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MARTINGALE CONVERGENCE THEOREM 
IN QUANTUM LOGICS 

JAN BAN 

Introduction 

It is clear that both martingales and quantum logics belong to the topi­
cal themes of today's probability theory. The central result of the martingale 
theory is the martingale convergence theorem. This theorem was generalized 
into quantum logics (by supposing the distributivity) by B, Harm an and 
B. Riecan in [3]. 

O. Nanas iova and S. Pu lmannova have shown in [5] the possibility 
of a further generalization of the conditional expectation, the construction of 
which is fundamentally used in the proof of the martingale convergence theo­
rem. 

This paper follows the mentioned works and shows the possibility of the 
generalization of the martingale convergence theorem into quantum logics 
without supposing the distributivity, which means the generalization in line with 
the main purpose of the quantum —logics —theory. 

The terms in this paper are used according to [7]; som preliminaries are even 
verbatim quoted. 

Preliminaries 

In the mathematical description of quantum experiments, a generalization of 
the classical probability theory is needed. While in the classical probability 
theory the set of all "experimentally verifiable propositions" of the physical 
system (or, equivalently, the set of all random events) can be mathematically 
described as a Boolean cr-algebra, in the quantum case a more general algebraic 
structure is needed. The reason for this is the fact that there exist pairs of 
physical quantities (e.g. position and momentum of a particle) which cannot be 
measured simultaneously with an arbitrary accuracy — as it can be seen in the 
case of the well-known Heisenberg uncertainty principle. In quantum logics 
approach to quantum mechanics the basic concepts are the set L of all experi­
mentally verifiable propositions of the physical system and the set M of the 
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physical states. L is usually supposed to be a partially ordered set with the 
greatest element 1 and the least element 0, with the orthocomplementation 
_L : L -> L such that 

(i) (a1)1 = a,aeL 
(ii) a ^ b if and only if b1 ^ a1, a, beL 

(iii) a v a1 = \ for all aeL 
(where we denote by x A y, resp. x v y, the infimum, resp. supremum of x 
and y of L if they exist); and with the orthoriodular property 

(iv) a ^ b (a, beL) implies 3ceL: c ^c1 and b = a v c; and which is 
closed under the formation of the suprema v a, for any sequence {a} c= L such 
that a, ̂  a1, / 7-j A set L with the properties just described is called a logic. 

The elements a, beL are called orthogonal (alb) if a ^ b1, and they are 
compatible (a<-+b) if there exist elements a],b], c in L mutually orthogonal and 
such that a = ax v c and b = bx v c. The sets A a L, B a L are called compa­
tible (A<-+B) if a<->b for all aeA, be I?; A is £ comparible set (A<-+) if a<->b for 
all a, be^4. 

If for any 0 ^ aeL and a set M c= L there holds: 
(i) M<-+a 

(ii) (M A a)<-», 
we define M as partial compatible with a (M p.c [a]). 

A state on the logic L is a probability measure on L, i.e. a map m: L -> 
->[0, 1] such that: 

(i) m(l) = 1 
(ii) ra( v a,) = E m(a^) 

for any sequence {a,} of mutually orthogonal elements of L. 
Let L, and L2 be two logics. The mapping h: L]-^ L2 is called a o-homomor-

phism if 
(i) //(lj) = 12 (where 1, and 12 are the greatest elements in L, and L2, 

(respectively), 
(ii) p ±.q, p, qeLx implies h(p) _L h(q), 

(iii) h( vp,) = v hij),) for any sequence {p,} of mutually orthogonal elements 
of L,. 

With the help of the concept of cr-homomorphism we introduce observables 
(corresponding to physical quantities). If R is the real line and B(R) is the 
cr-algebra of all Borel sets, then any a-homomorphism of B(R) into L is called 
observable on L. 

If x is an observable andf: R -> R is a Borel measurable function, then the 
map xof~x: E\->x(f~\E)) is also an observable, which is called the functionf 
of the observable x. 

Two observables x and y are calledcompatible if x(E)<-+y(E) for all F, FG 
eB(R) (x<-+y); x is compatible with a if x(E)<-+a for all EeB(R). 
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If x is an observable and m is a state on L, then the map mx: E\-^m(x(E)) 
is a probability measure on B(R). It is called the probability distribution of the 
observable x. For aeL we define 

J x dлм = i 
ЙГ JR 

ŕm(x(dł) л a) = / dv 
R 

where v: E\-+m(x(E) A a) if such an integral exists. 
R e m a r k : For the existence of this integral we need firstly to make sure 

that m(x(E) A a) is a measure; the sufficient condition for that is x«->a. 
The expectation of the observable x in the state m can be defined by 

Í' m(x) = tmx(dt) 

if the integral exists. The subset L0 of a logic L is called a sublogic of L if 
(i) aeL0 implies aLeLQ 

(ii) au a2, ... EL0 with a,± a, implies vaieL0. 
It can be easily verified that a sublogic of a logic is a logic itself. A sublogic 

L0 cz L is called a lattice sublogic provided that a, beL0 implies a v b exists 
in L and is in L0. In this case L0 is a lattice. If a lattice sublogic is distributive, 
then it is a Boolean o-algebra and it is called a sub-cr-algebra of L. A logic L is 
called separable if for any Boolean sub-cr-algebra B0 of L there exists a countable 
subset D of L such that i?0 is the smallest Boolean sub-cr-algebra of L conta­
ining D. 

Some important statements 

Let us mention some of the generally known statements, which we shall use 
further in a relevant way. Their proof is to be found in [9] or [5]. 

Theorem 1: Let x be an observable associated with a logic L. The range of the 
observable x(R(x)) is always a Boolean sub-o-algebra of the logic L. If L0 is a 
sublogic of a logic L, then x~\L0) is a Boolean sub-o-algebra B(R) as well. 

Theorem 2: Let Lbe a logic which is simultaneously a lattice. Then a necessary 
and sufficient condition for the existence a Boolean sub-o-algebra B such that 
A cz B cz L is that A is a compatible set (in L). 

Theorem 3: Two observables are compatible if and only if such a Boolean 
sub-o-algebra B exists that R(x) cz B and also R(y) cz B. 

Theorem 4: Let x: B(R) -> L0 be an observable associated with L0, where L0 

is a countable generated Boolean sub-o-algebra of the logic L. Then there exists 
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an observable y: B(R) -> L and a Borel measurable function f: R-+ R so that 
L0 = {y(E): Ee B(R)} and x(E) = y of~\E)for all EeB(R). 

Theorem 5 : Let {xn} be maximally a countable system of mutually compatible 
observables associated with a lattice-logic L. Then there exists an observable y 
associated with L and a Borel measurable functions fn so that xn = y f~l. 

Theorem 6 : Let L be a logic, aeL. Then L[0 a] = {beL: b ^ a} is also a logic 
with the greatest element a and an ortho-complement b' = b1 A a. 

Theorem 7: Let x be an observable associated with L and x<->a, aeL. Then 
x A a (Eh^x(E) A a) is also an observable associated with L[0 a]. 

Theorem 8 : Let m be a state on L. Let aeL be such an element that m(a) = 1. 
Then m is also a state on L[0 a]. 

Theorem 9 : Let L be a logic, M cz L, M <-• a. M A a is a compatible set in L 
if and only if M A a is a compatible set in L[0 a]. 

Theorem 5 enables us to define the calcul of compatible observables. If x 
and y are compatible observables, then let us define y — x = z^(fx — f 2 ) ~ \ 
where y = zof~\ x = z°f2

_1. 
In the same way we can define the sum and the product of compatible 

observables. Another way how to find the calcul is available in [2]. 
Let {xn} be a sequence of the observables associated with L, x be an observ­

able associated with L, m be a state and x„<->x. We can say that {xn} converges 
almost everywhere to x according to the state m (xn -> x a.e. [m]) if 

Ar7(lim„sup(x/7 — x)( — £, s)c) = 0 for all s > 0. 

Conditional expectation of an observable 

Before we state and prove the martingale convergence theorem, it is necessary 
to realize the construction of the conditional expectation of observable. 

For a, beL put aAb = (aL A b) v (a A b1). For the observables x and y 
associated with L we shall write x « y(m) if 

m(x(E)Ay(E)) = 0 for any EeB(R). 

In [5] is proved the following lemma: 

Lemma 1 : Let x, y, z be observables associated with the logic L such that 
(R(x) u R(y) u R(z)) p . c [a] for some aeL; and let m(a) = 1. Then x % y(m), 
y w z(m) implies x « z(m). 

P r o o f : First we prove the lemma in the special case a = 1. If b, c, d are 
compatible elements of L, then bAd^(bAc) v (cAd), so that 
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m(x(E)Ay(E)) = m(z(E) Ay(E)) = 0 implies m(x(E) Az(E)) = 0 

for all Le £(/?). 
Let 0 < a < I. Then x A a, y A a, z A a are mutually compatible observables 

associated with L[0, a\ so that, by the above part of proof, x » y(m), y « z(m) 
implies m((x A a)(E) A(Z A a)(E)) = 0 for all EeB(R). But 

m(x(E)Az(E)) = m((x(E)Az(E)) A a) = m((x A a)(E)A(z A a)(E)) = 0, 

Definition 1: Let x be an observable associated with the logic L. Let L0 be a 
sublogic of the logic L, m be a state on L. 

The conditional expectation of the observable x according to the sublogic L0 (we 
shall write E(x/L0)) can be defined as such an observable u, for which there 
holds: 

(i) U(E)EL0 for all EeB(R) 

( ii) \u dm = 
Ja 

x dm for all aeL0 i.e. both sides exist and are equal. 

In case when Lx is a Boolean sub-cr-algebra of the logic L and x(B(R)) u 
u L 0 c L h the existence and almost everywhere uniqueness (in accordance 
&(m)) of the conditional expectation of x is guaranteed by the following 
theorem. 

Theorem 10: Let Lx be a countably generated Boolean sub-a-algebra of the 
logic L, m be a state on L. Let L0 be a subalgebra of Lx. Let x: B(R) -> Lx be an 
integrable observable. Then there exists an integrable observable u: B(R) -> Lx 

such that there holds: 

(i) x dm = u dm for all aeL0 
Ja Ja 

(ii) u(E)eL0for all EeB(R). 

Proof: see [2]. 

Definition 2 : Let L be a logic, {Lw}f° be a sequence of sublogics of the lo­
gic L, {x„}?° be a sequence of observables, m be a state on L. The sequence 
(xn9 Ln)J° is called the martingale on the logic L if: 

(i) Ln<= Ln + X czL, n = 1, 2, ... 
(ii) xn is associated with L„, n = 1, 2, ... 

(iii) E(xn + X/Ln) « .x„(m), AZ = 1, 2, ... 
Theorem 5 and 10 allow to make the following statement: 

Theorem 11: Let L be a logic and {L„}?° a sequence of a countable generated 
Boolean sub-o-algebras of the logic L. Let (xn9 L„)J° be a martingale on L and 
sup W(|A:W|) < oo, m is a state on L. Then there exists such an observable x 

n 

317 



associated with <£ = aB ( ( J Ln) (the smallest Boolean a-algebra such that 

& => | J Ln) that xn-+x a.e. [m\. 

P r o o f : see [3]. 
But this understandig of the conditional expectation is not too generalized, 

because it supposes the distributivity of L. Our purpose is, however, to avoid this 
presumption. Another conditional expectation version of an observable can be 
found by the following construction. Let L be a separable lattice —logic, L0 its 
sublogic, x an integrable observable associated with L, m a state on L. Let us 
have an element 0 7-= a e L, so that 

(i) m(a) = 1 
(ii) ( Iv(x)uL 0 )p .c . [a ] . 
Because (R(x) u L0) A a is the compatible set, there exists such a Boolean 

a-algebra 5 that (R(x) u L0) A a a B cz L[0 a], an observable j>: B(R) -> B and 
a Borel measurable function f.R^Rso that x A a = j o / _ ], To L0 A a there 
exists a Boolean cr-algebra I?„ so that L0 A a c B0a B. Let us define S0 = 
= {EeB(R): y(E)eB0}. It is clear that S0 is a sub-cr-algebra of the a-algebra 
S = y~\B). Therefore there exists g = Emy(f/S0) (the "classical" conditional 
expectation of the function/according to S0). Now let us define z+ = y°g~]. 

It is clear that z+ is an observable associated with L[0 a] whereby R(z+) a B0 

(because g is S0-measurable). In order to "extend" z+ to the whole logic L, let 
us define 

0 0<£K 
z = yog l

 v (w A a1) where w(E) = ^ j Q e £ , 

Now it is still valid that 

z(R) = z+(R) v (w(R) A a1) = z+(R) v aL = a v a1 = 1. 

Let us show that z is a conditional expectation version of the observable x 
according to L0. Let beL0. 

Because m(a) = 1 

x d m = tm(x(dt) A b) = 

= tm(x A a(dt) A (b A a))= tm(yof~\dt) A y(A)) = 

= \tmy(f-\dt)nA) = j f((o)my(d(Q) = j g(®)m,(dfl>) = 

= ^ ( ^ " ' ( d O n ^ ) = miCyog-^d/) A y(A)) = 
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= tm(yog-\dt) A (b A a)) = z dm. 

Let us prove yet the uniqueness (in accordance with «(m)) of this conditional 
expectation. 

Let z,, z2 be two versions of a conditional expectation E(x/L0) for the same 
required element aeL. We have zx <r+a, z2<->a and R(zx) A a a L0 A a, R(z2) A 
A a a L0 A a. 

As L0 A a a B0 a L[0a] and B0 is a Boolean sub-rj-algebra, then z, A a<-+ 
<-* z2 A a. Let gx: Q -> I?, g2: Q^> R be ^-measurable functions such that 
zi = y°gf * a n d z2 = y°^2~1- Then, as zx(E)Az2(E)<-+a for any EeB(R), 

m((zx A a)(E)A(z2 A a)(E)) = m(yogx-\E)Ayog2\E)) = 

= m(yo(g-\E)Ag2-\E))) = my(gx~\E) Ag2\E)) 

From that there holds for gx and g2 gx dmy = g2 dmy, for all Fe S0 we get 

my(gx-\E)Ag2~\E)) = 0 for any EeB(R). Indeed, put 

Fx = {(oen; gx(co)>g2((o)}, 

F2-{coeQ; gx(co) < g2(co)}. 

As FxvF2eS0, J fei - & ) d^v = 0 for any F0 CZFXKJF2, F0eS0, hence 

mv(P; u F2) = my{co; gx(co) # g2(cy)} = 0. 

As gx~\E) Ag2\E) a Fx u F2, we obtain 

m,(gr ,(^)Ag2- ,(^)) = 0 
for any EeB(R). 

Now 0 = m((z, A a)(E)A(z2 A a)(E)) = m(zx(E)Az2(E)) and this conclu­
des the proof of uniqueness. 

Let us notice the conditions we require for the element 0 ^ a e L. We have to 
recognize that if we have to use 1 e L instead of this element, then the second 
condition actually says that L0 has to be a Boolean rj-algebra, which means that 
we get the same conditional expectation version as in theorem 10. On the other 
hand, it is clear that the conditions for the required aeL are "strong enough". 
One of the possibilities, how to seek such an a e L is to use the set-comutator 
qualities (see [5]). Furthermore we shall require aeL0, which is a sufficient 
condition for the Immeasurability of the conditional expectation. 

In concluding this part of the paper let us make a generalization of the 
previously defined calculus of observables. 
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Let x, y be two observables associated with the logic L, m is a state. Let there 
exist 0 = a e L such that (I?(x) u I?(y)) p.c. [a] and m(a) = 1. Then we can define 
x — y = zo(Jx — f 2 ) _ 1 v (w A a1) wherex A a = zof~\y A a = zof2

_1 and wis 

the observable ( w = <^ , „ „). 
\ \ 1 OGEJ 

The martingale convergence theorem 

Theorem 12: Lel (x„, L„)J° be a martingale on the separable lattice-logic L. Let 
there exist such a 0 ^ aeL that 

(i) m(a) = 1 
(ii) (R(xn+l)vLn)p.c.[aln=\,2, ... 
Let sup /rcflxj) < oo. 

F/zerz lhere exists such an observable x that xn - • x a.e. [m]. 
P r o o f : For each r. = 1, 2, ... (I?(x„ + 1 ) u L J A a are compatible sets and 

(R(xn + ])<u Ln) A a cz L[0 a], which means that there exists the Boolean sub-cr-
algebras Bu B2, ... such that 

(R(xn+])uLn)) A aczB„, Bncz Bn + X cz L[0a], n = 1, 2, ... 

Because {Bn} is an upper bounded sequence by L[0 a], there exists a Boolean 
sub-cr-algebra B of L[0 fl] such that for each n there holds (R(xn+])u Ln) A a CZ 
cz I? cz L[0 tt]. Therefore the observables xn A a, « = 1, 2, ... are compatible 
(because I?(x„ A a) cz R(xn) A a cz B) and this means that there exists an observ­
able y: B(R) -> B and Borel measurable functions f„: R^> R that xn A a = 
= y°f~]. Similarly L„ A a, n = 1, 2, ... are compatible sets, too and therefore 
there exists a sequence B}

+, B2 , ... of the Boolean sub-a-algebras of L[0 a] such 
that Ln A acz fl + . 

Let us take instead of {B+} the smallest Boolean cr-algebras with this 
property. 

Let us prove that (xn A a, B+) is a martingale on L[0 a]. Evidently: 
(i) Bf cz B2 cz ... cz I? because L, cz L2 cz ... and Lj A a cz L2 A a cz ... 

(ii) because x n ( .£)e l n , therefore also x„(L) A aeL„ A a cz B+ as well 
(iii) it is also necessary the prove that E(xn +, A a/5+) ^ x„ A a(m). 
Let us define: 

Sn = {AeB(R):y(A)eBn
+}=y-\Bn

+) and gH = Emy(fm + JSJ. 

From the assumption that (x„, LJJ° is a martingale and from the condition­
al—expectation—construction of an observable we know that E(xn + JLn) = 
= y°gn~

] v (w A a1) « xH9 therefore x„ A a % yog~l v (w A a1) A a = j o g - 1 

(since m(a) = 1). Because xn + , A a = y of~+
l., f r 0m the construction gn it is clear 

that E(xn+] A a/B+) « x„ A a (with respect to lemma 1, too). 
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Now we can finally use theorem 11, according to which xn/\a-+h = yo 
og"1 a.e. [m]9 where g is such a Borel measurable function that gn - • g a.e. [m}]. 

Let us define x = y°g_1 v (w A a1). 
It is also necessary to prove that 

m(lim sup (x — xn)( — s, e)c) = 0. 
n 

Indeed, 

m(lim sup (yo(g - gn)~l ( - £ , s)c) v (w(-s, e)c A a1)) = 
n 

= m (/\ V i(y°(g - Sn\~e, eft v (w(-e, sf A a1)]) = 
\ i = 1 « = 1 / 

= Km m {\/^[(yo(g-gn)-l(-s9 s)c) v (w(-e, s)c A a1)]) = 

= lim m (V L>'° (g ~ gn)~l ( - * , e)V + [m(w(-e9 e)c A a1)] = 

= m(lim sup y°(g — gn)~]( — s, £)c) + m(w( — £, e)c A a1) = 0 
n <. 

because gn -* g a.e. [m},] and m(0) = 0, m(ax) = 0 (from the condition m(a) = 
= 1), too. 

This concludes the proof of the theorem. 
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МАРТИНГАЛЬНАЯ СХОДИМОСТНАЯ ТЕОРЕМА В КВАНТОВЫХ ЛОГИКАХ 
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Резюме 

В работе приведено обобщение так называемой мартингальной сходимостной теоремы 
для квантовых логик. 
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