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ON CONNECTIVITY POINTS 

LUBOMlR SNOHA 

Recently, Rosen [5] has proved that if / is a bounded real-valued function with 
the domain an open interval, then the set of points at which / is connected and the 
set of points at which / is Darboux are Gs sets. 

This theorem remains true for the set of points at which / belongs to class ^ and 
for the set of points at which / belongs to class %> (definitions see below). The 
proofs of these results are similar to the proof of the theorem of Rosen and are 
therefore omitted. 

In [4], Lipiiiski has shown that the following conjecture of Ceder is right: If C 
and D are Gs sets with CcD, then there exists a function / in the second Baire 
class such that the set of points at which / is continuous and the set of points at 
which / is Darboux are the sets C and D, respectively. 

In the present paper it is shown that if A cz R is a Gs set, then there exists 
a bounded real-valued function / such that / is discontinuous at every point and the 
set of points at which / is connected is the set A. Similarly for the classes ^ted and 
9), 3) and % °U and % (definitions see below). 

We shall use the following notations and definitions. Let Q be the set of all 
rational numbers. The cardinal number of the set M is denoted by M, c is the 
cardinality of the continuum. Let Q be the first ordinal number of the cardinality of 

the continuum. The set M is said to be c-dense in itself, provided InM= c for 
every open interval I which meets the set M. All functions in this paper are of the 
type R-*R. No distinction is made between a function and its graph. The symbol 
/ | M denotes the restriction of the function / to the set M. For any subset M of the 
plane R x R, (M)x denotes the X-projection of M. For any point z of the X axis, 
Mz denotes the set of points of M which have the X coordinate equal to z. We 
denote closed and open intervals with end points a and b by (a, b) and (a, b), 
respectively. However, (a, b) may also be a point of the plane. For any function / 
and any x e R we write 

R«>X>-QA{X-*X+T;))> R+(f>x)=D/{(x>x+^)) 
and similarly R~(f, x). We denote the closure of the set M by M. Further, 

Fr(Ai) = Mn(R\Af). A continuum is a compact connected set. 
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Let <£ (<€ted, Of) denote the class of continuous (connected, Darboux) functions. 
We denote the uniform closure of the class 2) by °U. Let °UQ be the class of functions 
which are Darboux in the sense of Radakovic. The definitions and the properties of 
the classes ^ted, 3), <?/ and <2f0 see in [1, 2, 3]. 

In [1], Bruckner and Ceder describe what it means for a real function to be 
Darboux at a point, and later in [3], Garrett, Nelms, and Kellum introduce the 
idea of a function connected at a point. 

Definition 1. A function f is said to be connected from the left (right) at a point 
z (we write fe Cted'(z) (fe c€ted+(z))) if and only if 
(i) (z, f(z)) is a limit point of f from the left (right) 

(ii) whenever (z, a) and (z, b) are two limit points of f from the left (right), then 
the continuum M contains a point of f whenever (M)x is a non-degenerate set 
with right (left) end point z and Mz is a subset of the vertical open interval with 
end points (z, a) and (z, b). 

The function f is connected at a point z (we write f e %!ted (z)) iffis connected from 
both the left and the right at z. 

If each such Mis a horizontal interval instead, then one obtains the definitions of 
Darboux from the left (right) at a point and Darboux at a point. We write fe3) (z) 
(fe3)+(z)) andfeQ)(z). 

Definition 2. We define the class °U^(z) just as the class S + (z) , but we write 
"contains a point of the closure of f\(z, °°)\A whenever the set AczR has the 
cardinality less than c99 instead of "contains a point off9. Similarly we define ^l (z) 
and °U(z). 

Definition 3. If we replace "contains a point of f9 in the definition of the class 
2)+(z) by "contains a point of the closure off\(z, °°)", we obtain the definition of 
the class °lli(z). The classes °ll^(z) and $l0(z) are similarly defined. 

It can be proved that fe ^ted if and only if fe (€ted(x) for every xeR (see [3]), 
and similarly for 3f (see [1]), °ll and #0 . 

Further, <€(x) c ^ted(x) ^ 3)(x) p W(x) ^ <%o(x) for every xeR. (<€(x) denotes 
the class of functions which are continuous at JC.) 

Lemma 1. Let I be an interval and let Xbe a first category set. Then the set I\X 
has the cardinality of continuum. 

Proof. Let X=[JXn, where Xn are nowhere dense sets. If A = A (J Xn were 

countable, then (J Xn would be a second category set. Hence A is uncountable. On 
n = l 

the other hand A is a Borel set, hence A has cardinality c. 

Lemma 2. Let XczR be a first category set. Then there exists a transfinite 
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sequence { A}$<o of the subsets of the set R\Xsuch that the sets A% are countable, 
dense in R and mutually disjoint. 

Proof. Let 
lo, Ii,..., I„, ... (L±Ij for i±j) 

be a sequence of all non-degenerate closed intervals with rational end points. Since 
the set X contains no interval, all the sets 

I0\X, IAX, ...,I„\X,... (1) 

are non-empty. Thus there exists a set 

A0 = {aoo, a0i, ..., a0i, ...: a0ieIi\X for every/}. 

Clearly, A0 is countable and dense in R. Let us suppose {Aa}a<q>, where q>< Q is 
defined. We are going to define the set A?. Since the ordinal number q> has 

cardinality less than c and all the sets Aa, a<q> are countable, the set U A has 
a«p 

cardinality less than c. On the other hand, according to lemma 1, all the sets (1) 
have cardinality c. Thus all the sets 

Io\(xu U Aa) , I i \ ( x u U A ) , ..., In\(xu U A ) , ... 
\ a<q> I \ a<q> I \ a<<p / 

are non-empty. Then there exists a set 

A? = | a^o, avi, ..., a<pi, ...: a^e L\l Xu U A ) for every i\. 

Clearly, the set Av is countable, dense in R and disjoint with every set Aa, a<q>, 
which finishes the proof. 

Lemma 3. Let BcR be an uncountable Borel set. Then there exist non-empty, 
bounded, perfect, nowhere dense and mutually disjoint subsets Pk(k = 1,2,...) and 

Qk(k = l,2, ...) of the set B such that for every open interval I for which Bnl= c 
there exists such n thatPn czInB and Qnc:InB and the sets Pn and Qn are nowhere 
dense in Bnl. 

Proof. Since the continuum-hypothesis holds for Borel sets, we can write 
B = BiuB2, where the set Bi is countable and the set B2 is a Borel set c-dense in 
itself. Now it suffices to use the proof of lemma 4.1 in [2]. 

Theorem 1. Let AcR be a Gs set. Then there exists a bounded function f: 
R-+R such that f is discontinuous at every point and fe c€ted(x) if and only if 
xeA. 

Proof. The complement of the set A is an Fa set. Thus there exist closed sets Fk 

(k = l,2, ...) such that 
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R\A= F!uF2u .. where FiczF2c= 

Let us put F = 0 and Bk Fk\Fk - (k - 1, 2, ...) Since the boundary of a closed set 
is nowhere dense the boundary of every Bk is nowhere dense. Hence 

B-(j((B nFT(Bk))u((mtBk)nQ)) 
k=i 

is a fir t category t. According to lemma 2 there exists a transfinite sequence 
{A^}5<n of the subsets of the set R\B such that the sets A% are countable, dense in 
R and mutually disjoint. 

Further, let {M§}? Q be a tran finite sequence of all continua which are subsets 
of the set R x (0, 1) and have non degenerate X projection 

Let us define a function / : R-*R as follows • 

^min {yeR: (JC, v )eM ? } if xe^, §<£? and the set {ye i? : 
(x, y)eM%} is non empty 

л*H 1 + T if there exists su h natural k that 
x e (BknFT(Bk))u((intBk)nQ) 

0 otherwi e. 

Cle rly, / is a bounded function. We shall prove the other properties. 
The function / is discontinuou at every point, because it meets every continuum 

from the equence {Ms}^ Q. 
Let us take zeA. We are going to show that fec€ted(z). First of all 

f(z) e (0, 1). It follows from the definition of the function / that (z, f(z)) is a limit 
point of / from both the right and the left. Further, the function / attains values 

greater than or equ 1 to 1 + — on the set Fk only. Moreover Fk is closed and disjoint 

with A, hence for e ery natural k there exists a neighbourhood of the point z such 

that all the v lues of the function / are less than 1 +— in this neighbourhood. It 

follows from this th t a, b (0, 1) when ver (z, a) and (z, b) are limit points of / . 
Let M be a continuum such that (M)x is a non-degenerate set with left end-point z 
and Mz is a sub et of the vertical open interval with end-points (z, a) and (z, b). If 
the continuum M is a subset of the set R x (0, 1), then M=Mj= for some £, which 
implies that / meets M. If M is not a subset of the set R x (0, 1), then there exists 
a continuum M* cz M such th t M* is a subset of the set R x (0, 1) and (M*) x is 
a non degenerate set. Then / meets M* and hence / meets M. We have proved 
fe <€ted+(z). Similarly fe <€ted (z). 

Let us take z^A. We are going to show / £ ted(z). There exists exactly one 
natural k such that zeBk. C early, ze(BknFr(Bk)) u ((intI?*)nQ) or 
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z e ( intB k)n(R\Q). In the first case we have f(z) = l+-r.ln the second case every 

neighbourhood of z contains some points of the set ( i n t i ^ ) n Q . Thus we have 

1 + T ; € -R(/> z) in both cases. Further, the function / meets every continuum from 

the sequence {M^}^<a, whence (0, l)czR(f, z). Hence R(f, z) is not an interval 
(see definition of / ) , which implies / ^ c€ted(z). This completes the proof of 
theorem 1. 

Theorem 2. Let AaRbea Gsset. Then there exist bounded functions u, v, win 
the second Bake class such that 
(i) u ^ ^ted (x) for every xeR and ue<3(y) if and only if ye A 

(ii) v £ Q)(x) for every xeR and v e W(y) if and only if ye A 
(iii) w ^ $l(x) for every xeR and w e ^lo(y) if and only if ye A. 

Proof. Let the sets Bk (k = 1,2,...) have the same meaning as they have in the 
proof of theorem 1. 

According to lemma 3 there exists a sequence of bounded, perfect and nowhere 
dense (and non-empty in the case of uncountability of A) sets {Pn}n=i, PnczA 
(n = 1, 2, ...) such that every interval intersecting the set A in the set of cardinality 
of continuum contains at least one of the sets Pn. Similarly for every natural k there 
exist sequences of bounded perfect and nowhere dense (and non-empty in the case 
of uncountability of Bk) sets {Pkn}Z=i, Pkn^Bk (n = l,2, ...) and {Qkn}n=i, 
QknczBk (n = 1, 2, ...) such that for every interval J intersecting the set Bk in the 
set of cardinality of continuum there exists a natural n with the property: 
Pkn cz InBk and Qkn c= InBk. Moreover, each two of the sets Pn, Pkn, Qkn (n, k = 
1, 2, ...) are disjoint. 

Let us define the sets J and Jk (k = 1, 2, ...) as follows. Let / = 0 or let J be the 
set of all natural numbers if the set A is countable or uncountable, respectively. 
Similarly for Jk and Bk. 

Let hn (neJ) and hkn (A: = 1,2, ... and neJk) be the Cantor step functions 
defined on Pn and Pkn such that hn(Pn) = hkn(Pkn) = (0, 1) . (Such functions can be 
easily defined because each of the sets Pn, Pkn is homeomorphic to the Cantor set.) 

Let us define the function g: R-+R as follows: 

g(x) = 

| hn (x) if there exists such n that xePn 

hkn(x) if there exist such k, n that xePkn 

1 
1 +— if there exists such k that xeBk\[J Pkn 

K n = l 

0 otherwise. 

Let us notice some properties of the function g. First of all, every interval 
intersects at least one of the sets A and Bk (k = 1, 2, ...) in the set of cardinality of 
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continuum. Consequently, every interval contains at least one non-empty set out of 
Pn (n = 1, 2, ...) or Pkn (k, n = l,2, . . .) . Hence for every zeR we have 

(0,l)cz(R+(g,z)nR-(g,z)). (2) 

Further we are going to prove that ge3)(z) if and only if zeA. Let zeA. 
Clearly g(z) e(0, 1) and (z, g(z)) is a limit point of g from both the right and the 
left. In a similar way as in the case of the function / (see proof of theorem 1) it can 
be proved that a, be (0,1) whenever (z, a) and (z, b) are limit points of g. Now it 
follows from (2) that g e 3)(z). 

Let z^A, i.e. zeBk for exactly one natural k. There are two possibilities. If 
1 

zeBk\[J Pkn, then g(z) = l+-r. If zePkn for some natural n, then each neigh-
n = \ K 

bourhood of z contains at least one set out of Qkn (n = l,2, ...). It is a consequence 
of the fact that all the sets Pkn are taken out of a subset of the set Bk c-dense in itself 

(see proof of the lemma 3). Hence 1 + — eR(g, z) in both above mentioned cases. 

Thus R(g, z) is not an interval and consequently g^3)(z). 
The function g belongs to the Baire class 2, because the sets g l((a, oo)) and 

^^((-oo, a)) are of the type G&a for every aeR. In fact, it is easy to see that 

g'1 (l + —) is a Gsa set for every natural k, g~l(l) is countable and g \0) is also 

a GSa set. Further, for every a, be(0, 1), a<b we have 

9~\(a, b))=\Jh-n
1((a, b))u(j (J h~kn\(a, b)). 

neJ k = l neJk 

The functions h„ (neJ) and hkn (k = 1, 2, ... and n e Jk) defined on the closed sets 
Pn and Pkn are continuous. In view of it g~\(a, b)) is a Goo set, which completes the 
proof that g is Baire 2. 

(i) Let us define the function u: R-*R as follows: 

1 1 
g(x) if g(x)±- + jsin x 

u(x)= (3) 
0 otherwise. 

That the function u is connected at no point follows from (2), (3) and from the 

fact that the graph of the restriction of the function s(x)=- + -r sinjc to a closed 

interval is a continuum. 
We have shown that ge9)(z) if and only if z e A . It is easy to see that this 

property remains true in the case of the function u. 

The function g is in the second Baire class. Further, gns is a planar Fa set. The 
sets (#ns )n( ( -oo , oo) x (a, oo)) and (#ns )n( ( -oo , oo) x (-co, a)) also are of the 

64 



type Fa for every a el?. Therefore (gns)~'((a, <*>)) and (#ns)_1((-oo, a)) are Fa 

sets for every aeR. Now it is not difficult to show that u is a Baire 2 function, 
(ii) Let us define the function v: R^>R as follows: 

v(x) = 
g(x) if g(x)±-

(4) 
0 otherwise. 

That the function v is Darboux at no point follows from (2) and (4). 

Let z e A. We are going to prove that v e °U*(z). Clearly v(z) e (0, - J u (-, 1) 

and (z, v(z)) is a limit point of v from both the right and the left. Similarly as in the 
case of the function / (see proof of theorem 1) we can prove that a, be (0,1) 
whenever (z, a) and (z, b) are limit points of v. Let ye(0, 1), let <5>0 and let 
M <= R be a set of cardinality less than c. It suffices to prove that there exists a point 

x0 such that (JC0, y)ev\((z, z + d)\M). The interval (z, z + S) contains at least 
one non empty set from among the sets Pn (n = 1, 2, ...) or Pkn (k, n = 1, 2, ...). 
Let, e.g., there exists such an n that 0i= Pn cr (z, z 4- 6) (in the remaining case the 
proof is analogous). Denote Pt = Pn\(hn

 1(%)vM). The function h„ is defined on the 

set Pn, the planar set hn is closed and c-dense in itself and A„1(l)uM<c. These 

facts imply hn\Pt = hn. However, A„|PJ = t>|PJ. Thus it suffices to choose 
xoe hn\y). This ends the proof that v e tf/*(z). In the same way we can prove that 
v e °U~(z). 

Kow let z ̂  A, i.e. zeBk for exactly one natural k. Similarly as in the case of the 

function g it can be proved that l + - e R(v, z). Further 1 e R(v, z) but no number 

from the interval [1+-—r, 1 +-,—r) is a value of v. Therefore vk °tt(z). \ k + 2 k + \] 
The function v is Baire 2 because it differs from the Baire 2 function g on 

a countable set only. 
(iii) Let us define the function w: R-+R as follows: 

-<*>-{? 
g(x) if g(x)eO 

otherwise. 

Denote the set ^"MlT*^)) by the letter S. Clearly 5<c , because 5 is 

countable. In view of (2) and (5) the numbers 0 and 1 are contained in R(w, z) for 

every ze_R. But no number from the interval (-, -1 is a value of the function 

H ^ X S . Therefore w$ W(z) for every zeR. 
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Let z e A. We are going to prove that we <~fi(z). Clearly w(z) e (0, 1 ) n Q and 
(z, w(z)) is a limit point of w from both the right and the left. Further, a,be(0, 1) 
whenever (z, a) and (z, b) are limit points of w. Let ye(0, 1) and let <5>0. It 

suffices to prove that there exists a point x0 such that (x0, y)e w\(z, z + S). The 
interval (z, z + S) contains at least one non-empty set from among the sets Pn 

(n = l,2, ...) or Pkn (k, n = l,2, . . .), which the function w maps onto the set 
(0, l ) n Q . From this and from the fact that (z, z + 6) x {y} is a planar compact 
set, it follows that there exists such an x0. This ends the proof that we $/0(z). In the 
same way we can prove that we W0(z). 

Now let z^A. That w^ W0(z) can be proved similarly as v^ °U(z). 
We are going to prove that w is a Baire 2 function. The set of all values of w is 

countable. Hence it suffices to prove that w~x(a) is a G6a set for every value a of w. 
It is not difficult. In fact, w~l(a) is countable for every ae(0, l ) n Q . Further, 

1 (1 + — J is a G6 set for every natural k. Finally we have w 

w •1(0) = (A\{Jh-n
1(Q\{0}))u\J U hČ((R\Q)u{0}). 

\ ne J / k = l neJk 

The set A is of the type G6 and Q\{0} is countable. Further, (I?\Q)u{0} is a G6 

set and the functions hkn (k = 1, 2, ... and n e Jk) defined on the closed sets Pkn are 
continuous. From these facts it follows that w_ 1(0) is a G6a set, which finishes the 
proof that w is Baire 2. 

Theorem 2 is proved. 
We finish our paper by the following problem, which does not seem to be easily 

solvable: 

Problem. Characterize the sets A c R for which there exists a function qp: R^>R 
such that the following conditions are fulfilled simultaneously: 

(i) <pe %>(x) at no point xeR 
(ii) q>e<€ted(y) if and only if ye A 

(iii) q?eQ)(z) at every point zeR. 
(Such a function q? does not exist if A = 1?\{JC0}, where x0e R. Hence, the family of 
all such sets A is not identical with the family of all G6 sets.) 

This problem can be generalized to the one characterizing the sets Ai<=A2c: 
A3 cz AA C= A5 CZ R, for which there exists a function xp: R-+R such that the sets A\, 
A2, A3, AA, A5 are the sets of points at which xp belongs to (S, ^ted, 3), 6U, °U0, 
respectively. 

66 



REFERENCES 

[1] BRUCKNER, A. M.—CEDER, J. G.: Darboux continuity. Jber. Deutsch. Math.-Veгein., 67, 
1965, 93—117. 

[2] BRUCKNER, A. M.—CEDER, J. G.—WEISS MAX : Uniform limits of Darboux functions. Coll. 
Math., 15, 1966, 65—77. 

[3] GARRETT, B. D.—NELMS, D.—KELLUM, K. R.: Characterizations of connected гeal function-
s. Jbeг. Deutsch. Math.-Verein., 73, 1971, 131—137. 

[4] LIPIŃSKI, J. S.: On Darboux points. Bull.Acad. Polon. Sci., Sér. Sci. Math. Astг. Phys., 26,1978, 
869—873. 

[5] ROSEN, H.: Connectivity points and Darboux points of гeal functions. Fund. Math., 89, 1975, 
265—269. 

Received March 17, 1981 

Katedтa matematiky 
Pedagogickej fakulty 

Tajovského 40 
97549 BanskáBystríca 

O TOЧKAX CBЯЗHOCTИ 

Ľubomír Snoha 

Peзюмe 

B cтaтьe дoкaзывaeтcя cлeдyющaя тeopeмa: Ecли A c R — мнoжecтвo типa G6ì тo cyщecтвyeт 
oгpaничeннaя фyнкция /: i?—>/?, paзpывнaя в кaждoй точкe и cвязнaя вo вcex тoчкax мнoжecтвa 
A и тoлькo в этаx точкax. 
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