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CHIRAL H Y P E R M A P S W I T H F E W HYPERFACES 

A N T O N I O B R E D A D ' A Z E V E D O * — R O M A N N E D Ě L A * * 

(Communicated by Martin Skoviera) 

A B S T R A C T . A hypermap H is a cellular embedding of a 3-valent graph into a 
closed surface cells of which are 3-colored (adjacent cells have different colours). 
The vertices of 7i are called flags of 7i and let us denote by F the set of flags. An 
automorphism of the underlying graph which extends to a colour preserving self-
homeomorphism of the surface is called an automorphism of the hypermap. If the 
surface is orientable, the automorphisms of H split into two classes, orientation 
preserving and orientation reversing automorphisms. The size of the subgroup of 
orientation preserving automorphisms is bounded by |F | /2 and if the equality is 
reached, we say t h a t the hypermap is orientably regular. An automorphism of 7i 
reversing the global orientation of the surface is called mirror symmetry. Orien­
tably regular hypermap admit t ing no mirror symmetries is called chiral. Hence 
chiral hypermaps have m a x i m u m number of orientation preserving symmetries 
but they are not "mirror symmetr ic" . 

The aim of presented paper is to classify chiral hypermaps with at most four 
hyperfaces. As these have metacycle oriented monodromy groups, we start first 
with a construction of an infinite family of chiral hypermaps from metacycle 
groups. 

1. Introduction 

By an oriented hypermap we mean a triple Q = (F),lt, L) where D is a 
set of darts and JR, L are two permutations generating a permutation group 
Mon(Q) = (it, L), called the monodromy group, acting transitively on D. Every 
oriented hypermap corresponds to a certain topological map on an orientable 
surface S (cellular decomposition of S). Geometric representations of hyper­
maps are briefly described in the following section. It is well known that every 
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(topological) map on an orientable surface can be described by an oriented hy-
permap (D, it, L) with L being involutory. Thus rotary hypermaps generalize 
in a natural way the notion of oriented maps. 

An automorphism of an oriented hypermap Q = (D, i t , L) is a permutation 
ip of D commuting with both R and L. It is straightforward that | Aut Q\ < \D\ 
and if equality holds the action is regular. For instance, spherical regular oriented 
maps are the five Platonic solids, cycles and their duals. Regular oriented maps 
on torus were characterized by C o x e t e r and M o s e r in [12]. Classification of 
regular oriented maps up to genus 7 was completed by G a r b e [15]. Recently, 
with the help of computer programme, C o n d e r and D o b c s a n y i extended 
the classification to maps with genus at most 15. 

While automorphisms of an oriented hypermap give rise to orientation pre­
serving self-homeomorphisms of the supporting surface there are external sym­
metries of oriented hypermaps coming from self-homeomorphisms changing the 
global orientation of the underlying surface. We call such symmetries of oriented 
hypermaps mirror symmetries (alternatively they are called reflections or inver­
sions). More precisely, a permutation ip of D will be called a mirror symmetry 
of an oriented hypermap Q = (D , i t ,L) if ipR = R~lfip and ipL = L_1z/!. 
An oriented hypermap will be called mirror asymmetric if it admits no mirror 
symmetry. Regular mirror asymmetric oriented hypermap will be called chiral 
hypermap. 

Chiral hypermaps and their invariants are the main objective of study of the 
presented paper. This investigation continues in [7] and [6]. Chiral maps and 
hypermaps are relatively rare. For instance, examining the list of all regular 
oriented maps with small genus (see [15], [10]) we see that apart from Coxeter 
chiral maps on torus there are no chiral maps on surfaces of genus at most 6. 

Although the phenomenon of "chirality" was known a long time ago, no gen­
eral investigation of this phenomenon was done. It was a little surprise for us 
that one can measure of how far a given hypermap deviates from being mirror 
symmetric by a group which we call the chirality group of a hypermap. Theo­
retical aspects of this new invariant of hypermaps are studied in [6]. The order 
of the group is called the chirality index. In Section 3 we give the definition and 
formula allowing to compute the index. 

Our approach to the problem of classification of chiral hypermaps is based 
on a consequence of the Hurwitz bound stating that, except the sphere and 
torus, the size of the group of orientation preserving automorphisms is bounded 
by 84(a — 1), and consequently, the number of chiral hypermaps is bounded 
provided the genus g of the supporting surface is fixed. Thus we concentrate 
our attention to the classification of chiral hypermaps of small genera. Lot of 
them have (up to duality) least number of hyperfaces, thus as a first step towards 
the classification we deal with chiral hypermaps with at most four hyperfaces, 
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the main objective of study of the presented paper. The classification problem 
is then treated in [7], where a complete classification of chiral hypermaps up to 
genus four is given. 

In order to build up a self-contained theory together with some necessary 
algebraic machinery we have decided to include in Section 2 some "well-known" 
and so called "trivial" observations and explain relations between main notions 
in terms of both geometric and algebraic representations of hypermaps. Fur­
ther information on hypermaps as well as undefined terms can be found in the 
following literature [1], [3], [4], [5], [11], [16], [17], [19], [21], [24], [25]. 

2. Preliminaries 

2 .1 . H y p e r m a p s . 
A topological hypermap % is a cellular embedding of a connected trivalent 

graph G into a compact surface /?, without boundary and not necessarily ori-
entable, such that the cells (i.e. the connected components of S\G) are 3-colored 
(say by black, grey and white colours) with adjacent cells having different colours. 
Numbering the colours 0, 1 and 2, and labeling the edges of G with the missing 
adjacent cell number, we can define 3 fixed points free involutory permutations 
ri, i = 0 ,1 , 2, on the set F of vertices of G; each ri switches the pairs of vertices 
connected by i-edges (edges labeled i). The elements of F are called flags and 
the group G generated by r 0 , rx and r2 will be called the monodromy group1 

Mon(7t") of the hypermap %. The cells of % colored 0, 1 and 2 are called 
the hypervertices, hyperedges and hyperfaces, respectively. Since the graph G is 
connected, the monodromy group acts transitively on F and orbits of (r0>ri)> 
(rx,r2) or (r0,r2) on F determine hypervertices, hyperedges and hyperfaces, 
respectively. 

Given a topological hypermap H, we can derive virtually six topological 
hypermaps on the same surface by permuting the three colours 0, 1, 2 of their 
cells; in fact, for each permutation a G S3 = Sr0 1 2 | we define the a-dual DGT-L 
to be the hypermap on the same surface, with the same underlying trivalent 
graph G', whose hypervertices, hyperedges and hyperfaces are the cells colored 
OCT, lcr and 2a, respectively. 

If the surface S is orientable, then we can, and as a rule we will, fix an 
orientation, for instance the counter-clockwise orientation. The subgroup G + 

generated by rxr2 and r2r0 acts on F with two orbits F+ and F~ . Let D = i ? + 

be the orbit such that rlr2 and r2r0 locally act on D like counter-clockwise 
rotations around hypervertices and hyperedges, respectively. 

1This group has been called the monodromy group of 7i ([16], [21]), the connection group 
of U ([25]) and the ft-group of U ([1]). 
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By contracting each 2-edge to a single point we arrive at a 4-valent graph 
embedding on 5 called the topological oriented hypermap and denoted by % + . 
The vertices of the underlying graph, which correspond to the 2-edges of Q 
contracted to single points form the set D of darts of H+, while the 2-edges 
of Q can be considered to be the darts of H. It is known (see [11], [17], [13]) 
that one can represent %+ by means of two permutations R and L cyclically 
permuting counter-clockwise the darts around hypervertices and hyperedges, 
respectively. The group they generate is called the oriented monodromy group 
of 7{, and will be denoted by Mon(7^ + ). By identifying the set of darts with 
F + , the permutations R and L are the same as r1r2 and r2r0 acting on F + , 
respectively. For this reason we will say that R and L are, respectively, the 
dart components of rlr2 

notice that the group generated by the dart components R, 
and r2r0, with respect to the chosen orientation. We 

ò ' Lb of rxr2 and 
with respect to one orientation may be not "monodromy isomorphic" to 

the group generated by the dart components R , Lv of rľr2 and 3 with 
respect to the other orientation, that is, the assignment Rb —> Rw, Lb —•> Lw 

may not extend to an isomorphism. The oriented monodromy group M o n ( % + ) 
can be therefore orientation "dependent". For this reason we write 7^+, if the 
dart components of r1r2 and r2r0 is taken with respect to the fixed orientation 
and write K~ if the dart components of rxr2 and r2r0 is taken in respect to 
the counter-fixed orientation. 

Topologically speaking, these two oriented hypermaps %+ and T~L~ are not 
isomorphic if H is not "mirror symmetric". This is what happens, for exam­
ple, with the hypermap % corresponding to the embedding of the Fano plane 
illustrated in Figure 1 with the corresponding oriented hypermap \H+ shown in 
Figure 2(a). One can check that this picture is not mirror symmetric, that is, 
its mirror image %~ (Figure 2(b)) is not isomorphic to 7{ + . 

F I G U R E 1. The Fano plane embedded in Torus. 
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FIGURE 2. The oriented Fano plane and its mirror image. 

In this paper we will adopt the bipartite map representation of a hypermap as 
defined by W a l s h [24]. By shrinking hypervertices and hyperedges of a hyper­
map % to points (the first to black points and the second to white points), and 
joining a black vertex to a white vertex by an edge if the respective hypervertex 
and hyperedge are incident, we are led to a bipartite map on the same surface 
in which one monochromatic set of vertices (the black vertices) represents the 
hypervertices and the other monochromatic set of vertices (the white vertices) 
represents the hyperedges. This map is usually called the Walsh bipartite map 
associated to W. 

FIGURE 3. The Walsh map of the Fano plane embedding. 

2.2. Algebraic representations of hypermaps. 

In the proceeding section we saw that a hypermap can be represented by 
means of three fixed point free involutions acting transitively on its flags. The 
goal is that up to isomorphism, any geometric realization of the hypermap 
can be derived from its algebraic description. Invariants of hypermaps as the 
orientability, the Euler characteristic, the automorphism group and others have 
their algebraic counterparts in the category of (^algebraic) hypermaps (oriented 
(algebraic) hypermaps). It is often convenient to consider hypermaps as alge-
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braic objects, and when needed, to go back to geometry. In what follows we 
briefly introduce two kinds of algebraic representations of hypermaps as well as 
some important notions, invariants and relations between them. 

Algebraically, a hypermap H is a 4-tuple % = (F, r0, r1, r 2 ) , where F is 
a finite set and r 0 , r1 and r2 are fixed point free involutory permutations of 
F such that the group generated by r 0 , rx and r 2 , that is, the monodromy 
group Mon('H) of %, acts transitively on F. Similarly, an oriented hypermap 
is a 3-tuple Q = (D, i t , L) , where D is a finite set of darts and i t , L are 
permutations of D such that the monodromy group Mon(Q) = (it, L) acts 
transitively on D. 

It may happen that the even wrord subgroup (r1r2,r2r0) of Mon('H) may 
act on F with one or two orbits (which we denote by F + and F~). In the 
later case the hypermap H is called orientable. If H is orientable, then we can 
derive two associated oriented hypermaps %^ = (F+,r1r2 I p+ >r2ro I F+) a n (^ 

Given an oriented hypermap Q = (D,i t , L) , we can define an orientable 
hypermap % = (F, r0, rx , r2) such that Q comes as one of its associated oriented 
hypermaps, say T-L+ , in the following way. Let C2 be the set {1, — 1} , identify D 
with the cartesian product D x 1 and define F = D x C2 . In the topological point 
of view the number 1 represents the chosen orientation. Then the permutations 
r 0 , r a , r2 are defined as follows: for any (d, z) G F, r 0 : (d, i) H-> (dL~\— z), 
r x : (d, i) i-> (d i t \ — z), r2 : (d, i) i-> (d, —z). 

With the above notation the orbits of the subgroups (rx,r2), ( r 2 , r 0 ) and 
( r 0 ' r i ) o n F-> o r alternatively, the cycles of i t , L and i tL on L>, are called tzu-
pervertices, hyperedges and hyperfaces, respectively. The least common multiples 
/, m, n of the lengths of the cycles of rxr2 , r 2r 0 and r 0 r 1 on F1, or alternatively, 
of the cycles of i t , L and i tL on D, respectively, determine the type (/,m,?z) 
of the hypermap W, or of the oriented hypermap Q. It is straightforward that 
both H and Q have always the same type. 

If H1 = (F1,r0,r1,r2) and %2 = (F2,s0,s1,s2) are two hypermaps, a cover­
ing (or epimorphism) ^ : %l —> K2 is a (surjective) function -0: F\ —> F2 such 
that (VCJ G L\)(Vz G {0, l ,2})((cjr i)^ = u^s{). We say that Ux covers U2 if 
there is a covering f^:'Hx-+'R2. As Mon(7{2) acts faithfully on F2 , if ?t\ covers 
^ 2 , then Mon('H1) also monodromy covers Mon(7i!2), that is, the assignment 
r{ H-> ;s^, for i = 0 ,1 ,2 , extends to an epimorphism V>*: Mon(?t\) -> Mon(H 2 ) . 

An isomorphism -0: /rt1 —> 7t2 is an injective covering and an automorphism 
of H = (F,r0,rl,r2) is a permutation of F commuting with r 0 , rx and r 2 . 

In a similar way one can define the notions of covering, isomorphism and 
automorphism for oriented hypermaps. For instance, if Q = (L),it, L) , a per­
mutation (f) G SD is an automorphism of Q if 0it = i?0 and 0L = Lcj). 

112 



CHIRAL HYPERMAPS WITH FEW HYPERFACES 

The group of all automorphisms of a hypermap ft, denoted by Aut ft, acts 
naturally on F; this action is semi-regular, that is, for any ip G Aut ft the 
equality wip — w for some w G F implies tp = 1 . As a consequence we get 
| Aut ft | < | F | . If | Aut ft | = | F | , that is, if Aut ft acts transitively on F, we 
say that ft is regular. 

Let us assume that ft is an orientable hypermap. An automorphism ip G 
Aut ft preserves the orientation if ^ preserves the two sets D = F + and F~, 
that is, for all w G F^, wip G F^, where £ G {+ ,—}. The subgroup A u t + f t 
of the automorphisms preserving orientation acts semi-regularly on D, as well 
as on F~ , and satisfies | Au t + ft| < \D\ = | F ~ |. If Aut + ft acts transitively on 
D , we say either that ft is orientably regular, or that the oriented hypermap 
ft+ is regular. 

2.3. Chiral hypermaps . 
In what follows all considered hypermaps will be orientable. As already men­

tioned above, the two oriented hypermaps ft+ and ft~ associated with a given 
hypermap ft, may or may not be "isomorphic". More precisely, an (orientable) 
hypermap ft is mirror symmetric if there exists an automorphism of ft taking 
F + to F~. If ft is not mirror symmetric, we say it is mirror asymmetric. 
We say that an oriented hypermap Q = (D,R,L) is mirror symmetric if 
Q = ( D , i ? _ 1 , L - 1 ) ; if Q is not mirror symmetric, we say it is mirror asym­
metric. A hypermap that is orientably regular but not regular is called chiral. 
The following two lemmas give alternative characterizations of the above defined 
notions. 

LEMMA 1. Let ft be a hypermap with Mon(ft) = (rQ,r1,r2) and Mon(ft+) 
= (it, L) (with respect to some fixed orientation). Then the following statements 
are equivalent: 

i) ft is mirror symmetric. 
ii) ft+="ft~. 

iii) ft+ is mirror symmetric. 

LEMMA 2. Let ft be an orientable hypermap with Mon(ft) = (r0,r1,r2) and 
Mon(ft+) = (R,L). Then 

i) ft is regular if and only if ft+ is regular and mirror symmetric. 
ii) ft is orientably regular if and only if ft+ is regular. 

iii) ft is chiral if and only if ft+ is regular and mirror asymmetric. 

If G is a group generated by three involutions r 0 , rx and r2 , then the 4-tuple 
(G,r0,r1,r2)y where G acts on itself by right multiplication, is a hypermap ft. 
Each element g G G can be seen as an automorphism of ft by letting it acting 
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on G by "left" multiplication2, that is, 

(Vw eG)(w • g = g~lw) . 

Hence Aut T-L = G and T-L is therefore a regular hypermap with the monodromy 
group G. 

Reciprocally, if Ti = (F, r0,r1,r2)
 1S a r e g U i a r hypermap, then, as Aut T-L acts 

transitively on F and its elements commute with the elements of Mon(H), the 
stabilizer Stab(cY) of any flag a £ F in Mon(H) is trivial. As | F | < |Mon(/7) | , 
we have \F\ = | Mon(T-L)\. Then the action of Mon(TZ) is equivalent to the action 
of Mon('H) on itself by right multiplication, and soTi = H= (Mon('H), r0>

 ri> r2)> 
where fi is the permutation of G = Mon(7t") given by right multiplication by r{. 
It is clear, that any permutation of G given by left multiplication of an element 
of G is an automorphism of H. Hence Aut?/ = Mon('r/) and the following 
lemma holds. 

LEMMA 3. Let U = (F,r0,r1,r2) be a hypermap. Then | A u t ? t | < \F\ 
< | Mon('H)| and the following statements are equivalent: 

i) H is regular. 
ii) The stabilizer of any a G F in the monodromy group of % is trivial. 

hi) H*{Mon(H),f0,fvr2). 

iv) A u t W ^ M o n ( f t ) . 

COROLLARY 4. Let H be a hypermap and a be any permutation of the sym­
metric group Ss. Then, 

i) % is regular if and only if Da(%) is regular, 
ii) T-L is chiral if and only if Da(H) is chiral. 

As was already mentioned any orientable hypermap T-L determines two per­
mutations R, L generating the monodromy group Mon( ' r t+) . Moreover, if 
T-L is orientably regular, then Mon('H+) can be seen as the set of darts (see 
Lemma 5ii). Vice-versa, given a triple (G, it, L), where G = (it, L), the hyper­
map Ti = (G x C2,rQ,r1,r2), where C2 = {1, —1}, G = G x 1 and 

r o : ( f f . O ^ (gL~\-i), 
rr- (g,i)^(gR\-i), 
r2: (g,i) H-> (g,-i), 

is necessarily orientable and it has oriented monodromy group Mon(7I"+) = G. 
Each element of G can be seen as an automorphism preserving orientation by 

2If we fix the counter-clockwise orientation, then rxr2 seen as an element of the mono­
dromy group counter-clockwise permutes the darts around hypervertices, but seen as an auto­
morphism it is a clockwise rotation around the vertex containing flag 1. 
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acting on the cartesian set G x C2 by "left" multiplication, 

(\/beG)((b,i)-g=(b,i).(9,l) = (g-1b,i)). 

Then Aut T-L •= G, and consequently, T-L is orientably regular. Hence hyper-
maps on orientable surfaces can be alternatively described by means of two 
permutations i?? L generating the monodromy group of the associated oriented 
map. Now, replacing (in Lemma 3) F with D = F + , M o n ^ ) < S F with 
Mon(H+) < S D , Aut T-L with Aut + T-L and regular with orientably regular we 
have: 

LEMMA 5. Let U = (F,r0,r1,r2) be a hypermap. Then |Aut + rY | < \D\ 
< |Mon( /H+) | and the following statements are equivalent 

i) Ti is orientably regular. 
ii) The stabilizer of any 5 G D in the monodromy group of H+ is trivial. 

iii) % + = (Mon(%+) , i2, L), where R = rxr2 | ^ + and L = r2rQ I p+ . 

iv) A\it+Ti='M(m('H+). 

If G and K are two groups generated by r0, rx, r2 and s 0 , sx, s2, re­
spectively, then the regular hypermap Til = (G,f0,f1,f2) covers the regular 
hypermap Ti2 = (K, sQ,s1, s2) if and only if the assignment ri i-» si, i — 0 ,1 , 2, 
determines an epimorphism g*: G -> ivT. This epimorphism D* is itself a cover­
ing g: UX-±U2. 

Let A = A(oo, oo, oo) be the free product C2 * C2 * C 2 , 

A = \ R 0 , itj, it2 I it0 = itj = i?2 = 1) . 

This group gives rise to an infinite regular hypermap (the universal hypermap 
[18]) with monodromy group A. If T-L = (F,r0,rx,r2) is any hypermap, then 
g: Rt ^ ri determines an epimorphism g: A -> Mon(%). A acts naturally on 
F by x - d = xdg. Fix a G F and let H be the stabilizer of a in A . Since 
Mon('rt) acts transitively and faithfully on F1, then Kei(g) = HA, the core of 
H in A, and so Mon(K) = A/HA. As the action of A on F is equivalent to 
the action of A on the right cosets A/H of H in A, then % is isomorphic to 

(A/H, HAR0, HARX, HAR2). 

That is, the flags of any hypermap % can be seen as right cosets iFd, d G A, of 
some subgroup H in A , called hypermap-subgroup of %, while the monodromy 
group of % can be seen as the quotient group A/HA acting on the right cosets 
Hd by right multiplication. In this view T-L is orientable if and only if H < A + , 
where A + is the even subgroup of index 2 in A generated by R1R2 and R2R0. 
The hypermap-subgroups are not unique, but they are all conjugate. But, be­
cause conjugate hypermap-subgroups give rise to isomorphic hypermaps, they 
are unique up to a conjugacy, or in other words, up to an isomorphism. 
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Similar correspondence between subgroups of A4" and oriented hypermaps 
can be established. In particular, the darts of the oriented hypermap 1-L+ cor­
respond to right cosets (darts) Hd, d G A + , while the monodromy group 
Mon(U+) corresponds to A+/HA+. 

As a consequence of the above discussion we get the following lemma. 

LEMMA 6. Let % be a hypermap with the respective hypermap subgroup 
H < A. Then % is orientably regular if and only if H < A + . regular if 
and only if H < A, and chiral if and only if H < A + but H <fi A. 

Given two hypermaps %l and 1-L2, 7t\ covers H2 if and only if there 
exist hypermap-subgroups Hl and H2 of %1 and H2, respectively, such that 
Hx <H2. The covering is given by A/rHx —> A,/H2 , Hxd —> H2d. 

It is easy to see that the conjugation by R2 inverts the generators R1R2, 
R2R0 of A + . Hence, an orientable regular map H with the hypermap subgroup 
H is regular (or not chiral) if II = HR2. In [6] the chirality group of a hypermap 
H is defined by setting X(H) = H/HA. Since H is mirror symmetric if and 
only if X(%) is trivial, the chirality group can be considered to be an algebraic 
measure of how much an orientable regular map deviates from being regular. 
The chirality index K(H) = \X(H)\ is the size of the chirality group. It is proved 
in [6] that the chirality group of a hypermap can be viewed as a subgroup of 
Mon(H+) thus the chirality index is a divisor of the number of darts of T-L. 

For more information on chirality groups the reader is referred to [6]. To 
calculate the chirality index of a given hypermap H, the following lemma will 
be useful. 

LEMMA 7. Let H be an orientable regular hypermap. Then K(%) — 
2|Mon(?t+)| ' 

P v ^ f u-(1J\ \UIU I - 1A + /11A| 1 |Mon(7t)| 

Proof . K(U) = \H/HA\ - -^-J-J- = - ! Mon(K+)| . • 

3. Chiral hypermaps from metacyclic groups 

Let us denote by G = G(m,n,r,s) = (a,b \ an = 1, bm = as, bab~l = ar) 
with s and r satisfying (r —1)5 = 0 (mod n) and rm = 1 (mod n), the meta­
cyclic group with parameters m, n, r and s. This group has order mn. The 
aim of this section is to prove the following theorem. 

THEOREM 8. The hypermap Q = (G,ab,b~l) is a chiral hypermap (with m 
hyperfaces of valency n) if and only if r2 ^ 1 (mod n). 
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P r o o f . We have already observed that Q is an oriented regular hypermap. 
By [20], (a) is normal in G and the factor G/(a) is cyclic of order ra, then Q 
has m hyperfaces, each of valency n . It remains to show that U is mirror asym­
metric. Assume it is mirror symmetric. Then b~1a^lb = a~r and bab~l = ar. 
Combining the above two relations we end with ar - - -a , and consequently, 
r2 = 1 (mod n ) . On the other hand, assuming r2 = 1 (mod n ) , the Substitu­
tion Test ([20]) implies that the assignment b i—>• b_1, ab i-> (ab ) _ 1 extends to a 
mirror symmetry. • 

COROLLARY 9. If r2 ^ 1 (mod n ) , then the hypermap Q = (G,ab,b~l) is 

chiral with chirality group X(Q) = (ar ~l) and chirality index -—n-— . 

P r o o f . By Theorem 8, Q is chiral. Now the greatest regular hypermap 
covered by Q has monodromy group 

( a , b | a , b | a n = l, bm = a5, bab~l = a r , ft^rt = a" 1 ) =" G/(ar'~l). 

Then X(Q) = ( a r 2 _ 1 ) and hence Q has chirality index K = |X(Q) | = 
( n , r 2 - l ) ' 

D 

4. Chiral hypermaps with at most four hyperfaces 

The aim of this section is to give a classification of all chiral hypermeips with 
at most four hyperfaces. In what follows we shall use the following notation for 
some numerical invariants of orientable regular hypermaps: N — the negative 
Euler characteristic; /, m and n — the valency of a hypervertex, hyperedge and 
hyperface, respectively; V, E and F — the number of hypervertices, hyperedges 
and hyperfaces, respectively; K — the chirality index. 

THEOREM 10. If % is orientably regular with 1 hyperface, then T-L is regular. 

P r o o f . Without any loss of generality, we consider the dual D(H) with 
one hypervertex. If H has one hypervertex of valency n , then Mon(?{+) is a 
cyclic group Cn = (R). Then L = Rs for some s G { 0 , 1 , . . . ,n—1}, and so 
Mon(-H+) = (R,L\ Rn = RsL~l = 1). Then Mon(H) has presentation 

(x, j / , z | x2 = y2 = z2 = (yz)n = 1, zx = (yz)s) 

= (x, y, z | x2 = y2 = z2 = (yz)n = 1, x = z(yz)s) 

= (y,z\y2 = z2 = (yzr = l)=Dn. 

As |MonCri)| = 2 |Mon(H + ) | , then n(U) = 1. • 
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THEOREM 1 1 . IfH is orientably regular with 2 hyperfaces, then Ti is regular. 

P r o o f . Let F1 and F2 be the two hyperfaces of Ti. Then Fl and F2 

must appear around each hypervertex and around each hyperedge. Let a be 
the permutation that cyclically permutes the darts counter-clockwise around 
F1 and b the permutation that cyclically permutes the darts counter-clockwise 
around a hypervertex incident with Fx. Then b2 must be a power as for some 
s G { 0 , . . . , n—1} and (ab)2 must also be a power a} for some t G { 0 , . . . , n—1}. 
Let Gs t be the group with presentation 

( a , b | a n = l, b2 = as, (ab)2 = a1) . 

As b2 = a5 , the subgroup K = (a) has index 2 in C751, and so |G5 J < 2n is 

finite. Then Mon(/Y+) = G5 ^ for some 5 and t, and so Mon(H) has presentation 

(x, y, z | x2 = y2 = z2 = ( ^ ) » = 1, (*x)2 = (yzY, (yx)2 = Q/zY) . 

Changing variables a = yz, b = zx, z = z in the above presentation, it changes 
to 

( a , b , z | ^ 2 = an = l, bz=b~\ az = a~\ b2 = a5, (ab)2 = a*) , 

which shows that Mon(%) is a split extension of Gs t by C2 = (z \ z2 = 1). 
Hence K(H) = 1 and thus T-L is regular. • 

As one may expect, the difficulty in dealing with chiral hypermaps sharply 
increases with the number k of hyperfaces. So our strategy will be based on 
an observation that there is a natural homomorphism <J>: Au t + T-L -> Sk whose 
kernel is formed by automorphisms fixing point-wise all the k hyperfaces of H. 
In what follows we examine the structure of Mon(H+) = Au t + H via the in­
duced action in the symmetric group Sk for k = 3 and 4 . 

THEOREM 12. If a hypermap T-L is chiral with 3 hyperfaces of valency n, then 
n > 7 and its oriented monodromy group is the metacyclic group Mon(T-L+) = 
(a, b | an = 1, b3 = a5, bab-1 = a r ) for some s G {0, . . . ,n—1} and r G 
{2 , . . . , n—1} satisfying (r — l)s = 0 (mod n) and r3 = 1 (mod n). 

Vice-versa, the group G with the above presentation defines an oriented hy­
permap (G, ab, b-1) (where b and ab acts on G by right multiplication) which 
is chiral and has 3 hyperfaces. Moreover, different solutions (r, 5) correspond to 
different (non-isomorphic) hypermaps. 

P r o o f . We stretch first that it is clear from the presentation of the oriented 
monodromy group that if Tl1 and H2 are two chiral hypermaps with 3 hyper­
faces of valency 72 with oriented monodromy groups corresponding to different 
solutions (r, s), then T~L1 and Ti2 are not isomorphic. 

Let F1, F2 and F3 be the hyperfaces of H. They will be distributed around 
hypervertices and hyperedges as pictured below, where F, F' G {F\, F2, F3} . We 
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cannot have F = F' = Fx otherwise we would have 2 hyperfaces only. Then we 
have three cases: 

(I) F = F3,F' = F1. 
(II) F = F' = F3. 

(Ill) F = F1,F' = F3. 

By taking the dual D / 0 1 | that transpose hypervertices with hyperedges we see 
that Case (III) is equivalent to Case (I). Thus, it is sufficient to consider only 
the first two cases. 

Let a be the permutation that cyclically permutes the darts counter-clockwise 
around F\ and b the permutation that cyclically permutes the darts counter­
clockwise around the hypervertex v. 

Case (I). 
In this case an = 1, b3 = a5 , (ab)2 = a1 and b~1ab~1 = ar for some s,r,t G 
{ 0 , . . . , n - 1 } . Let Gs rt be the group with presentation 

(a,b | an = 1, b3 = a5, (ab)2 = a\ b~lab~l = ar) 

and let K be the subgroup generated by a. From the relations (ab)2 = a1, 
b~1ab~1 = ar and b3 = as we get ba = at~1b~1, b~la = arb and b-1 = a~sb2, 
respectively. Then Kb'1 = Kb2, Kb3 = K, Kba = Kb-1 = Kb2, Kb2a = 
Kb~xa = Kb, and so G s r t is partitioned into 3 cosets K, Kb and Kb2. Hence 
Gsrt is finite ( | G 5 r t | = 3ord(a)) , and consequently, Mon(7r!+) = Gsrt for 
some s, r and t. But by the Substitution Test ([20]) the function a h-> a - 1 , 
b H-> b_1 extends to an automorphism of Gs r t. By Lemma 2, K,(H) = 1, and so 
Case (I) gives rise only to regular hypermaps. 

Case (II). 
In this case an = 1, b3 = as, (ab)3 = a1 and bab-1 = a r for some s,r, t G 
{ 0 , . . . , n—1}. Let Gs rt be the group with presentation 

(a, b | an = 1, b3 = as, (ab)3 = a1, bab~x = ar) 

and let K be the subgroup generated by a. By bab-1 = ar we get ba = arb and 
b2a = barb, and the relation b3 = as implies b_1 = a~sb2. Then Kb-1 = Kb2, 
Kb3 = K, Kba = Kb, Kb2a = Kbarb = Kb2, and so Gsrt decomposes in just 
3 cosets K, Kb and Kb2. In other words, Gsrt is finite (\GS rt\ = 3ord(a)) , 
hence Mon(W+) = Gs rt for some s, r , t. Combining relations b3 = as <=> 
b2 = asb~1 and bab-1 = a <=> bab = arb2 we derive 

a* = (ab)3 = abarb2 = abar+1asb~1 = a (bab " 1 ) r + 5 + 1 = ar
2+™+HM. 
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Notice that this shows that the relation (ab)3 = a1 is redundant. So t = r2 + 
rs + r + 1 (mod n ) . From bab-1 = a r we have 

basb~l =ars <==> a ( r"1 ) 5 = 1. 

Thus (r — 1)5 = 0 (mod n ) . The same relation gives 

baV1 = art <=> b(ab)3b~1 = art 4=> (ba)3 = art <=> a1 = a r ' . 

Consequently, t(r — 1) = 0 (mod n) , which is equivalent to r 3 = 1 (mod n) 
since t(r — 1) = (r — l) ( r 2 + r + 1) + (r - l ) r s = r3 — 1 (mod n ) . 

Assume r = 1. Then ab = ba and 

(abf = as+2 = b3a2 <-=> o = 1. 

This implies that Gs rt = C3 is cycle and H has only one hypervertex. By 
Theorem 10, % is regular. If r = 0, then r3 = 1 (mod n) is equivalent to 
1 = 0 (mod n ) . The only possibility is n = 1 in which case we would have again 
a cyclic group Gs r t of order 3 and a regular hypermap. Hence r G { 2 , . . . , n—1} . 

Finally, the congruences (r — l)s = 0 (mod n) and r 3 = 1 (mod n ) , where 
s G { 0 , . . . , n—1} and r G { 2 , . . . , n— 1}, have no solutions for n = 2, 3,4, 5, 6. 
Thus n > 6. 

The other implication follows from Theorem 8. D 

COROLLARY 13. If % is a chiral hypermap of type ( / ,ra,n) with 3 hyperfaces, 
then I and m must be equal to 0 (mod 3) . 

P r o o f . In the proof of Theorem 12, we saw that we must have 3 distinct 
hyperfaces around both a hypervertex and a hyperedge (Case (III)). This implies 
that / = 0 (mod 3) and m = 0 (mod 3). D 

COROLLARY 14. There is no chiral map with 3 faces. 

P r o o f . This comes directly from Theorem 12, and Corollary 13. D 

Up to a mirror image and a permutation among z-cells (i G {0,1,2}), the 
following list shows all the chiral hypermaps (excluding mirror images) with 3 
hyperfaces of valency n < 27: 
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N r s 1 m n v E F darts к 

4 2 0 3 3 7 7 7 3 21 7 
10 3 0 3 3 13 13 13 3 39 13 
12 4 0 3 9 9 9 3 3 27 3 
16 7 0 3 3 19 19 19 3 57 19 
18 4 3 9 9 9 3 3 3 27 3 
18 9 0 3 6 14 14 7 3 42 7 
18 4 0 3 3 21 21 21 3 63 7 
30 7 0 3 18 18 18 3 3 54 3 
36 7 6 9 6 18 6 9 3 54 3 
36 3 0 3 6 26 26 13 3 78 13 
36 3 13 3 6 26 26 13 3 78 13 
42 7 3 18 9 18 3 6 3 54 3 
46 4 7 9 9 21 7 7 3 63 7 
46 4 14 9 9 21 7 7 3 63 7 

THEOREM 15. If % is a chiral hypermap with 4 hyperfaces of valency n, then 
n > 5 and its oriented monodromy group is the metacyclic group Mon(H+) = 
(o,ò | an = 1, b' A - bab - ì _ a1) for some r G {0,. ,n- -1} and t Є 

1 (mod n) but t2 ф 1 (mod n), and {2, ...,72—1} satisfying (n,t) = 1, t4 

r(t - 1) - 0 (mod n). 

Vice-versa, the group G with the above presentation defines an oriented hy­
permap (C?,ab, b-1) (where b and ab act on G by right multiplication) which 
is chiral and has 4 hyperfaces. Moreover, different solutions (r, t) correspond to 
different (non-isomorphic) hypermaps. 

P r o o f . Let us observe that the second part of the statement is a direct 
consequence of Theorem 8 and of Corollary 9. 

Now let % be a chiral hypermap with 4 hyperfaces of valency n. Without 
any loss of generality (that is, up to a colour reassignment) we consider the 
number of distinct hyperfaces around hyperedges to be greater or equal than 
the number of distinct hyperfaces surrounding hypervertices. 

Let F1, F2, Fs and F4 be the hyperfaces of Ti, v a hypervertex incident to 
Fx and e a hyperedge incident to both v and F1. Let A, B G Aut+ T-L be the 
one step counter-clockwise rotations about Fx and v respectively. Then AB is 
the one step rotation clockwise about e. 
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FIGURE 4. The faces surrounding face F!. 

To fix notations, let a G Mon(7^+) be the permutation that cyclically per­
mutes the darts counter-clockwise around Fl and b G M o n ( H + ) the permu­
tation that cyclically permutes the darts counter-clockwise around v. These 
permutations generate the oriented monodromy group G = Mon(%+). Let also 
K=(a) <G. 

To discuss the distribution of the hyperfaces around Fx, v and e we will use 
the transitive action of A u t + H = (A, B) on the 4 hyperfaces of % and will see 
A and B as permutations of S4 rather than as elements of A u t + H, so in what 
follows we shall use the same letters A, B to denote the respective permutations 
of the 4-element set of hyperfaces induced by the action of A, B. 

Since we must have at least 3 distinct hyperfaces around either v or e, 
without any lost of generality we may suppose that in the induced action on 
hyperfaces B = (F1,F2,F3) or B = (F1,F2)F3)F4), that is for brevity, B = 
(1,2,3) or B = (1,2,3,4). 

Case (I). B = (1,2,3). 
Then we have 4 possibilities for AB: (1,2)(3,4), (1,2,4), (1,2,3,4) and 
(1,2,4,3). 

B AB A 

(Ia) (1,2,3) (1,2)(3,4) (2,3,4) 

(Ib) (1,2,3) (1,2,4) (2,4,3) 

(Ic) (1,2,3) (1,2,3,4) (3,4) 

(И) (1,2,3) (1,2,4,3) (2,4) 
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Case (II). B = (1,2,3,4). 
This produces 6 possibilities for AB: (1,2), (1,2)(3,4), (1,2,3), (1,2,4), 
(1,2,3,4) and (1,2,4,3), displayed in the table below in a different order for 
convenience. 

B AB A 

(Пa) (1,2,3,4) (1,2) (2,4,3) 

(IЉ) (1,2,3,4) (1,2)(3,4) (2,4) 

(Пc) (1,2,3,4) (1,2,4,3) (2,3,4) 

(Иd) (1,2,3,4) (1,2,3,4) id 

(Пe) (1,2,3,4) (1,2,3) (3,4) 

(Пf) (1,2,3,4) (1,2,4) (2,3) 

bab = as l and b la2b l = al 

Notice that (He) transfers to (Ic) by exchanging v with e, while (Ilf) is 
the same as (Id) by a relabeling of hyperfaces. The knowledge on the local 
distribution of hyperfaces (colours) and the fact that Mon(?{+) = (a, b) acts 
regularly on darts of H allows us in each of the cases below to determine a set 
of relations on the generators a and b. This set differs from case to case, thus 
each of them has to be discussed separately. 

Case (la). 
We have an = 1, b3 = ar, (ab)2 = as < 
ba3b~l = a s _ H _ 1 = au for some r, s,t G {0, . . . , n — 1 } . Since b2abl is not in 
K = (a), K, Kb, Kb2 and Kb2a are distinct cosets. From above relation we 
can also deduce that bab~2 and b2a2b~1 are elements of K, so any coset word 
Kw can be reduced to one of the above 4 cosets. This means that the oriented 
monodromy group G has presentation 

(a, 6 | an = 1, b3 = a r , (ab)2 = a 5, b~la2b~l = a*) 

for some r, s,t G {0, . . . ,n—1}. Then by the Substitution Test the function 
a H-> a - 1 , b i-> b_1 extends to an automorphism of G, so this case induces 
regular hypermaps. 

Case (lb). 
We have the following relations an = 1, b3 = a r , (ab)3 = a 5 , ba2b = a1 and 
b2ab2 = au, for some r,s,t,u G {0,..., n—1}. Thus G is partitioned into the 4 
cosets if, Kb , Kb 2 , Kba with the above relations as defining relations. Similarly 
as above, a i-> a - 1 , b H> b-1 extends to an automorphism of G and so this case 
gives rise to regular hypermaps either. 
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Case (Ic). 
The relations an = 1, b3 = a r , (ab)4 = as, b^ab = a* and b(a)2b~1 = an hold 
in G = Mon('rt+) for some r, s, t, u G { 0 , . . . , n—1}. In fact they define G since 
they reduce any word Kw, w G F(a,b), to one of i\ , JCb, Jfb2 and Kba. But 
then b_1ab = a* «==> baba = b2a*+1 = ir1^"1"**1, and so 

a3'1 = bababab = b^aT+^bab = a ' ( r + t + 1 ) + 1 b , 

that is, b G K which forces H to have fewer than 4 hyperfaces, a contradiction. 
Case (Id). 

We have an = 1, b3 = a r , (ab)4 = a5, bab-1 = a* and b~1a2b = au for some 
r, s, t, it G { 0 , . . . , n—1}. These relations define G which is partitioned in the 4 
cosets K, Kb, Kb2 and Kb2a. Similarly as in (Ic) we have abab = a1+r+tb~1 

derived from bab"1 = a1 and b3 = ar. Then 

a8-1 = bababab = baba^^b'1 = bat(1+r+t)+1 , 

that is, 6 E i \ , a contradiction. 
Case (Ha). 

We take the dual B = (1,2), AB = (1,2,3,4) and A = (2,3,4) instead. In 
this settlement we must have an = 1, b2 = a r , (ab)4 = a5 , ba~xbab = af, 
ba3b_1 = an and baba~1b~1 = av for some r,s,t,u,v G { 0 , . . . , n— 1}. The 4 
distinct cosets of K in G are if, Kb, Kba and Kba2. One easily see that 
i\"baz = Kb, Kba, or ifba2 according as i = 0,1, 2 (mod 3). As ba2, ba2b and 
ba2ba~1b~1 are not elements of if, then Kba2b = Kba2. But combining the 
4th and 5th relations we get ba2bab = a*+n and thus Kba2b = Kba*1-1. Hence 
n = 0 (mod 3). Now Kbab = Kavba = Kba and Kbab = Kb'1 a1 = Kba1, so 
t = 1 (mod 3). But a~xba = b~1atb~1 = b~1at~rb, so powering up by r we 
have a r = b-1a2t"2rb <̂ => ba^"1 = a2t~2r <=> a3r = a2*, so t = 0 (mod 3), 
which is a contradiction. So case (Ha) gives no chiral hypermap. 

Case (lib). 
As in (Ha) we also take the dual B = (1,2)(3,4) and AB = (1 ,2 ,3 ,4) , which 
implies that A = (2,4). Then an = 1, b2 = ar, (ab)4 = as and ba2b = a1 for 
some r, 5, t G { 0 , . . . ,n—1}. K, Kb,' Kba and Kbab are distinct cosets, so these 
make up the 4 cosets of K in G. One can easily see that the above relations are 
enough to reduce any word Kw, w G F(a, b), to one of the above cosets. Hence 
they define G. But by the Substitution Test, the function a i—>• a - 1 , b i-> b_1 

extends to an automorphism of G, and so this case induces regular hypermaps. 
Case (He). 

We have an = 1, b4 = ar, (ab)4 = as, bab2 = a1, b^ab'1 = au, b2ab = av 

and b2a2b~1 = ax for some r, s, t, u, v, x G { 0 , . . . , n—1}. These relations define 
G = Mon(H+ ) which is partitioned in cosets K, Kb, Kb2 and Kb3 . Having in 
mind that ar commutes with a and b, b2ab commutes with a and b"2 = a~rb2 
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then 

a2v = b^ab^ab-1 

= a-rb-lab2ab-x 

= a-^b-'atfab3 

= a-2Tb-xa{b2ab)b2 

= a-2rb-l(b2ab)ab2 

= a-2rba{bab2) 

= a 
-2г bat+1 

Thus b G K, a contradiction. 

Case (lid). 
We have a71 = 1, b4 = a r , (ab)4 = a 5 , bab-1 = a*, and b2ab2 = au for some 
r, s,£, ii G {0, , . . , n — 1 } . As above, G is partitioned in cosets K, Kb, Kb2 

and Kb3 and it is straightforward to see that the relations an = 1, b4 = ar, 
bab"1 = a1 and b2ab2 = au define G = Mon(W+)- Since b2ab2 = b2ar+1b~2 

= a*2( r+1), then t; = t 2 ( r + 1) (mod n ) . Note that from b~lab = b~2bab~lb2 

= b"3batb-1b3 = of , we compute (ab)4 = aba(b~lb2)abab = at+lb2ab2b~lab 
= a ^ 1 " ^ ' 3 . Hence 

Mon(7Y+) = (a, b | an = 1, b4 = a r , bab"1 = a4) 

for some r,t e { 0 , . . . , n - 1 } . From bab"1 = a1 we derive that (n, £) = 1. From 
b~1ab = a1 we get a = a1 , and so £4 = 1 (mod n ) . By powering both sides of 
bab'1 = a1 by r we get a r = a r t which forces r(t — 1) = 0 (mod n ) . Finally, 
G determines a chiral hypermap if and only if the assignment a i-» a - 1 and 
b H> b_1 does not extend to an automorphism of G and, by the Substitution 
Test, this is equivalent to b~1ab ^ a t <̂ --=> t2 ^ 1 (mod n ) . For n = 1,2,3,4 
the system of equations (n,t) = 1, tA = 1 (mod n ) , but t2 ^ 1 (mod n ) , and 
r(£ — 1) = 0 (mod n) have no solutions (r, t) G { 0 , . . . , n—1} x { 1 , . . . , n—1}. 

• 
COROLLARY 16. If % is a chiral hypermap of type (l,m,n) with 4 hyperfaces, 
then I and m must be 0 (mod 4) . 

P r o o f . As proven in the body of Theorem 15, B = (1 2 3 4) = AB which 
means that any chiral hypermap H with 4 hyperfaces must be a covering of a 
hypermap of type (4,4 ,1) , and so, if H has type (Z, m, n ) , then / = 0 (mod 4) 
and m = 0 (mod 4) . • 

COROLLARY 17. There is no chiral map with 4 faces. 

Up to a permutation among i -cells and mirror images, all the chiral hyper-
maps with 4 hyperfaces and valency n < 30 are listed in the following table: 
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N r t l m n v E F darts к 

6 0 2 4 4 5 5 5 4 20 5 

16 0 3 4 4 10 10 10 4 40 5 

26 5 3 8 8 10 5 5 4 40 5 

22 0 5 4 4 13 13 13 4 52 13 

26 0 2 4 4 15 15 15 4 60 5 

36 0 7 4 12 15 15 5 4 60 5 

46 10 7 12 12 15 5 5 4 60 5 

36 0 3 4 8 16 16 8 4 64 2 

40 0 5 4 16 16 16 4 4 64 2 

48 8 5 8 16 16 8 4 4 64 2 

30 0 4 4 4 17 17 17 4 68 17 

36 0 3 4 4 20 20 20 4 80 5 

36 0 13 4 4 20 20 20 4 80 5 

66 5 13 16 16 20 5 5 4 80 5 

66 15 13 16 16 20 5 5 4 80 5 

56 10 3 8 8 20 10 10 4 80 5 

56 10 13 8 8 20 10 10 4 80 5 

46 0 7 4 4 25 25 25 4 100 25 

48 0 5 4 4 26 26 26 4 104 13 

74 13 5 8 8 26 13 13 4 104 13 

54 0 12 4 4 29 29 29 4 116 29 

COROLLARY 18. The least number of faces of a chiral map is 5. 

P r o o f . By Corollary 14, and Corollary 17, no chiral map with at most 4 
faces exists. On the other hand, it is known ([12]) that the complete graph /C5 

has a chiral embedding M — {4,4}2 x on the Torus with 5 faces and 5 vertices. 
• 
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