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INDEPENDENCE IN KLEIN SPACES

MILAN HEJNY

A notation of independence in an universal algebra % =(A, F) has been
introduced and later also generalized by E. Marczewski ([4] and [5], see also [2]).
In this concept the family Ind(A) of all independent subsets of A is of finite
character; i. e. a set I belongs to Ind(A) whenever each finite subset of I belongs
to Ind(A).

This paper deals with a class of all Klein spaces, i. €. unary algebras Y[ =(A, G)
in which G is a group under the superposition. Using a special closure operation ¢
seven mutually different definitions of independence are described and compared.
These concepts are not covered by those of Marczewski, since neither of our
definitions of independence is ‘“‘of finite character*‘.

1. Preliminaries

By a transformation of a set A #+ @ we shall mean every bijective map f: A— A.
The set 7(A) of all transformations of a set A with respect to the superposition
(f, g)— fog, (fog)(x) = f(g(x)) form a group. By a Klein space (see [3]), or shortly
a k-space, we mean any couple A= (A, G), where G is a subgroup of 7(A). The
k-closure operation on A is a map c:2* —2* given via: c(X) consists of exactly
those points x € A which are invariant under each of the transformations g € G
with the property g(a)=a for all a € X. It is easy to verify that the k-closure
operation ¢ is a closure operation in the sense of Birkhoff (see [1]), i.e. it is
extensive, monotone and idempotent. We recall (see [1])

c(XuY)ocXucY forall X, Y e 24,

2. Independence

Definition 1. Let A= (A, G) be a k-space and c its k-closure operation. A set
I c A is said to be (i)-independent if the following condition (i) is fulfilled; i =
1, .., 7. '
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For all X, Y € 2*, Y#@ it holds
(1) XclI, (X=cIo>X=1
(2) Xcl, cX=cI>|X|=|I|
(3)- cXocl>|X|z|1|
4) XuY=I XnY=0>cXncY=ch#cY
5) xclI, YclI>cXncY=c(xnY), Inch=H
(6) cX>ocl> there exists g € G such that gl X
(7)) cX=cI=> there exists g € G such that gl c X.

The family of all (i/)-independent sets Of a k-space '[=(A, G) will be denoted by
Ind(A) or Ind(A).

Example [. Let A be a vector space and G=Aut A its group of all
automorphisms. Let Ind (A) be the set of all independent (in usual sense) sets of
A. If A is of a finite dimension then Ind (A)=Ind; (A) for each i=1, ..., 7.

It is obvious that @ € Ind, (A) for each i=1, ..., 7 and arbitrary k-space A. The
assertion ‘“family Ind; (A) is not (in general) of finite character”, mentioned in the
Introduction, is proved by the following example.

Example 2. Let A =R be the set of all real numbers endowed with the usual
topology and G its group of all homeomorphisms. For the k-space A =(R, G) the

family Ind; (A) is not of finite character since for eachi=1, ..., 7
(a) R ¢ Ind(A) but
(b) - I € Ind(A) for all finite Ic R.

Proof. It is easy to verify that in the k-space A= (R, G) the k-closure operation
¢ coincides with the topological closure operation. To show (a) let us set X=0Q
(the set of all rational numbers) and Y =R — Q. the assertion (b) is obvious.

Theorem 1. Let A be a k-space. The family Ind(A) is hereditary fori=1, 4, 5
and is not hereditary for i=2, 3.

Proof is obvious for i=4 and i =5. From the Example 3 it follows immediately
that neither Ind,(A) nor Ind,(A) is hereditary. To prove the hereditarity of
Ind,(A) let us assume IcJc A, I ¢ Ind,(A). Therefore there exists X< I, X+ I
such that ¢X = cI. Now, for the set Y= Xu(J—1I) we have cY=c(Xu(J-1))=
A(Xu(—D)oc(eXue(J=1)oc(clu(J—-1)=cJ, and YcJ, Y#J. Hence
J ¢ Ind(A).

Example 3. Let A =R be the set of all real numbers and G the group of all_
transformations f: R— R preserving the set B ={0,1}. Although R € Ind,(A) and
R € Ind,(A), the subset B of R is neither (2)- nor (3)-independent since
c({1})=cB

The autor does not know whether Ind,(A) and Ind,(A) are  in general
hereditary.
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3. Comparison of (i)-independences

Theorem 2. Let be given a k-space A =(A, G). Then
3«6

Ll

55451527

Where “i—j” means “Ind(A)c Ind(A)".

Proof. The assertions 1 -2, 3—2, 63 and 6> 7 are obvious.

(5—4). Suppose XnY=0, Y0, XuY=1Ic¢€ Inds(A). Then cXNncY=
c(XnY)=c. Moreover Ynclc Inch=0 implies cY# cf.

(4— 1) by contradiction. Let X< I, cX=cl, Y=I—- X#0. Since I € Ind,(A) it
is cXNncY=ch# cY and therefore cY=cYncl=cYncX=clh#cY, a contradic-

tion.
(7-2). Let be X< I € Ind,(A), cX=cl. Now gl c X yields |gI| =|X|=|I| =

|gI|, hence | X|=]1|.
Theorem 3. There is no other relation of the type i—j, i+, i, j € {1, ..., 7}
except those seven given in Theorem 2, and their four consequences.

Proof of the Theorem 3 consists of five examples which are summarized in the
table

1 1 23 456 7
I — + 4 8 4 4 4
2 6 — 4 6 4 4 4
36 + -6 6 6 6
4 + + 4 — 4 4 4 ‘
5+ + 5+ - 57
6 7 + + 8 8 — +
77+ 5 88 5 —

The symbol + in the i-row and j-column means that / — j is true. The number 7 in
this place means that /—j fails to be true, as follows from Example n. More
precisely, in Example n there is given a k-space A and a set I = A such that I is
i-independent but is not j-independent.

The next two examples deal with the 3-dimensional real projective ' k-space
B*=(RP?, GP*?). We recall that the support RP?> of ° is the set of all
1-dimensional linear subspaces of R*; the subspace given by' a vector (x°, x', x2,
x*) € R*—{0} will be denoted by (x°: x': x%: x®). The group GL(4, R) of all
automorphisms of a vector space R* can be regarded as an action on RP?. Since the
kernel of this action is the centre C={AE; A € R —{0}} of the group GL(4, R),
the group GP? is isomorphic to the quotient group GL(4, R)/C.
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Example 4. Let 'B*= (RP?, GP?) be the 3-dimensional real projective k-space.
For the set Ic RP* consisting of six points A,=(1:0:0:0), A, =(0:1:0:0),
A,=(0:0:1:0), A;=(0:0:0:1). J,=(0:1:1:1) and J,=(1:0:1:1) we have

I € Ind(RP*) for i=1,2,4
and
I ¢ Ind(RP?) for i=3,5,6,7.

Proof.Letusdenote U, ={A,, A,, A,, J,}, U,={A,, A,, A,,J,} and U,={A,,
A, Jo, Ji}. Then cU,={X=(x":x":x*:x*); x'=0}, cU,={X; x"=0} and
cU,={X; x*=x}. Moreover . ’

c(Uu{X})=cUu{X} foreach point X € RP* i=1,2,3and
cU = U for each subset U c I for which |U| < 4.

(i=4). Suppose there is given a disjoint decomposition XU Y of I, | X|=|Y]. Since
| X] =3, we have cX =X and also cY =Y with the exception of the following ten
cases:

Y=U, i=1,2,3, Y=I-{A}}, j=0,1,2,3,
Y=I-{i}, k=0,1, Y=I.

Regarding all these cases one by one we always get cXncY=@. Hence
I € Ind,(RP?).

(i=5). Since cU,ncU, is the straight line A,A; and c(U,nU,)=U,NnU,=
{A,, A,}, we have I ¢ Inds(RP?).

(i=3,7). For the set X={A,, A, A,, A,, J}, J=(1:1:1:1) it holds cX =
RP*=cI but | X|<|I|. Therefore I ¢ Ind(RP?) for i=3,7.

Now the last three assertions (i=1, 2, 6) are a direct consequence of Theorem 2.

Example 5. For the set I={A,, A,, A,, As, Jo, Jn} < RP, where Jo, =
(0:0:1:1) and J,,=(1:1:0:0) we have

I € Ind(RP*) for i=1,2,4,5,7
and
I ¢ Ind(RP*) for i=3,6.

Proof. Owing to Theorem 2 it is sufficient to prove only the casesi=3, 5, 7. The
case i=3 is proved by the same argument as in Example 4.

(i=7). Suppose X< RP?, cX=clI. Then X can be written in the form X =
X,uX,, where XccU, |X|Z3, i=1,2 and U,={A, A, )}, U=
{A,, A,, Jo,}. It is easy to find a transformation g € GP?* such that gU,c X; for
i=1,2. ,

i=35). If XnY=I then cXncY=I=c(XnY). If UcXnY#I then
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cXncY=cUu(XnY)=c(XnY); similarly for U,c XnY#I. Otherwise
cXncY=XNnY=c(XNnY).

Example 6. Let (Q, G) be a k-space, where Q is the set of all rational numbers
endowed with the usual topology, and G the group of all homeomorphisms Q— Q.
For the set I=Q we have

I € Ind(Q) for i=2,3
and
I ¢ Ind(Q) for i=1,4,5,6,7.

Proof. The first two assertions are obvious. For the proof of the second row (the
last five assertions) take X =Q — {0}, Y={0}.

Example 7. Let (R, G) be a k-space, where R is the set of all real numbers
endowed with the usual topology, and G the group of all homeomorphisms R — R.
Let Z be the set of all integers and N the set of all positive integers. For the set
I={p-2™"; p e Z, n € N} of all dyadic numbers we have

I € Ind(R) for i=2,3,6,7
and
I ¢ Ind(R) for 1=1,4,5.

Proof. Owing to Theorem 2, only two assertions have to be proved, namely
i=1and i=6; the case i=1 is trivial. The last statement.is a consequence of the
following.

Lemma. Let X be dense in R. Then there exists a homeomorphism g: R— R
such that gl c X.

Proof. We start with the construction of a subset V{xi;ie Z, a e N} of X
such that for each (i, a) € Z X N it holds

(i) 27*<xi*'—xi<3-27* and

(i) xi=xii..

Construction. Since X is dense in R, there exists a sequence V,={xi}, ie Z
such that (i) holds for all (/, a) € Z X {1}. Suppose we have already defined the set
Vi=A{xi; (i,a) e Zx{1, ..., k}} such that (i) and (ii) are fulfilled for all
(i,a) e Zx {1, ..., k}. The sequence xi., { € Z is defined as follows:

set x7,,=xi and
choose x#!' e DinX where
Di=(xj +27%*Y xi + 327N (xit' =327+ xir!t —2-*+D) 1t js not difficult
to show that V=] V, is the required set. Moreover V is dense in R. Since the

a=1

map g':I-V, p2'"v—>x’;,
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1s continuous (as a map on I) and isotonic, there exists its extension to a
homeomorphism ¢g: R— R.

Example 8. Let (M, G) be a k-space defined as follows: M = {a,, b,, ¢\, a.. b,
¢.} and G is generated by three involutions f, ¢ and /i given via

fla)=0b,, f(b))=a,and f(x)=x forall otherx € M,
g(a,)=b, g(b.)=a,and f(x)=x forall otherx € M,
h(x))=x. h(x,)=x,foreachx € {a,b,c}.

For the set I={a,, a,} we have

I end(M) for i=1,2,3,6,7
and
I ¢ Ind(M) for i=4,5.

Proof. Because of Theorem 2 it is enough to give the proof fori=1, 4 and 6. To
show I ¢ Ind,(M), set X={a,}, Y={a,}. The rest of the proof is an easy
consequence of the equality ¢/ = M and the fact: if cX =M, then X meets each of
two subsets {a,, b,}, {a., b>} in at least one point. _

Finally let us discuss the case of finite i-independent subsets of a k-space
A=(A, G).

Theorem 4. Let A= (A, G) be a k-space, F the set of all finite subsets of A. Then

() Fnind,(A)=Fnind,(A)
and

3«6

[

554517

where an arrow “i—j" means “Fnlnd(A)c FnInd(A)’. Moreover the diag-
ramm is compléte, i. e. there is no another relation of the type “i—j". i#],
i,je{1,3,4,5,6,7} except those six given above, and their two consequences.

Proof. The equality (%) is obvious and the diagram in question is a direct
consequence of that in Theorem 2. The completness of the diagramm follows from
the table (notation as in the proof of Theorem 3) and Example 9.

134567
1 — 4 8 4 4 4
3+ - 88 9 9
4 + 4 — 4 4 4
5 +5 + - 509
6 + + 8 8 — +
7 + 5 8 8 -
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Example 9. Let ¢'=(R, GE) be the Euclidean line regarded as a k-space;
i.c. R is the set of all reals and GE the group of all isometries f, ,: R— R,
x—ax+b,ae{—1,+1}, b € R. For the set I={0, 1} we have

I € Ind(€') for i=1,3,4,5
and
I¢ Ind(C') for i=6,7.
Proof. Since cI=R, ¢c{0}={0} and c{1} ={1}, the proof of the first row is
obvious. On the other hand c¢{0, 2} = R but there is no transformation f, ,€ GE
which carries I into {0, 2}.

4. Frame

Definition 2. Let A =(A,.-G) be a k-space and c its k-closure operation. A set
F € 2% is said to be an i-frame of A if

(i) FelInd(A) and

(ii) cF=A,
i=1,...,7. The set of all i-frames in A will be denoted by Frm(A). If Frm,(A)+# ()
then A is called i-frameable and i-unframeable in the opposite case Frm,(A) = 0.

Theorem 5. Each k-space is both 2- and 3-frameable.

Proof. Let be given a k-space A =(A, G) and let ? be the subset of 2
" “consisting of exactly those X = A for which cX=A. Since A € 2, 2 is not empty.
Therefore there exists such a set Fe ? that |F|=|X| for all X € ?. Thus
F € Frm,(A) for both i=2 and i=3.

Theorem 6. To ecach i € {1, 4, 5, 6, 7} there exists a k-space A, such that
Frm,(A))=4.

Proof. The assertion for i=1,4 and 5 follows from the k-space (R, G)
described in Example 7. In fact, if /c R isdense in R (i.e.c/=R),anda € I'is a
point, then X=17—{a} is dense in R as well, hence ¢X = R. Therefore I is not
1-independent, thus Frm,(R)=@. Now, because of Theorem 2, it is Frms(R)c
Frm,(R)c Frm,(R)=4.

The assertion for i=6 and 7 follows from the obvious fact Frm.(C')=
Frm,(C')=@ (see Example 9.).

The end of this section is devoted to one homogenous k-space with some
surprising properties. For example, if a finite subset 7 is i-independent then |I| = 1.

Theorem 7. There exists a homogenous k-space ¥ = (A, G) such that to each
point x € A there is a sequence x;, € A ; i € Z with the properties
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(i) x,=ux,
(ii) if i<j then @(x)<q@(x;) and
(i) ifi<jthen c{x;}2c{x},
where (z2)={g € G; g(z)=z} is the stationary subgroup of G with respect to a
point z € A and c is the k-closure operation on A.
Moreover the sequence in question can be defined by x, = f'(x), where f € G
‘does not depend upon x.

Proof. See Example 10.

Throughout the remainder of this paper the brackets symbol [] or {} will have
always the meaning of the integer or fractional part of a real numer, respectively.
Hence

R—Zx[0,1), x—([x], {x})

is the uniquely defined decomposition of reals. We notice three relations, which
will be useful below,

(@) [lal+{b}]=I[all=[a].

(d) {[a]+b}={{b}}={b} and

() {{a}-b}={a-b}
for all a, b € R.

Example 10. The required k-space 2 = (A, G) will be obtained as one orbit of
the k-space B = (R, H) where H is generated by

ffR-R,x—x+1
and '

g:R-> R, x—[x]+ {x+([x]};
‘where the map fB: Z— R will be specified later.

The construction, namely the definition of g, is justified by.
Lemma 1. The map -

h:R—>R, y—[yl+{y—-Blyl}
Is inverse to the map g given in Example 10. Hence h, g € 7(R).

Proof. Choose x € R and denote y = gx. From (a) it follows [(hg)x]=[hy]=
[y]1=1[gx]=]x], therefore [(Ag)x] =[x]. On the other hand (b), (c) and the already
proved relation [x]=[y] yields

{(hg)x}={hy}={y —Bly]}={gx - Blx]} =
={[x]+ {x+ Blx] - Blx]} = {{x + Blx]} - B[x]} = {x}.

Since (hg)x =[(hg)x]+ {(hg)x} =[x]+{x}=x, it is hg = 1. Similarly gh = 1..
Our next task is to describe the stationary subgroup @(x)c H for any x € R.
Lemma 2 gives a tool and Lemma 3 an important result.
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Lemma 2. Let k =0 be an integer and let (c, a, ..., a., b,, ..., b,) be an ordered
(2k + 1)-tuplesof integers with b,#+0 for all i =1, ..., k. Then the map

RS R, x—|x]l+c+{x+bf(x]+a)+
+...+bB(x]+a))

belongs to the group H. Moreover each t € H can be written in such a form.

Proof. Let us denote
() t,=f“ogofxm[x]+{x+p(x]+a)}.
A straightforward computation shows that

(**) f:f( o ([‘,‘ )h“o,... o (fal)h‘,

hence ¢ € H. Conversely each ¢t € H is of the form

’=f‘.“o _(]h"o ofr'o _(]h'o fr”,
¢, b e Z, b0 foralli.

Under the substitution a,=c¢,, a&;=cy+ ¢y, ..., =Co+ ... + ¢ ,,c=¢Co+ ... + ¢,
the transformation ¢ becomes that in (sx).

Lemma 3. The subgroup H’ of H generated by all transformations t,, a € Z, is
Abelian. If a transformation t € H has at least one invariant point, I. e. if t € @(2)
for at least one z € R, then t € H'.

Proof. It is not difficult to show that

(4 o L)(X) = [x]+{B([x]+a) + B([x] + b))},

hence H' is Abelian. A transformation ¢ € H, written in the form (=) belongs to
the group H' if and only if ¢=0. If 1 € @(z), then [#(z)]=[z] hence ¢=0.

Remark. H is Abelian if and only if § is constant.
To finish the example we shall specify the function 8 putting

B:Z—- R, n—2".
Now, according to Lemma 2, each ¢t € H is of the form
t:R—> R, x—[x]+c+{x+2"d}
where the dyadic number
d=b,2+ ... +b, 2
can be expressed in the canonical form

d=2"+..+2", p<..<p,€eZ.

Lemma 4. If z € R is a point then the stationary subgroup @(z) of H is Abelian
and consists of exactly those transformations

169



IR-> R, xw—[x]+{x+22"+ ... +2)}
for which [z]+p,Z0.

Proof. By Lemma 3, @(z) is Abelian and ¢ € ¢(z) imply ¢ =0 and [#(z)]=]z].
Therefore 1(z)=z if and only if {#(z)}={z},i.e.

22 4.+ 2m) e Z.
The last condition is equivalent to [z]+ p, 0.

Corollary. It holds

[x]=[y]le@x)=@(y)=c(x)=c(y),
xSy ex)ce(y), clx)oc(y),
c(x)=[[x]. + ).

The proof f Theorem 7 is finished.
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HE3ABUCHUMOCTDb B IMPOCTPAHCTBE KJIIEMHA
Munan leinbl
Pesome

IMycts G rpynna nepectaHoBOK MHOXecTBa A. [ns no6oro MHoxecTBa X € A onpejensieTcs ero
3aMblKaHMe ¢X KiaK MHOXECTBO BCEX TOUEK Yy € A HEMOJBUXHbIX OTHOCUTELHO Nt060# NEpecTaHOBKHU
f e G s kotopon f(x)=x, Vx € X. TMopmuoxecTBo /<= A HasbiBaeTcs (/)-HE3aBUCHMBIM €CiH
Bbinonusetcs ycnosue (i), i=1, .., 7 (Onpenenenue 1.). Bonpoc B3aMMHOTO OTHOLUEHWS 3THX
onpenenennn pewatot Teopems 2. u 3. [MTogMHoXecTBO F < A HasbiBaeTes (7)-penepom ecin cF=A u
F (i)-ues3aBucumo (Onpenenenne 2.). CyuiecTBoBaHue (f)-penepa pelaioT TeopeMsl 5. u 6.
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