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NEIGHBORHOODS OF THE IDENTITY
OF THE FREE ABELIAN TOPOLOGICAL GROUPS

DONALD MARXEN*

1. Introduction. In the theory of discrete groups one means of constructing the
free abelian group on a set X yields that group as a quotient of the direct product of
the free semigroup (on X)) with itsclf. In this paper (§3) the frec abelian uniform
group (AG(X), U,;) on a uniform space [ X, U] will be constructed as a quotient of
the direct product of the free uniform semigroup (on [ X, U]) with itself. We then
obscrve that if X is a completely regular space and U is its largest admissible
uniformity, the uniform topology t(U,) determined by U, is precisely the
topology of the free abelian topological group. The explicit nature of our
construction allows us to describe in terms of the gage of U, a base for U,;, hence a
base for the neighborhood systems relative to t(U,;) (84).

In section 5 it is shown that no sequence of words in (AG(X), U,;) whose lengths
increase without bound can have a limit (Abels [1] has shown this to be true for
free topological groups). As corollaries we obtain some familiar results regarding
the countability axioms and local compactness on free (abelian) topological groups.

Scction 2 contains the definitions, notations and results we need concerning
uniform semigroups and free uniform semigroups.

We assume fumiliuritj/ with the notions of free algebraic semigroup [2, Ch. 1]
and free (abelian) topological group (in the sense of Markov [8]).

2. Definitions and notations. The material in this section is taken primarily from
[9] and [10].

For a set X let A(X) denote the diagonal of XXX, ie., A(X)=
{(x, x):x € X}.If Uis a uniformity on X we denote by [ X, U] the uniform space
determined by X and U, by 7(U) the uniform topology relative to U and by E(U)
the set of all uniformly continuous pseudometrics on [ X, U] bounded by 1. For
details concerning the theory of uniform spaces the reader is referred to [7, Ch. 6]
and [4, Ch. 15].

* The author gratefully acknowledges the financial support of the Marquette University Summer
Faculty Fellowship Program.
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2.1. Definition. A uniform semigroup is a triple (T, u, W), where

(ui) [T, W] is a uniform space; and

(uii) u is an associative, uniformly continuous mapping from [T, W] X [T, W]
into [T, W].

If T is a group with respect to u then (T, u, W) is called a uniform group.

We usually shorten (T, u, W) to (T, W).

2.2. [9, Thm. 3]. If (T, W) is a uniform group, then t— ¢t~ is uniformly
continuous, hence (7, T(W)) is a topological group. '

A uniformly continuous, semigroup homomorphism from one uniform semig-
roup to another is called a uniform homomorphism. A semigroup isomorphism is
called a uniform isomorphism if both it and its inverse are uniformly continuous.

A pseudometric f on a semigroup T is called subinvariant if f(xz, yz) < f(x, y)
and f(zx, zy) <f(x, y) for all x, y and z in T. A base B for a uniformity on 7 is
said to be subinvariant if and only if

ADWUW AT W

for each W e B.
The following theorem is a consequence of Theorem 2 [9].

2.3. Theorem. For a semigroup T and a uniformity W on T, the following are
equivalent:

(a) (T, W) is a uniform semigroup;

(b) W has a subinvariant base; and

(c) the gage of W has a base consisting of subinvariant pseudometrics.

2.4. Definition. Let [X, U] be a uniform space. A uniform semigroup
" (S(X), Uy) is called the free uniform semigroup on [X, U] if there exists a
mapping 71:[X, U]— (S(X), Us) such that
(si) n is a uniform embedding;

(sii) n[X] generates S(X) algebraically; and

(siii) for any uniform semigroup (T, W) and uniformly continuous
w:[X, Ul-> (T, W), there exists a (unique) uniform homomorphism
Q:(85(X), Us)—> (T, W) such that 2 - n=w.

If in 2.4 ‘uniform semigroup’ is replaced everywhere by abellan uniform group’
we then have the definition of ‘the free abelian uniform group on [X, U].

The remainder of this section contains notations and results, pertaining to the
construction in [10, §3] of the free uniform semigroup, which will be used in §3.

Let [ X, U] be a uniform space and S(X) be the free algebraic semigroup on the
set X. For f € E(U) and for nonnegatwe reals 6, ..., 8, let (f; 8., ..., 6,,) denote
the set

{(Xy oo Xy V1 oo V) s f(xi, )< O:,i=1, ..., m}.
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Let D denote the set of diadic rationals in the interval [0,1] and let A be the family
of functions a: D— [0,1] satisfying
(ri) a(r)=0 if and only if r=0;
(rii) g <r implies a(g)<a(r); and
(riii) g+r<1 implies a(q)+a(r)<sa(q+r).
Finally, for f € E(U),a € A and n € N set

fln, al=u {{f; a(r), ..., a(r,)) : m € N, i r=2'""}.

25. Ifg=f, k=n and y<a, then glk, y] < fln, al.

2.6. For each f, n, and a, fln+1, al°f[n+1, a] = fln, a].

2.7. Foreachf, n, and a, A(S(X))(a, b)u(a, b) A(S(X)) c fln, a] if and only
if (a, b) € f[n, al.

It follows from 2.5—2.7 that the collection {f[n, a]:fe E(U), n € N and
a € A} is a subinvariant base for a uniformity Us on S(X). In fact, (5(X), Us) is
the free uniform semigroup on [X, U]. The mapping property (siii) of 2.4 is a
consequence of 2.8 below.

2.8. [10, 3.3.]. Let w be a uniformly continuous mapping from a pseudometric
space [ X, f] to a pseudometric space [T, g]. Then there exists an a € A satisfying
the additional property

(riv) g(w(x), w(y))<r, whenever f(x,y)<a(r).

3. The free abelian uniform and topological groups. Let w =w, ... w,, be a word
in the free semigroup S(X) on the set X. By a permutation of w we mean a word
u=u, ... u, in S(X) such that for some permutation s of {1,2, ..., m}, w;, = u,, for
i=1,2,...,m. The set of all permutations of w will be denoted by P(w).

Define the congruence relation F on S(X)XS(X) according to ((a, b),
(c,d)) e F if and only if bc € P(ad) and let AG(X) be the collection of
F-equivalence classes in S(X) X S(X). Letting ¢ denote the natural homomorph-
ism from S(X) X S(X) onto AG(X), it can easily be shown that

n k
o((aa, ... a,, b\b, ... bk))—>2 ai—z b;

is an isomorphism between AG(X) and Z{Z, : x € X}, whence AG(X) is the free
abelian group on the set X.
Let [X, U] be a uniform space and B? be the collection of all sets

Fln, al={((a, b), (c,d)): (a,c) € f[n,a] and (b, d) € fln, a]}

(fe E(U), n e N, a € A). Then B? is a base for the product uniformity U; on
S(X) x S(X). Finally, let U; denote the image filter {(0 X 0) [V]: V € Uz}. It will
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now be shown that U,; is a uniformity on AG(X) and that (AG(X), U,;) is the free
abelian uniform group on [ X, U].

3.1. The ftilter U, 1s a uniformity on AG(X).

Proof. It will suffice to show that {(0 X )[V]: V€ B?} is a base for
a uniformity.

(i) That each (o X 0)[f*|n. a]] contains A(AG(X)) is clear.

(ii) Given f*[n, a] and g?|m, ] in B* set hA=sup {f, g}, k =max {n, m} and
1 nf {a,f}. It is casy to prove that y € A. Moreover, since /|4, y|c
fln alng[m, B] (2.5), it follows that (ox o)k, vllc
(0 x0)f[n. alln(o x0)lg*m, S]]

(iii) Let U=(o X 0)[f|n, a]] and V=(9o X 0)|f[n+ 1, a]]. It will b¢ shown
that Vo V < U. Suppose (0(a, b), 0(c, d)) and (o(s, ), o(u, v)) are elements ot V
and o(c, d)=o0(s, t). We can assume that

{(a,c), (b, d), (s, u),(t,v))cfln+1, «],
hence, according to 2.7, that '
{(asd, csd), (csd, cud). (bet, dct), (dct, dev)} < fln+ 1, al.

This implies that ((asd, bet), (cud, decv)) € fn, al. Furthen’horé, o(cud, dcv) =
o(u, v)and, since ds € P(ct), o(a, b)=o(asd, bct). Thus (o(a, b), o(u, v)) € U.

3.2. Theorem. For a uniform space | X, U], (AG(X), U,;) is the free uniform
group on [X, U]. ‘

Proof. The collection B* is a subinvariant base for Uz, therefore {(o X 0)[ V]:
V e B*} is a subinvariant base for U,. According to 2.3, (AG(X), U,;) is a
uniform group.

Let x be fixed in X and define n: X— AG(X) by n(x)=o0(xx, x). The
mapping 7 is clearly a uniformly continuous injection and 5[ X] generates AG(X)
algebraically. The uniform continuity of the inverse of n will now be shown. For
fe E(U) and £¢>0 set V={(x,y): f(x,y)<e}. Choosing a € A such that
a(l)<e, set

U= (o x0)f[2. alln(n[X]xn[X]).

If (n(x),n(y)) e U there exists ((a, b), (¢, d)) € f[2, a] such that o(a, b)=
o(xx,x) and o(c, d)=0(yx, x), whence bx € P(a) and dy € P(c). Therefore
(bx. (dy)") € f]2, a] for some (dy)' € P(dy). Since (d,b) is also in f[2, «a],
(dbx, b(dy)') € fl1, a]. It follows from 4.3 that (x, y) € f[1, a], hence (x, y) € V.
We conclude that 7 is a uniform embedding.

The mapping property (siif) remains to be shown. Let (7, W) be an abelian
uniform group, w: [ X, U]— (T, W) be uniformly continuous and £2: AG(X)—> T
be the group homomorphism satisfying Qo.n=w. For each subinvariant
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pscudometric g in E(W) there exists some f € E(U) such that @ is a uniformly
continuous mapping from the pseudometric space [ X, f] to the pseudometric space
| T, g]. Now select a € A satisfying (riv) of 2.8. Letting U = (o X ¢)|f*[n, ]| and
W={(s.t):s5.t e Tand g(s,1)<2 "}, it will be shown that (2 x 2)[U]<c W,
thus implying the uniform continuity of €.

Suppose (o(a, b), o(c. d)) € U with (a, ¢) and (b, d) in fln, a] and suppose
that ¢ and ¢ have the length m and that 4 and d have the length k. Then for some

n A
. . . . . . ol Bl
choice of diadic rationals r, ..., r,, and ¢,, ..., ¢, for which N =N g =21,

e
| |

f(a,, c)<a(r) and f(b,, d)<a(q,), | <i<m and | <j<k. Observing that
Qo(a. b)y=w(a)+...+w(a,)—w(b)—...—w(b)

and
Qo(e.d)=w(c)+...+w(c,)—wld)—...—w(d).

we conclude that
”m A

9(Qo(a. b), Qo(c, dN< Y, g(w(a), w(c)+ Y glw(bh). w(d,))

" A
S; r,-+;q,».

=2 ",

3.3. Theorem. Let X be a completely regular space and let U be the largest
admissible uniformity on X. Then (AG(X), t(U,,)) is the free abelian topological
group on X.

Proof. Let T be an abelian topological group and let W be its right (=left)
uniformity. If @ is a continuous mapping from X to T, it is a uniformly continuous
mapping from [ X, U] to [T, W] [4, 15G5, p. 234]. Now let : (AG(X), U;)—
(T, W) denote the uniform homomorphism satisfying £o7n = w. Since w must be
continuous as a mapping from (AG(X), t(U)) to T, the proof is complete.

3.4. Remark. Free uniform semigroups can also be used to topologize the free
group G(X) on a completely regular space X. Let U be an admissible uniformity
on X, [X', U'] be a uniformly isomorphic copy of [ X, U], and (S(X u X'), W) be
the free uniform semigroup on the disjoint union of [X, U] and [ X', U’]. If
P:S(XuX')> G(X) is  the natural  homomorphism, then V=
{(y X P)[W]: W e W} isa uniformity on G(X) having a subinvariant base, Thus
(G(X), t(V)) is a topological group. In general, (V) is too small to be the
topology of the free topological group [11], even if U is the largest admissible
structure on X.
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3.5. Question. For a uniform space [X, U], (S(X), t(Us)) is known to be the
free topological semigroup on the space [X, 7(U)] 10, 4.2].Since (AG(X), Uy) is
a uniform quotient of (S(X)x S(X), U3), it is natural to ask if the free abelian
topological group is a topological quotient of the direct product of the free
topological semigroup with itself. The situation is complicated by the fact that the
topology of a quotient uniformity need not be the quotient of the uniform topology
[6, 5(a), p. 32].

4. A base for the neighborhood system of e¢. The identity element of AG(X) will
be denoted by e or a —a for any a € S(X). In place of the nonzero elements
o(ab, a) and go(a, ab) we will write b and — b respectively. If a =b orif (a, b) isa
reduced pair, i. e., if  and b have no common letter, we will write 2 — b in place of
o(a, b). The elements b and — b will be called positive and negative, respectively,
and for the element a —b we will refer to a‘as the positive part and b as the
negative part.

Let N(e) denote the neighborhood system of e relative to the topology 7(Uy).
Since the collection {(0 X ¢)[ V] : V € B?} is a base for the free uniformity U; (see
the proof of 3.1), it determines a base for N(e). Associated with the entourage
(0 X 0)[f*[n, a]] is the following neighborhood of e:

{a—b:0(a,b)=0(c,d) and (c, u),(d, u) € fln, a]
forsome c¢,d,u e S(X)}.

\

In order that a — b be an element of this set, the pair (a, #) must satisfy conditions
involving words other than @ and b. In this section we provide another base for
N(e), where the condition for the membership of a — b in a given neighborhood (in
the base) involves only @ and P(b), the set of permutations of 5. It will be helpful
to first establish several additional properties of the sets f[n, a] (f € E(U), n € N,
a € A). The first of these follows directly from the definition of f[n, a].

4.1. If (a, ... a., b, ... b,) € fln, a], then (@, ... Qoimys Boqry .- boemy) € [N, a]
for every permutation o of {1, ..., m}.

4.2. If (ca, (cb)') € fn, a] where (cb)' € P(cbh), then (a, b’) € fln, a] for
some b’ € P(b).

Proof. It will be sufficient to prove this for ¢ a word of length one. Set u = ca
and v =(¢b)' and suppose v; =c. If j =1, the result follows from 2.7. Assume j# 1.

If m is the length of « and v, there exist r,, ..., 7, € D such that Z r,=2'" and
1

f(u;, v)<a(r), 1<i<m. Letting o denote the permutation (1, j) of {1, ..., m},
we observe that
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(4, Vo)) = f(y;, v)<f(y, v)+ f(u,, v))
Sa(r,.)+a(r,)
<a(ri+r).
Thus (4, ... Uy, Vo ... Voemy) € fln, a].

4.3. Let (a, b) be a reduced pair in S(X)XS(X). If (s,¢) € f[n, a] and
o(s,)=o0(a, b), then (a, b') € f[n, a] for some b' € P(b).

Proof. Since bs € P(at) and a and b have no common letters, either
(/) s € P(a) and ¢t € P(b) or (ii) there exist words ¢ and 4 in S(X) such that
s € P(ca) and t € P(db). If (i) is true, the result becomes obvious. Suppose that
(ii) holds. Then bca € P(adb), hence ¢ € P(d) and s € P(da). Using 4.1 and the
symmetry of f[n,a], we conclude that (da, (db)') € fln,a] for some
(db)' € P(db). The result now follows from 4.2.

For each fe E(U), n € N and a € A set

B(f,n,a)={a—b:(a,b') € fln,a] forsome &' e P(b)}
and let M be the collection of all such sets.

4.4. Theorem. The collection M js a base for the neighborhood system of
e € (AG(X), Uy).
_ Proof. Since B(f, n, @) c {a—b: (e, a—b) € (0 X 0)[f*[n, al]]}, we have only
to show that each member of M is a neighborhood of e. Consider the set
M e N(e), where M={a—b:(e,a—b)e (e Xo)fF[n+1,a]l}. f a—b e M,
there exist words ¢,d and u in S(X) such that ¢o(c,d)=p9(a, b) and
((c, d), (u, u)) € fA[n+1,al. But then (c,d) € fln,a] (2.6) and, by 4.3,
(a, b') € fln, a] for some b’ € P(b). Thus B(f, n, @) contains the neighborhood
M. : .

4.5. Remark. Recall that a and 5’ must be of equal length in order that (a, b')
be in f[n, a]. Thus a condition necessary (but not sufficient) for a nonzero word
a — b to be an element of B(f, n, a) is that its positive and negative parts have an
equal length.

4.6. If [X, U] is a Hausdorff uniform space, then (AG(X), Ug) is Hausdorff.

Proof. Suppose a — b is a nonzero word in AG(X) and that @ and 4 have the
equal length m. Since a and b have no common letter, f(a,, ;) #0, 1<i<m, for
some f e E(U). If a: D—[0,1] represents the inclusion mapping and n € N
satisfies 2'™* < {min f(a,, b,): i=1, ..., m}, then (a, b) ¢ B(f, n, a).

According to 3.1 the free uniformity Ug is the image filter of U under the
mapping o X 0. Consequently each base for L2 is carried by ¢ X o onto a base for
U, . In addition to B? we will consider one other base for Uz.

Let A, be the collection of all monotone increasing functions 8: D — [0,1] such
that 8(r)=0 if and only if r=0. For f € E(U) and 8 € A, define f[1,.8] as in §2
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and  set L Al={((a. b)., (¢c.d)):(a.c). (b.d)e fIL.3]). Let B
(FI1.B):fe E(U) and f € A }.
4.7. The collection B is a base tor Uz,

Proof. Givenfi € A, «a-r—r f(r)isanclement of A and « </3. Therefore
Ll a) < £ILL B It follo s that B> < Uz. Conversely, if « e A and n € N are
given, define # by 3(r)=«a(2 "r)forcachr € D.Then f°|1. 3] = [’[n. «], whenee
B’ generates a uniformity finer than U:.

4.8. The collcction M of all sets {a—b:(a,b’) e [[I.] for some
b P(b)}(fe E(U), e A) is a base for the ncighborhood system of

¢ce(AG(X), U,)

5 Properties equival nt to I'screteness in (AG(X), U,;). For the remainder of
this paper [ X, U] will denote a Hausdorff uniform space.

In this section it is shown that no sequence of words in (AG(X), U,;) whose
lengths increase without bound can have a limit (Abels [ 1] has shown this to be a
property of the free topological group). Using this theorem we obtain some familiar
results concerning the countability axioms and local compactness on the free

(abelian) topological group.
The length of a word w in AG(X) will be denoted by |w|.

5.1. Let {s(n)} be a sequence in (AG(X), U,) such that n<|s(n)| <
[s(n+1)| for all n € N. Then there exists a neighborhood M of e for which

s(n) & M for all n.

Proof. According to 4.5 we may assume that for each n, |a(n)| = |b(n)|, where
a(n) and b(n) denote, respéctively, the positive and negative parts of s(n). For
n € N let m, indicate the length of |a(n)|, and let Y be the set of all letters
appearing in the words s(n), ie., let Y={x:x=s(n), for some n e N and
1<i<|s(n)|}. Since [X, U] is Hausdorff and Y is countable, there exists an
f € E(U) for which f(x, y)#0 for all distinct points x and y in Y. Setting
€, =min {f(a(n),, b(n),)):i,j=1,...,m,}, we observe that ¢, >0. Now select

f# € A such that (2 *)<g,, for the finitely many m, satisfying
2 '<m,'<s2 ~.
Such a f3 is easily shown to exist. Finally, set M={a—b: (a, b’) € f]1, 3] for some
b€ P(b)} (4.8). 1f n e N and r,, ....r,, € D with S r,=1, then r,<m," for
1
some j<m,. Thus if
25 '<m,'<2 *,
B(r)<p2 *)<e,,, whence
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fla(n);, b'(n);)) £ B(r,)
for cvery permutation b'(n) of b(n). Consequently a(n)—b(n) ¢ M.

5.2. Theorem. Let {w(n)} be a sequence in (AG(X), U;) for which
{|lw(n)|: n € N} is unbounded in N. Then {w(n)} fails to converge.

Proof. Let u be any element of AG(X) and define v: N— AG(X) by
v(n)=w(n)—u for all n. Then {|v(n)|: n € N} is unbounded in N and thus
{v(n)} has a subsequence {s(n)} satisfying the hypothesis of 5.1. It follows that
{v(n)} does not converge to e, hence {w(n)} does not converge to u.

5.3. If | X, U] is not discrete, then every neighborhood of e in (AG(X), U,,)
contains a sequence {w(n)} for which {|w(n)|: n € N} is strictly increasing.

Proof. Consider the neighborhood B(f, m,a)e M (4.4) and let x be a
nonisolated point in X. If for each n € N we select x, € X satisfying

0<f(x,, x)<a2' "),

then (2"x,, 2"x) € f[m, a]. Setting w(n)=2"x,—2"x, we observe that
w(n) € B(f, m, a) for all n.
The following theorem is an immediate consequence of 5.3 and 5.2.

5.4. Theorem. If the uniform space (X, U] is Hausdorff, the following proper-
ties are equivalent in (AG(X), U,;):
(¢/) discreteness
(if)  Ist countability
(/i) metri ability
(iv) local compactness.
In particular, if (AG(X), U,;) is 2nd countable, it must be discrete.

5.5. Let X be a completely regular T,-space. In the free (abelian) topological
group on X, the properties (i)—(iv) of 5.4 are equivalent.

Proof. This result follows from 3.3 and the fact that each of these properties is
preserved under open-continuous homomorphisms.

The equivalence of (f), (if) and (iii) in the free (abelian) topological group was
established by Graev [5]. The equivalence of (/) and (iv) follows from a stronger
result, which is due to Dudley [3, p. 589].
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J. Farkas and M. Farkas: INTRODUCTION TO LINEAR ALGEBRA. Akadémiai Kiado,
Budapest 1975. 205 stran. ’

V poslednom ¢ase sa vela pozornosti venuje metodike vyucovania matematiky. Je iste spravne, ak je
silie naudit Studenta mysliet prostrednictvom modernych matematickych pojmov a metdd. Velakrat
vSak Studenti tazko prijimaji moderni matematiku, lebo im chyba priprava, ktora by imumoznila chapat
moderny matematicky jazyk prirodzene a nielen ako systém axiom a pod. Autori tejto knihy sa pokusili
napisat knihu, ktord by umoznila ‘Studentom prvych semestrov vysokych §kol pripravit sa na Stidium
modernej algebry a myslim,'ie sa im to aj podarilo.

Kniha je rozdelena do Siestich kapitol :

V kapitole I si vysvetlené zdklady vektorovej algebry a na konci tejto kapitoly st uvedené priklady
aplikacie vektorov v analytickej geometrii a v mechanike.

Kapitola II je venovand komplexnym ¢islam.

V kapitole III su vysvetlené zaklady maticovej algebry a tedrie determinantov.

Kapitola IV je venovana systémom linedrnych algebraickych rovnic. Ako priklad aplikdcie tedrie
systémov algebraickych rovnic je uvedeny zdkladny problém linearneho programovania.

V kapitole V su uvedené definicie grupy, okruhu, telesa, vektorového priestoru nad telesom, bazy
a transformacie bazy. ’

V kapitole VI su vysvetlené zaklady tedrie linedrnych operatorov a kvadratickych foriem.

Na konci kazdej kapitoly su cvi¢enia. Odpovede a navody na rieSenie tychto cviceni su uvedené na
konci knihy.

Kniha bude cennou pomockou pre posluchicov matematiky na vysokych $kolach univerzitneho aj
technického smeru. )

Milan Medved, Bratislava
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