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CONSTANT RATIO-FUNCTION
OF LINDENMAYER SYSTEMS

MARIA KRALOVA

1. Introduction

Mathematical models describing the process of a biological development of
simple organisms, which are called Lindenmayer systems or L-systems, have been
in the past few years in the centre of attention of both formal language theorists and
mathematicians. So far two special functions have been investigated — the growth
function and the letter occurrence function — as the functions of L-systems of
biological origin.

The first paper dealing with the analysis of growth functions was Szilard’s [6].
The growth function is defined as a function over the set of natural numbers, whose
value is the length of the ¢-th word of a developmental sequence for any number ¢.
The reader can find a detailed survey of results concerning the growth functions,
e.g. in [7]. Then for a given letter the l=tter occurrence function associates with the
natural number ¢ the number of occurrences of this letter in the ¢-th word produced
by the given L-systems. The reader who want to obtain a deeper insight into this
topic is referred to [7].

This is the first paper in which mathematical properties of ratio-functions are
investigated. Ratio-functions are new special functions of L-systems, which can be
widely used in modelling biological reality and they have the following motivation:

During the past two decades the most popular method of studying the cell cycle
in autoradiography has been the method of fraction labelled mitosis (FLM).
Experimentally it starts by introducing a radioactive molecule into the cell
population. Then specimens of tissue or cell culture are taken at fixed intervals of
time and microautoradiographs are prepared. The number of labelled mitotic cells
and the total number of cells are counted. Thus the FLM-curve is a curve defined
on the basis of the cell mitotic cycle, which is important for determining the
increase of the cell population.

In [2] a DOL-system is used in this method as a model of the cell population
development. In that model a new type of the function (we shall call it the
ratio-function) corresponds to the FLM-curve. It is defined as follows:
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For a DOL-system G=(W, , w) and its subaxiom w’ the ratio-function
associates with a natural number ¢ the ratio of the letter occurrence function of
a given L-system with the axiom restricted to the subaxiom w’ and the letter
occurrence function of a given L-system.

In this paper we shall characterize L-systems with constant ratio-functions using
the same method as in [3], i.e. by properties of levels in L-systems.

2. Preliminaries

In this section we give a brief survey of the most needed notions and notations
used in the paper. Throughout the paper we shall deal only with deterministic
Lindenmayer systems without interactions (DOL-systems)

The set of natural numbers {1, 2, ...} will be denoted by N, the set of
nonnegative integers {0, 1, ...} by Z* and the set of nonnegative reals by R*.

Definition 2.1. A deterministic Lindenmayer system without interactions is
a triple G=(W, 8, w) consisting of a finite nonempty set W, called alphabet,
a total mapping 6: W— W* (it determines the production rules) and an initial
word w e W, called axiom.

We remark that the set of all words over some finite alphabet W is denoted by
W* and ¢ denotes the empty word.

We can extend the domain of function 6 to W* in a natural way, i.e.

6(e)=¢
6(ab)=06(a)d(b)
for ae W, be W*,
Next we define
6'(b)=0(5"""(b))
for each te N, t=2 and b € W*,
Definition 2.2. Let G=(W, 8, w) be a DOL-system and let a, be W. Then
atgb iff 5(a)=xby forsome x,ye W*,

>4, ¥ are the transitive closure and the reflexive and transitive closure of >g,
respectively,
a=¢gb iff ab¥%b and bD¥a.

Definition 2.3. Let G=(W, §, w) be a DOL-system and let a e W. An equiva-
lence class

[a]g={be W, bEGa}
is called the level of the DOL-system G generated by a.
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Remark 2.1. The subscript G will be omitted in notations always when it is
clear which G is considered.

We conclude this section by mentioning some structural properties of letters in
the DOL-system G =(W, 8, w).

Definition 2.4. Let G=(W, 6, w) be a DOL-system. A letter ae W is
mortal /ae M/ if 8 '(a)= ¢ forsome je Z*;recursive /ae R/ if 5'(a) e W*aW*
for some je N; monorecursive /ae MR/ if (a)e M*aM* for some je N;
expanding /a€E/ if §'(a)e W*aW*aW* for some je N; accessible from
aword be W /ae U(b)/ if 8'(b)e W*aW* for some je N; z-mortal for ze W
/a € z-M/ if there exists a j,€ N such that #,(8'(a))=0 for all j = j,. /The symbol
#.(w) denotes the number of occurrences of the letter a in the word w./

Definition 2.5. Let G=(W, 6, w) be a DOL-system. A letter ae W is called
mortal with the index of mortality t /ae M®/,recursive with the index
of recursivity ¢t /aeR®/, monorecursive with the index of
monorecursivity t /ae MR®/, expanding with the index of expansion ¢
/a€ E®/, z-mortal with the index of z-mortality ¢t /aez-M"/ if t is the
smallest number for which the condition of mortality, recursivity, monorecursivity,
expansion, z-mortality, respectively, is satisfied. The number t is called the index
of mortality, recursivity, monorecursivity, expansion, z-mortality,
respectively, of the letter a.

Definition 2.6. The level [a] is called mortal, recursive, monorecursive, expan-
ding, z-mortal if the letter a is mortal, recursive, monorecursive, expanding,
z-mortal, respectively.

Definition 2.7. The level [a] is called monorecursive with the index of mono-
recursivity t if the letter a is monorecursive with the index of monorecursivity t.

Remark 2.2. If [a] is a monorecursive level of the DOL-system, then each
b €[a] is monorecursive.

If [a] is a monorecursive level with the index of monorecursivity ¢ of the
DOL-system, then each be[a] is a monorecursive letter with the index of
monorecursivity ¢.

3. Ratio-function, its characterization and properties

Definition 3.1. Let G=(W, 6, w) be a DOL-system. A word w' is called the
subaxiom of the axiom w if the relation
we W*w' W*
is satisfied.
It is easy to see that the system G=(W, §, w') is again a DOL-system.
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Definition 3.2. Let G = (W, 8, w) be a DOL-system and let w' be a subaxiom of
the axiom w. A quadruple G'=(W, 8, w, w') is called a DOL-system with
a subaxiom.

Definition 3.3. Let G'=(W, 6, w, w') be a DOL-system with a subaxiom and
let a e W. Then the function r,: Z*— R*, defined by

.5 (")
0D ="8 5 (w))

if #.{8'(w)) # 0 and not defined if #, (6'(w)) =0, is called the ratio-function of G’
determined by a.

Theorem 3.1. For each number 5, where peZ*, qe N, p<gq, there exists

a DOL-system with a subaxiom G'=(W, 8, w, w') such that
D R
r‘.(])=5 forall jeZ".

Proof. The DOL-system with a subaxiom G’ = (W, 8, w, w') is constructed as
follows

W={a}, 6(a)=a, w=a*

and for p=0 we put w'=¢, for p#0 we put w' =a’.
The following lemmas will be used in the proofs of theorems.
Lemma 3.1. Let G=(W, 6, w) be a DOL-system and let a, b € W such that

a#b. A letter b is a-mortal with the index of a-mortality 1 iff a & U(b).
Proof. It follows easily from the definitions.

Lemma 3.2. Let G=(W, 8, w) be a DOL-system and let [a] be its monorecur-
sive level with the index of monorecursivity 1. Then [a] consists of exactly one

element.
Proof. Suppose that the assumptions of the lemma are satisfied. Evidently

a €[a]. Since a e MR, we obtain
8(a) = x,ay,, (D

where x;, y1e M.
Suppose further that b e[a], b#a and b e MR, Hence there holds

8(a)=xzby,, 2)

where x2, y, € W. Relations (1). (2) imply b € M, because G is a DOL-system. This
contradiction proves our lemma.

Lemma 3.3. Let G=(W, 8, w) be a DOL-system. Let [a] be its monorecursive
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level with the index of monorecursivity 1 and let be W, b & [a], be such that b is
a-mortal. Then b is a-mortal with the index of a-mortality 1.

Proof. Let G be a given DOL-system and let the other assumptions of the
lemma be satisfied too. Then we obtain b# a and

#.(8(a))>0 forall jeN.

Since we assume that b is an a-mortal letter, we have: There exists a joe N such
that #.(8'(b))=0 for j=j,. Assume further that j,# 1. It means:
There exists a se€ N, 1 <s < j, such that #,(5°(b))>0. Then

#.(8°(b))>0 forall j=s

by the condition that a € MR, However, it is a contradiction with the a-mortality
of the letter b.

Theorem 3.2. Let G'=(W, 8, w, w') be a DOL-system with a subaxiom, let [a]
be its monorecursive level with the index of monorecursivity 1 and let for each
b e W, b+ a one of the following conditions hold :

(i) b is a-mortal,
(ii) b is a nonrecursive letter and a € U(b).

Then there exists a number j, such that

r.(j)= forall j=jo, jeN,

QT

where peZ*, qe N.

Proof. Suppose that [a] is a monorecursive level with the index of monorecur-
sivity 1 of the given DOL-system with a subaxiom G’ and let b# a. Then [b] #[a]
according to lemma 3.2. For the case (i) suppose now that b is a-mortal. By
lemma 3.3 b € a-M™ hold. Itis equivalent to a ¢ U(b) by lemma 3.1. It means that

#.(8'(b))=0 forall jeN.

For the case (ii) let b, s=1, 2, ..., [ be all letters of the alphabet W of the given
DOL-system with a subaxiom G’ which are nonrecursive and a € U(b,).
It is clear that for every k>1[ and every b,, s=1, 2, ..., | there holds

fa (6%*1(b,)) = #. (8%(b,)).
Put j0= l.
Since ae U(b,) for all s=1,2, ...,] and a e MR we obtain
# (8°(b,)) # 0.

Hence according to (i) there holds
(55 = #a () + 3 () . (84(B)).
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Then the ratio-function is given as

B0+ 3 e (0)  (54(5)
B0+ S ) H.5°6)

ra(jo) =

where
A={s; b ew';.

Since a e MR, we have

#n (6’(b:)) = #“ (6i(’(b-v))’ jzj"’ Jje N.
Then
r(j))=r.(o) forall j=j,.

The next theorem is an extension of the previous assertion for the DOL-system
with a subaxiom with the monorecursive level with the index of monorecursivity ,

t>1.

Theorem 3.3. Let G’ =(W, 8, w, w’) be a DOL-system with a subaxiom, let [a]
be its monorecursive level with the index of monorecursivity t, t>1, t € N and let
for any be W, b# a, one of the following conditions holds :

(i) ag U(b),
(ii) ae U(b) and b is either a monorecursive or a nonrecursive letter.
Then there exists a number j, such that for j = j,, j € N the ratio-function r,(j) is

a periodic function with the period t.
Proof. Let be W, b+ a. We shall prove that there exist j,e N and for any

[=0,1,..., t—1 some numbers p;e Z*, q: € N such that
r,,(j0+nt+l)=g-' forany neN.
1

For b such that a ¢ U(b) we have b € a-M® according to lemma 3.1. Hence
#,(6"(b))=0 for neN.

The property a e MR implies:
There exists a finite sequence by, b, ..., b_;€ W such that

6(a)e M*b,M*,
6%*(a) e M*b,M*,
8'"'(a) e M*b,_,M*,
O6'(a) e M*aM*.
We remark that by, b, ..., b1 are all monorecursive letters of the alphabet W

from which a is accessible.
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There holds
#. (6" (b))#0

for all b, s=1,2,...,t—1 and neN.

Suppose now that ¢, k=1, 2, ..., m are all letters of the alphabet W satisfying
the conditions:

ae U(a) and ¢ are nonrecursive.
This implies:
for each c.e W, k=1, 2, ..., m, there exists the smallest number ji such that

8 (c) e W*aW*,
Denote now

A={k; k=1,2,..., m, j, (modt)=0}
and put

Jo=max je+ .
Then
S (5%(@)= 3, Ha (5%(c0).
If we consider that a e MR®, we have

#a (07" (c)) = #a (6"(ct)),

where k=1,2, ..., m, neN.
Let the axiom w be given by

W=X1X2...Xn, he€N.

Denote
B={x;i=12,..,h,xi=c, ke A}
and
B'={xieB; #.(w')#0)}.
Hence ‘

B0+ S, #a(55(x)
ra(jo+ nt) = 2ee neN

Bo(0)+ 3 o (0Mx)

and the theorem is proved for [ =0.
We outline now the proof of this theorem for I=1,2, ..., t—1.
Denote

A={k; k=1,2,..., m, j (modt)=1},
B,={x.-; Xi = Ck, kEA(},
Bi={x.eB;; #.(w')#0}.
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Then
Foo (W) + X #a (07 (x)
ra(o+ nt+1)= vef

Ho (W) + 2 #a (8" (x)

x, € By

for neN.
It is clear, that it suffices now to put

pi= ()4 3 (04(x)

1€B
and

qQ= #o_ (W) + 2 #,(87 (x:)).

xi € B

To illustrate this theorem we give a simple example.
Example. Let G'=(W, §, w, w') be a DOL-system with a subaxiom given by

W= {a, bh b27 bJ’ C1, C2, C3, Ca, C5}’
w = biab,bscics,
w'=ab:ibsc,

o: 6(a)=b1, (S(C1)=C2b1,
6(bl) =b,, (S(Cz) =3,
(S(bz) = b;, (S(Cs) = Ca,
6(b3)=a, 6(64)=C5y

6(C5)= b..

Let us table the beginning of the derivations for this DOL-system following one
another with all the letters from W.

-~

&'(a) & (b)) 6(b))  ¥(by)  6(a) & (c2) 8'(c3) &' (cs) 8'(cs)

0 a by b, bs C1 C2 C3 Ca Cs
1 b, b2 bs a c2by C3 Ca Cs b
2 b2 bs a by csbz Ca Cs b, b2
3 bs a by b2 cabs Cs by b, bs
4 a by b bs Csd by b bs a
5 b b2 bs a bib, b2 bs a b,
6 b, bs a by ba2b, bs a b, b.
7 bs a by b bibs a by b, bs
8 a by b2 bs aa b, b2 bJ a
9 b, b2 bs a bl by b2 bs a b
10 b bs a by b2b2 bs a b b,
11 b3 a bl bz b3 b3 a bl bz b]
a by b2 bs aa by b2 bs a

N
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From the table above it is easy to see that ae MR™®, ae U(b;) and b, e MR,
i=1,2,3, aeU(c), e« &R, k=1,2,...,5. Now we can easily determine Jis
k=1,2,...,5:

jl=49 j2=7, j3=6a j4=5’ i5=4-
The set A from the proof of theorem 3.3 is given by
A={1,5)}.

We have j,=8.
The ratio-function r.(j) for the given DOL-system with a subaxiom G'=

(W, 6, w, w')is
r.,(4n+8)=%,

r.(4n+9)=1,
r.(4n+10)=1,
r.(4n+11)=0, n=0,1,2,....

The value of the ratio-function r,(j) can be seen also from the following table.

j 0 1, 2 3 4 5 6 7 8 9 10 11 12

#.(6'(w)) 1 1 1 1 3 1 1 1 4 1 1 1 4

#.('w)) 1 1 1 o 2 1. 1 0 3 1 1 o 3

Up to now we have determined such DOL-system with a subaxiom which have at
least one monorecursive level. Now we present a theorem stating a secure constant
ratio-function for a DOL-system with a subaxiom has an expanding level.

Theorem 3.4. Let G'=(W, 8, w, w') be a DOL-system with a subaxiom, let a
be its expanding letter with the index of expansion 1 and let there for any be W,
b# a hold

either that a § U(b)
or aeU(b) andb is nonrecursive.

Then there exists a number joe Z* such that

r,,(j)=§ forall j=jo,
where pe Z*, q€ N.
Proof. Suppose that a € W is an expanding letter with the index of expansion

1 of the given DOL-system with a subaxiom G'. Let there for b € W hold b# a and
a¢é U(b).
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Put

f.(w)=gq
ffa(w)=p
and
#.(8(a))=m.
Then

#.(8(a))=m' for jeZ®,

because a € E®, and from the definition of the ratio-function it follows that

S _pm_p -
r,.(j)—qm,. q forall jeZ*.

So, in this case jo=0.

Now we shall prove the assertion of the theorem if there exists b such that

a e U(b) and b is a nonrecursive letter. The nonrecursivity of the letter b implies
b & U(a).

Let by, b,, ..., b, be all letters of the axiom w such that b;# a, ae U(b,) and b,
are nonrecursive for i=1,2, ..., s.

Put

jo=s
and denote by

ni=#,(8"(b,)) forall i=1,2,..,s.
Hence by the notation

f#.(0(a))=m
k' mio+ Z\#b,-(w’)n.'

there holds

ra(jo) = ; ,
km’ + El#,, (w)n,

where we denote by

A={i; bew'),

k' = fa(w'),

k= #.(w).
Then generally

k'mio* + > #, (w')nm'
ra(lo+t) = Lt
kmio*t 4 El#,,,(w)n,m’

for te N and so

ri()=r.(jo) forall j=jo.
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Remark 3.1. In the special case, when G’ is the DOL-system with a subaxiom,
the production rules of which have the following properties

g#b,(é(b.«))= 1,
#a (6(b,—)) =0

for all i=1,2, ..., s, the number j, can be determined exactly.
Denote by [; the smallest index for which

#a (8"(b)) #0

for all i=1, 2, ..., s and define the values k;, i=1,2, ..., s, as

ki = #a (8" (b))
Put now
j0= max 1.',

i=1,2,..,s

i.e. jo is the maximal index among the indices determining the first occurrence of
the letter a by the application of the production rules to the letters b;, i=
1,2,...,s.

Since k; is the number specifying the number of the occurrence of the letter a in
the /,-th step by the application of the production rules to b; foreachi=1, 2, ..., s,
a € E™ and preserving all notations above, we obtain

n; = #a (6io(b'.)) = k;mioh,
It is clear that jo— 1 =0.
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MOCTOSTHHAS JOJEBAS ®YHKLIUSA CUCTEM JIMHOAEHMAWEPA
Mairia Krdlova
Pe3ome

DOL-cucreMa (T.€. feTepMHUHUCTHYECKas cucTeMma JInHgeHMaiepa 6e3 B3aMMOJEHCTBHI) ¢ Mojak-
cuoMoi ecth yetBepka G'=(W, 8, w, w'), rae

1. G=(W, §, w) — ato DOL-cucrema,

2. w' — MoJgakCcMoMa — 3TO MOACIOBO aKCHOMBI W.
Torpa poneBas dyHKUMA r.(j) cuctembl G’ kak yHKUMs MepeMeHHOM j (j npoberaeT MHOXeCTBO
HEOTPHLATENLHBIX YHCEN) ONpeaeieHa Kak QYHKUMS, BbIPaXaroLias A0 YUCIIa MOSBIEHHH CHMBOJIA
a B ClOBe, MOJNIYYeHHOM M3 MOJAaKCHOMBI M YHMCJIa MOSBIEHUH CHMBOJIA @ B CJIOBE, MOJYYEHHOM W3
aKCHOMBI MOCJIE j-TOrO MPUMEHEHUS MPaBUiIa MPOAYKLUUH O. B cTaThe XapakTepH30BaHbI MPH NOMOLLIU
KOMGHHATOPHYECKOTO MOAX0Aa Yepe3 rpaMMaTU4eckie YpoBHH Takde DOL-cucTeMbl € MOAaKCHOMOIH,
noJieBble (PyHKIHH KOTOPbIX NOCTOSTHHBI
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