, the family of
all such sets A is not identical with the family of all G; sets.)

This problem can be generalized to the one characterizing the sets A;c A,
Ajsc Asc As < R, for which there exists a function 3: R— R such that the sets A,
As, As, A4, As are the sets of points at which y belongs to €, €ted, D, U, U,
respectively.
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Pesiome

B cTaTbe foka3biBaeTcs cnepyoliast TeopeMa: Ecim A ¢ R — MHoXecTBO THRA G, TO CYIIIECTBYET

orpanudeHHast ¢pyHKIMA f: R— R, pa3pbIBHas B KaXp0il TOYKe U CBA3Hast BO BceX TOYKaX MHOXECTBA
A ¥ TOJNBKO B 3THX TOYKaX.
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