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(Communicated by Stanislav Jakubec ) 

ABSTRACT. A superpseudoprime to the base a is a pseudoprime to the base a, 
all of whose divisors greater than 1 are either pseudoprimes or primes. Superpseu-
doprimes with exactly two distinct prime divisors are not very interesting, since 
their only proper divisors are primes. Several authors have generated infinitely 
many superpseudoprimes with exactly three distinct prime divisors for various 
bases a. In this paper, given any integer a > 1, we generate infinitely many 
superpseudoprimes to the base a with exactly four distinct prime divisors when 
the square-free kernel of a is congruent to 1 or 3 modulo 4 . 

1. Introduction 

Let a > 1 be an integer. The positive odd composite integer N is called a 
pseudoprime to the base a if 

aN~1 = l (mod TV). (1.1) 

A composite odd integer N satisfying (1.1) is called a superpseudoprime to the 
base a if each divisor of N greater than 1 is either a pseudoprime to the base 
a or a prime. 

Superpseudoprimes with exactly two distinct prime divisors are not very 
interesting, since their only proper divisors are primes. Several authors have 
generated infinitely many superpseudoprimes with exactly three distinct prime 
divisors. S z y m i c z e k [14] and R o t k i e w i c z [12] have shown this is possible 
when a — 2. F e h e r and K i s s [3] demonstrated that infinitely many such su
perpseudoprimes exist when 4 { a. P h o n g [9] proved that there exist infinitely 
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many pseudoprimes to the base a which are products of exactly three distinct 
primes for any a > 1. 

We generalize these results in the following theorem. We let a denote the 
square-free kernel of a, that is, a divided by its largest square factor. 

THEOREM 1.1. Let a > 1 be an integer such that a = 1 (mod 2). Then 
there exist infinitely many superpseudoprimes to the base a which are products 
of exactly four distinct primes. Moreover, 

oo .. 

- l o g If' 

diverges, where P\ ' denotes the ith superpseudoprime to the base a which is a 
product of exactly four distinct primes. 

The proof of Theorem 1.1 will be given in Section 3. 

Remark 1.2. Let a > 1 and a = 1 (mod 2). Let V^(x) denote the number 
of superpseudoprimes to the base a which are products of exactly three distinct 
primes and which are less than or equal to x. It follows from [5] that for all 
large x, 

<pW(x) > l0&x 

' a W > 4 a l o g a -

It was also proved in [9] that 
oo 1 

diverges, where P- denotes the ith superpseudoprime to the base a wThich is 
a product of exactly three distinct primes. 

It was earlier proved by S z y m i c z e k [15] that 
oo -. 

converges and by M § k o w s k i [7] that 
oo ^ 

YìojQjã} 
diverges, where Q{(a) stands for the ith pseudoprime to the base a > 1. 

The proof of Theorem 1.1 depends on the criterion presented below in The
orem 1.3 for an integer to be a superpseudoprime. Recall that a prime p is a 
primitive prime divisor of a1 — 1 if a(p) = t, where a(n) denotes the least pos
itive integer t such that n \ a1 — 1 . Clearly a(n) is the order of a modulo n. 
Moreover, a(mn) = lcm(m, n). 
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THEOREM 1.3. Let p1,p2, • • • ,Pr be distinct odd primes and let a > 2 be such 
that gcd(a ,p j = 1 for every i = 1 , . . . , r . Suppose that p{ is a primitive prime 
divisor of ali — 1 with multiplicity ra • for 1 < i < r. We allow the possibility 
that ti = t, for 1 <i < j < r. Let 

h = lcm(61 ,7:2 , . . . ,^ r) . 

Let N be a composite integer such that 

-v = IR, 
i=i 

where 1 < £i < mi. 
Then N is a superpseudoprime to the base a if and only if for each i = 

1 r 
pi = 1 (mod h). 

The proof of Theorem 1.3 is given in [6; pp. 141-142]. P h o n g [9] proves 
Theorem 1.3 in the case in which jV = pqr, where p, el, and r are distinct odd 
primes. 

In order to present the next result, we need to review the definition of ad
ditional types of pseudoprimes called Euler pseudoprimes and strong pseudo-
primes. 

DEFINITION 1.4. The composite odd integer N is called an Euler pseudo-
prime to the base a if gcd(a, N) = 1 and 

( ^ = 0 ( " - o / 2 ( m o d j \ n . 

where a > 1 and (-^) denotes the Jacobi symbol. 

DEFINITION 1.5. Let jV be a composite odd integer and write TV - 1 = 2 % 
where t is odd. Let a > 1 be coprime to jV. Then jV is a strong pseudoprime 
to the base a if 

a1 = 1 (mod N) 

or 

a2 l — — 1 (mod TV) for some r , 0 < r < s . 

It follows easily from Definition 1.5 that the odd composite integer jV is a 
strong pseudoprime to the base a if and only if V is a pseudoprime to the base 
a and there exists an integer k such that 2k || ord a for each prime factor p 
of IV, where ord a denotes the order of a modulo p (see [11; p. 1008]). It was 
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proved in [11; p . 1009] that if N is a strong pseudoprime to the base a, then N 
is an Euler pseudoprime to the base a . 

In the proof of [11; Theorem 1], the authors generated infinitely many strong 
pseudoprimes to the base a by examining products of primitive prime divisors 
of a1 — 1, where a1 — 1 has at least two primitive prime divisors. We think it is of 
interest to point out that such strong pseudoprimes are also superpseudoprimes. 
This leads to the following proposition which we will prove in Section 3. 

PROPOSITION 1.6. Let a > 1 be an integer. Then there exist infinitely many 
composite odd integers N, each of which is simultaneously an Euler pseudo-
prime, a strong pseudoprime, and a superpseudoprime, all to the base a. Let S 
denote this set of integers N. Let Pi denote the ith member of this set arranged 
in order of magnitude. Let Va(x) denote the number of elements of S which are 
less than or equal to x. Then 

? » > - ^ - for x>a15a + l (1.3) 
aV J 4aloga J v J 

and 

.=i l°zp> 
diverges. 

The following theorem shows that for special values of a, there exist infinitely 
many superpseudoprimes to the base a, each having an arbitrarily large number 
of distinct prime divisors. We let T(U) denote the number of distinct divisors of 
the positive integer n. 

THEOREM 1.7. Let M be a fixed positive integer. Let a = bk , where b > 2 and 
r(k) = M. Let p > 5 be a prime such that p \k. Let d{, i = 1 , . . . , M, be the 
distinct divisors of k. Then bpdi — 1 has an odd primitive prime divisor p{ which 
is also a primitive divisor of ap — l. Moreover, pxp2 • • -pM is a superpseudoprime 
to the base a. 

We give the proof in Section 3. 

2. P r e l i m i n a r i e s 

Before proceeding further, we will need the following results. 

LEMMA 2.1. / / the odd prime p is a primitive prime divisor of an — 1, then 

(i) p = 1 (mod n), 
(ii) p = 1 (mod 2n) if n is odd. 
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P r o o f . Part (i) is a consequence of Fermat's little theorem. Part (ii) follows 
from the fact that p is odd. • 

THEOREM 2.2 (BANG). Let a > 1 be an integer. Then an-l has a primitive 
prime divisor except in the following cases: 

n = 1, a = 2 , 

n = 2 , a = 2k -1 (fc > 2 ) , 

n = 6 , a = 2 . 

This theorem is proved in [1], [2], and [16]. 

THEOREM 2.3 (SCHINZEL). Let a > 1 be an integer. Let 

e = 1 if a = 1 (mod 4 ) , 

e = 2 if a = 2 or 3 (mod 4 ) . 

If n/(ea) is an odd integer, then an — 1 has at least two primitive prime divisors 
except in the following cases: 

n = 1, a = 4 or a = 9 , 

n = 3 , a = 4 , 

n = 4 , a = 2 , 

n = 6 , a = 3 , 

n = 12, a = 2 , 

n = 20 , a = 2 . 

This theorem is proved in [13]. 

R e m a r k 2.4. It is easily seen that if p is a primitive prime divisor of at — 1 
for t > 2, then p is odd. 

3. Proofs of the main results 

P r o o f of T h e o r e m 1.1. We first prove that there exist infinitely many 
such superpseudoprimes to the base a. Let p be an odd prime such that p > 7, 
p = 1 + 2a (mod 4a), and a(p) < (p—l)/2. We will show below that there exist 
infinitely many primes p satisfying the above conditions when a = 1 (mod 2). 

Suppose that a = 1 (mod 4). Then (p — l ) / 2 is an odd multiple of a and by 
Lemma 2.1, Theorem 2.3 , and Remark 2.4, a^p~1^2 — 1 has two odd primitive 
prime divisors q and r such that q = r = 1 (mod (p — l ) / 2 ) . Since (p — l ) / 2 
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is odd, we have q = r = 1 (mod p — 1). By Lemma 2.1 and Theorem 2.2, 
ap~l — 1 has an odd primitive prime divisor s such that s = 1 (mod p — 1). 
Clearly, p = 1 (mod p — 1). Moreover, p, g, r, and «s are all distinct, since a(p) < 
(p — l ) / 2 . By Theorem 1.3, pqrs is a superpseudoprime to the base a. 

Now assume that a = 3 (mod 4). By Lemma 2.1 and Theorem 2.3, a^p~1^2 — 1 
has an odd primitive prime divisor q such that q = 1 (mod (p — l )/2) . Since 
(p — l)/2 is odd, q = 1 (mod p — 1). By Lemma 2.1 and Theorem 2.3, a p _ 1 - 1 
has distinct primitive prime divisors r and s such that r = s = 1 (mod p — 1). 
Since a(p) < (p — l )/2, p, a, r, and s are again all distinct, and thus, by The
orem 1.3, pqrs is a superpseudoprime to the base a. 

We now show that there indeed exist infinitely many primes p such that 
p = 1 + 2a (mod 4a) and a = 1 (mod 2). Let (n denote a primitive nth root 
of unity. Let S be the set of rational primes that split completely in Q(C2a) 

but do not split completely in Q((4a) • By the Cebotarev density theorem and 
Kummer's theorem relating the decomposition of a prime p into prime ideals 
in an algebraic number field and the factorization of a particular polynomial 
modulo p (see [4; Chap. V, Theorem 10.4] and [8; Theorem 27]), S consists 
of those primes which are congruent to 1 + 2a (mod 4a) and S has a positive 
Dirichlet density 

1 

0(4a) 

in the set of primes. 

We now further suppose that a = 1 . Let T be the set of those primes p in S 
such that p > 7 and p also splits completely in Q^^a1/3). By the Cebotarev 
density theorem, Kummer's theorem, and Euler's criterion for the kth powers 
modulo a prime p , T has a positive Dirichlet density 

1 

6 

in the set of primes. Moreover, the primes p in T satisfy the following conditions: 

dS = тт^ (3-1) 

dт > - (3.2) 

p = 3 (mod 4 ) , (3.3) 

p = 1 (mod 3) , (3.4) 

and 

a ( P - D / 3 = x ( m o d p ) _ ( 3 5 ) 

Note that (3.5) implies that 

a ( p ) < ( p - l ) / 3 < ( p - l ) / 2 . (3.6) 

Thus, each prime p in T satisfies the required conditions. 

Next suppose that a = 1 (mod 2) and a > 1. Let T be the set of those 

primes p in S such that p > 7 and p also splits completely in Q(C2a > al^2a ) • 
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By the Cebotarev density theorem, Kummer's theorem, and Euler's criterion, 
T has a positive Dirichlet density 

r ~ 2a0(4a) v ; 

in the set of primes. Furthermore, the following conditions hold for each prime 
p in T : 

p = 1 + 2a (mod 4a) (3.8) 

and 
a ( P - i ) / (2a) ___ 1 ( m o d p ) ^ (3>g) 

As before, each prime p eT fulfills the required conditions. 
We now show that the sum given in (1.2) diverges. Let p be an element of 

the set T which we constructed above under the supposition that either a = 1 
or a > 1 and a = 1 (mod 2) . We found that there exist distinct odd primes 
q,r, and s, all different from p such that pqrs is a superpseudoprime to the 
base a, q and r are primitive divisors of a^v~1^2 — 1 or av~l — 1, and s is a 
primitive divisor of av~1 — 1 . Since a(p) \ p — 1 by Lemma 2.1, we see that 

a(pqrs) = lcm(a(p), a(q), a(r), a(s)) = p — 1. 

Thus, pqrs \ av~l — 1. Therefore, 

oo 1 

% * & * % - - - ( 3 1 0 1 

v ^ 1 1 V - 1 
> > 1 = i > - • 

^ . log av log a -^-i » 
per ^ &

 P G T ^ 

Since the set T has a positive Dirichlet density dr in the set of primes by (3.2) 
and (3.7), it follows that the first sum in (3.10) diverges. • 

P r o o f of P r o p o s i t i o n 1 .6 . By Theorem 2.3, agea — 1 has at least 
two odd primitive prime divisors, where g > 5 is an odd integer and e is defined 
as in Theorem 2.3. Let T consist of products of prime powers of the form 

k 

ftp.'' ( 3 - n ) 
2 = 1 

where a(pi) = gea for some odd integer g > 5 and alH = 1,..., k, p™1 || agea — 1, 
1 < l{ < m-, and k > 2 . We note that g and k can vary for distinct products 
in T . By Theorem 1.3 and the discussion following Definition 1.5, each member 
of the set T is a superpseudoprime, a strong pseudoprime, and thus an Euler 
pseudoprime, all to the base a . 

449 



LAWRENCE SOMER 

Let Ta(x) denote the number of elements of T not exceeding x. Then 
Va(x) > Ta(x). By the proof of [11; Theorem 1], if x > a15a + 1, then 

"•W*T-W>5ilh- ( 3 I 2 ) 

Letting x = P- in (3.12), where Pi is the 2th element of the set S in terms of 
magnitude, it is easily seen that 

oo л 

Y — 
diverges. D 

P r o o f of T h e o r e m 1.7. By Theorem 2.2, bpdi — 1 has a primitive 
prime divisor p{ for i = 1 , . . . , M. Since p \ k, we have p{\bk — \ = a—\ for 
1 < i < M. As bpdi - 1 | bp/e - 1 = ap - 1, it follows that p{ is a primitive 
prime divisor of ap — 1 for z = 1, . . . , M. Thus, by Theorem 1.3, pxp2 '' 'VM ^S 

a superpseudoprime to the base a. • 

4. Concluding remarks 

In a future paper, we will generalize the results of this paper and the papers 
[10] and [5] by finding infinitely many Lucas and Lehmer superpseudoprimes 
which are products of exactly four distinct primes for various classes of Lucas 
and Lehmer sequences. 
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