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MARTINGALE CONVERGENCE THEOREM
IN QUANTUM LOGICS

JAN BAN

Introduction

It is clear that both martingales and quantum logics belong to the topi-
cal themes of today’s probability theory. The central result of the martingale
theory is the martingale convergence theorem. This theorem was generalized
into quantum logics (by supposing the distributivity) by B. Harman and
B. Riec¢an in [3].

O. Nanasiova and S. Pulmannova have shown in [5] the possibility
of a further generalization of the conditional expectation, the construction of
which is fundamentally used in the proof of the martingale convergence theo-
rem. T

This paper follows the mentioned works and shows the possibility of the
generalization of the martingale convergence theorem into quantum logics
without supposing the distributivity, which means the generalization in line with
the main purpose of the quantum — logics — theory.

The terms in this paper are used according to [7]; som preliminaries are even
verbatim quoted.

Preliminaries

In the mathematical description of quantum experiments, a generalization of
the classical probability theory is needed. While in the classical probability
theory the set of all “experimentally verifiable propositions” of the physical
system (or, equivalently, the set of all random events) can be mathematically
described as a Boolean o-algebra, in the quantum case a more general algebraic
structure is needed. The reason for this is the fact that there exist pairs of
physical quantities (e.g. position and momentum of a particle) which cannot be
measured simultaneously with an arbitrary accuracy — as it can be seen in the
case of the well-known Heisenberg uncertainty principle. In quantum logics
approach to quantum mechanics the basic concepts are the set L of all experi-
mentally verifiable propositions of the physical system and the set M of the
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physical states. L is usually supposed to be a partially ordered set with the
greatest element 1 and the least element 0, with the orthocomplementation
1: L — L such that

() (@Yt =a, ael

(i) a< bif and only if b* < a*, a, beL

(iii) a v a*t =1 for all ae L
(where we denote by x A y, resp. x v y, the infimum, resp. supremum of x
and y of L if they exist); and with the orthoriodular property

(iv) a< b (a, beL) implies 3ceL: c<c«* and b=a v c; and which is
closed under the formation of the suprema v g, for any sequence {a;} = L such
that @, < a;*, i # j. A set L with the properties just described is called a logic.

The elements a, be L are called orthogonal (a L b) if a < b*, and they are
compatible (a — b) if there exist elements a,, b,, ¢ in L mutually orthogonal and
such that a =a, v cand b = b, v ¢. The sets A = L, B < L are called compa-
tible (A B)ifa—bforallae A, be B; A is ¢ comparible set (A<) if a+> b for
all a, be A.

If for any 0 # ae L and a set M < L there holds:

(i) Meoa

(i) (M A a)e,
we define M as partial compatible with a (M p.c. [a]).

A state on the logic L is a probability m¢asure on L, i.e. a map m: L —
— [0, 1] such that:

(1) m(l) =1

(i) m(v a) = Zm(a)
for any sequence {@;} of mutually orthogonal elements of L.

Let L, and L, be two logics. The mapping /4 : L, — L, is called a o-homomor-
phism if

(1) A(1,) =1, (where 1, and 1, are the greatest elements in L, and L,,
(respectively),

(1) pLlgq, p, ge L, implies h(p) L h(q),

(iii) A(v p) = v h(p) for any sequence {p;} of mutually orthogonal elements
of L,.

With the help of the concept of o-homomorphism we introduce observables
(corresponding to physical quantities). If R 1s the real line and B(R) is the
o-algebra of all Borel sets, then any o-homomorphism of B(R) into L is called
observable on L.

If x is an observable and f: R — R is a Borel measurable function, then the
map xof ' Em x(f~'(E)) is also an observable, which is called the function
of the observable x.

Two observables x and y are calledcompatible if x(E) < y(E) for all E, Fe
€ B(R) (x> y); x is compatible with a if x(E) < a for all E€ B(R).
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If x is an observable and m is a state on L, then the map m,: E+ m(x(E))
is a probability measure on B(R). It is called the probability distribution of the
observable x. For ae L we define

jx dm =Jtm(x(dt) A Q) =J t dv
a R R

where v: E—m(x(E) A a) if such an integral exists.

Remark: For the existence of this integral we need firstly to make sure
that m(x(E) A a) is a measure; the sufficient condition for that is x & a.

The expectation of the observable x in the state m can be defined by

m(x) = J tm, (dt)

if the integral exists. The subset L, of a logic L is called a sublogic of L if

(i) aeL, implies a* €L,

(i) ay, a,, ...€ L, with g, L a; implies v a,e L,.

It can be easily verified that a sublogic of a logic is a logic itself. A sublogic
L, < L is called a lattice sublogic provided that a, be L, implies a v b exists
in L and is in L,. In this case L, is a lattice. If a lattice sublogic is distributive,
then it is a Boolean o-algebra and it is called a sub-o-algebra of L. A logic L is
called separable if for any Boolean sub-o-algebra B, of L there exists a countable
subset D of L such that B, is the smallest Boolean sub-o-algebra of L conta-
ining D.

Some important statements

Let us mention some of the generally known statements, which we shall use
further in a relevant way. Their proof is to be found in [9] or [5].

Theorem 1: Let x be an observable associated with a logic L. The range of the
observable x(R(x)) is always a Boolean sub-o-algebra of the logic L. If L, is a
sublogic of a logic L, then x~'(L,) is a Boolean sub-c-algebra B(R) as well.

Theorem 2: Let L be a logic which is simultaneously a lattice. Then a necessary
and sufficient condition for the existence a Boolean sub-oc-algebra B such that
A < Bc Lis that A is a compatible set (in L).

Theorem 3: Two observables are compatible if and only if such a Boolean
sub-o-algebra B exists that R(x) = B and also R(y) < B.

Theorem 4: Let x: B(R) — L, be an observable associated with L,, where L,
is a countable generated Boolean sub-o-algebra of the logic L. Then there exists
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an observable y: B(R) —» L and a Borel measurable function f: R — R so that
L,={y(E): E€ B(R)} and x(E) = y > (E) for all Ec B(R).

Theorem 5: Let {x,} be maximally a countable system of mutually compatible
observables associated with a lattice-logic L. Then there exists an observable y
associated with L and a Borel measurable functions f, so that x, =y f,".

Theorem 6: Let L be a logic, ac L. Then L, , ={beL: b < a} is also a logic
with the greatest element a and an ortho-complement b’ = b* A a.

Theorem 7: Let x be an observable associated with L and x — a, ae L. Then
X A a(E—x(E) A a) is also an observable associated with L, .

Theorem 8: Let m be a state on L. Let ae L be such an element that m(a) = 1.
Then m is also a state on Ly, .

Theorem 9: Let L be a logic, M = L, M —a. M A a is a compatible set in L
if and only if M A a is a compatible set in Ly, .

Theorem S enables us to define the calcul of compatible observables. If x
and y are compatible observables, then let us define y — x =z~ (f; — f5) .
where y = zof;!, x = zo f5 .

In the same way we can define the sum and the product of compatible
observables. Another way how to find the calcul is available in [2].

Let {x,} be a sequence of the observables associated with L, x be an observ-
able associated with L, m be a state and x, < x. We can say that {x,} converges
almost everywhere to x according to the state m (x, — x a.e. [m]) if

m(lim, sup (x, — x)(—¢, €)) =0 for all £ > 0.

Conditional expectation of an observable

Before we state and prove the martingale convergence theorem, it is necessary
to realize the construction of the conditional expectation of observable.

For a, be L put apnb = (a* A b) v (a A b*). For the observables x and y
associated with L we shall write x & y(m) if

m(x(E)Ay(E)) =0 forany EeB(R).
In [5] is proved the following lemma:

Lemma 1: Let x, y, z be observables associated with the logic L such that
(R(x) U R(y) U R(2)) p.c. [a] for some ae L; and let m(a) = 1. Then x ~ y(m),
y & z(m) implies x =~ z(m).

Proof: First we prove the lemma in the special case a = 1. If b, ¢, d are
compatible elements of L, then bAd < (bAc) v (c Ad), so that
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m(x(E) Ay(E)) = m(z(E)Ay(E)) =0 implies m(x(E)Az(E))=0

for all E€ B(R).

Let0 <a< 1.Thenx A a,y A a,z A aare mutually compatible observables
associated with L , so that, by the above part of proof, x x y(m), y = z(m)
implies m((x A a)(E) A(z A a)(E)) = 0 for all E€ B(R). But

m(x(E) Az(E)) = m((x(E) Az(E)) A a) = m((x A a)(E)A(z A a)(E)) = 0.

Definition 1: Let x be an observable associated with the logic L. Let L, be a
sublogic of the logic L, m be a state on L.

The conditional expectation of the observable x according to the sublogic L, (we
shall write E(x/L,)) can be defined as such an observable u, for which there
holds:

(1) u(E)eL, for all E€ B(R)

(i1) fu dm = | x dm for all ae L, i.e. both sides exist and are equal.

a

In case when L, is a Boolean sub-o-algebra of the logic L and x(B(R))u
uL,c L,, the existence and almost everywhere uniqueness (in accordance
~(m)) of the conditional expectation of x is guaranteed by the following
theorem.

Theorem 10: Let L, be a countably generated Boolean sub-o-algebra of the
logic L, m be a state on L. Let L, be a subalgebra of L,. Let x: B(R) - L, be an
integrable observable. Then there exists an integrable observable u: B(R) — L,
such that there holds :

@) Ix dm = ju dm for all ae L,
(ii) u(E)e L, for all E€ B(R).

Proof: see [2].

Definition 2: Let L be a logic, {L,};° be a sequence of sublogics of the lo-
gic L, {x,}7° be a sequence of observables, m be a state on L. The sequence
(x,, L) is called the martingale on the logic L if:

G) L,cL,,,cLn=1,2, ..

(i1) x, is associated with L,, n =1, 2, ...

(i) E(x,,,/L,) =~ x,(m),n=1,2, ...

Theorem 5 and 10 allow to make the following statement:

Theorem 11: Let L be a logic and {L,}° a sequence of a countable generated
Boolean sub-o-algebras of the logic L. Let (x,, L,)? be a martingale on L and

sup m(|x,|) < oo, m is a state on L. Then there exists such an observable x
n
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associated with & = oy (O Ln> (the smallest Boolean o-algebra such that

n=1

¥ > 0 Ln) that x, — x a.e. [m].
n=1

Proof: see [3].

But this understandig of the conditional expectation is not too generalized,
because it supposes the distributivity of L. Our purpose is, however, to avoid this
presumption. Another conditional expectation version of an observable can be
found by the following construction. Let L be a separable lattice —logic, L, its
sublogic, x an integrable observable associated with L, m a state on L. Let us
have an element 0 # ae€ L, so that

i) m(a) =1

(i) (R(x)v L,) p.c. [a]. :

Because (R(x) U L,) A a is the compatible set, there exists such a Boolean
o-algebra B that (R(x) UL,) A ac Bc Ly ,, an observable y: B(R) — B and
a Borel measurable function f: R > R so that x A a=yof~'. To L, A a there
exists a Boolean o-algebra B, so that L, A a < B, = B. Let us define S, =
= {Fe B(R): y(E)e B,}. It is clear that S, is a sub-o-algebra of the o-algebra
S = y~'(B). Therefore there exists g = Em,(f/S,) (the “classical” conditional
expectation of the function f according to S,). Now let us define z* = yog~'.

It is clear that z* is an observable associated with L, , whereby R(z*) < B,
(because g is S,-measurable). In order to “extend” z* to the whole logic L, let
us define
0 O¢E
I O0eE

z=yog 'v(wAa') where w(E)=
Now it is still valid that
z(R)=z"(R) v W(R) Aa*)=z"(R)va'=ava'=1.

Let us show that z is a conditional expectation version of the observable x
according to L,. Let beL,.
Because m(a) = 1

Jx dm = Jtm(x(dt) A b) =

b

= ftm(x Aadt)y A (b Aa)= Jtm(yof"(dt) A y(A)) =
= J tm,(f~(dt)  A) = f fl@)m,(de) = j g(@) m,(do) =

- ftmy(g-*(dz) N 4) = j tm(yog~'(d1) A y(4)) =
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= jtm@og—l(d[) A(bAa)= fz dm.
b

Let us prove yet the uniqueness (in accordance with ~ (m)) of this conditional
expectation.

Let z,, z, be two versions of a conditional expectation E(x/L,) for the same
required element ae L. We have z, - a, zoaand R(z)) Aac L, A a, R(zy)) A
Aac L, a.

As L,nac B,c L, , and B, is a Boolean sub-c-algebra, then z, A a
-2z, Aa Let g,: Q- R, g Q- R be S,-measurable functions such that
zy=yog ' and z, = yog;'. Then, as z,(E) A z,(E) < a for any E€ B(R),

m((zy A @) (E)A(z2 A @) (E)) = m(yog (E)Ayogy '(E)) =
=m(yo (g '(E) Agy '(E)) = m, (g (E) Ag; \(E))

From that there holds for g, and g, J; g dm, = J;gz dm,, for all FeS, we get
m, (g7 '(E) Ag; (E)) = 0 for any Ee B(R). Indeed, put

F={0we2; g(o)> g (o),

E={0e2; g(0)<g)}

As FUEeS,, f (g, —8) dm,=0for any F c FUE, E€S,, hence
K

m (R EB) =mfo; g(w)#g(w)}=0.
As g7 (E)Agy '(E) = F U E, we obtain

m, (g (E)Ag; '(E)) =0
for any Ee€ B(R).

Now 0 = m((zy, A @) (E) A(z, A a)(E)) = m(z,(E) A z,(E)) and this conclu-
des the proof of uniqueness.

Let us notice the conditions we require for the element 0 # ae L. We have to
recognize that if we have to use 1€ L instead of this element, then the second
condition actually says that L, has to be a Boolean o-algebra, which means that
we get the same conditional expectation version as in theorem 10. On the other
hand, it is clear that the conditions for the required ae L are “‘strong enough”.
One of the possibilities, how to seek such an ae L is to use the set-comutator
qualities (see [S]). Furthermore we shall require ae L,, which is a sufficient
condition for the L ,-measurability of the conditional expectation.

In concluding this part of the paper let us make a generalization of the
previously defined calculus of observables.
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Let x, y be two observables associated with the logic L, m is a state. Let there
exist 0 = ae L such that (R(x) u R(y)) p.c. [a] and m(a) = 1. Then we can define
x—y=zo(fi=f) ' vwaa)wherex ra=zof .y Aa=zof;'andwis

0 0¢E
the observable (w =< OeE)'

The martingale convergence theorem

Theorem 12: Let (x,, L,)T be a martingale on the separable lattice-logic L. Let
there exist such a 0 # ae L that

(1) m(a) =1

(i) (R(x,,)uvL)pcla,n=1,2, ..

Let sup m(|x,|) < o0.

Then there exists such an observable x that x, — x a.e. [m].

Proof: Foreachn=1, 2, ... (R(x,,.,)UL, A a are compatible sets and
(R(x, 1)U L,) A ac Ly ,, which means that there exists the Boolean sub-o-
algebras B,, B,, ... such that

(R(x,,)uL) AnacB, B,cB,,, <Ly, n=12 ..

Because {B,} is an upper bounded sequence by L, ., there exists a Boolean
sub-o-algebra B of L, , such that for each » there holds (R(x,,,)UL,) A ac
< B c L ,. Therefore the observables x, A a, n=1, 2, ... are compatible
(because R(x, A @) = R(x,) A a = B)and this means that there exists an observ-
able y: B(R) —» B and Borel measurable functions f,: R— R that x, A a =
= yof, ' Similarly L, A a, n =1, 2, ... are compatible sets, too and therefore
there exists a sequence B/*, B;", ... of the Boolean sub-o-algebras of L, , such
that L, A ac B,.

Let us take instead of {B,’} the smallest Boolean o-algebras with this
property.

Let us prove that (x, A a, B,") is a martingale on L, ,. Evidently:

(1) BY «Bc..cBbecause L,c Lyc...and L,nac L,nac ...

(it) because x,(E)e L,, therefore also x,(E) A ae L, A a = B, as well

(iii) it is also necessary the prove that E(x,,, A a/B,}}) =~ x, A a(m).

Let us define:

S, ={4eB(R): y(A)e B} =y~'(B) and g, = Em,(f,,,/S).

From the assumption that (x,, L,)° is a martingale and from the condition-
al —expectation — construction of an observable we know that E(x, /L, =
=yog, ' v(wAa')xx, therefore x, A ax yog ' V(WA a) Aa=yog "
(since m(a) = 1). Because x,, , ; A a = yof, |, from the construction g, it is clear
that E(x,,, A a/B,") ~ x, A a (with respect to lemma 1, too).
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Now we can finally use theorem 11, according to which x, Aa—h = yo
og~'a.e. [m], where g is such a Borel measurable function that g, — g a.e. [m].

Let us define x = yog=' v (w A a?).

It is also necessary to prove that

m(lim sup (x — x,)(—¢, €)) =0.
Indeed,

m(lim"SUp (yo(g — gn)_l (—8, 6,)c) v (W(—&‘, g)‘, A al)) _
- <Z\] \Z[(VO(g _g"_l(_g’ 8)() v (W(_g’ 6)(- A al)]> -

= ]i,m m <\w/ [ye(g — g,,)_l (—¢ €)¢]> + [m(w(—¢, &° A al)] =

n=1

= m(]im"sup yo(g —g) ' (—¢ &) + m(w(—¢, &:‘)‘ Aat)=0

because g, — g a.e. [m,] and m(0) = 0, m(a*) = 0 (from the condition m(a) =
= 1), too.
This concludes the proof of the theorem.
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MAPTUHT AJIBHASL CXOOUMOCTHAA TEOPEMA B KBAHTOBLBIX JIOT'MKAX
Jan Ban
Pe3ome

B pabote npuBeneHo o6001IeHHE Tak Ha3bIBaeMOH MapTHHIAJILHON CXOAMMOCTHOH TeOpeMbl
JUTSl KBAHTOBBIX JIOTHK.
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