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Math. Slovaca 26, 1976, No. 3. 247—256 

NEIGHBORHOODS OF THE IDENTITY 
OF THE FREE ABELIAN TOPOLOGICAL GROUPS 

DONALD MARXEN* 

1. Introduction. In the theory of discrete groups one means of constructing the 
free abelian group on a set X yields that group as a quotient of the direct product of 
the free semigroup (on X) with itself. In this paper (§3) the free abelian uniform 
group (AG(X), U(i) on a uniform space \X, U\ will be constructed as a quotient of 
the direct product of the free uniform semigroup (on [X, U\) with itself. We then 
observe that if X is a completely regular space and U is its largest admissible 
uniformity, the uniform topology T(U(S) determined by U(; is precisely the 
topology of the free abelian topological group. The explicit nature of our 
construction allows us to describe in terms of the gage of U, a base for U(i, hence a 
base for the neighborhood systems relative to T(U(I) (§4). 

In section 5 it is shown that no sequence of words in (AG(X), U(l) whose lengths 
increase without bound can have a limit (Abe ls [1] has shown this to be true for 
free topological groups). As corollaries we obtain some familiar results regarding 
the countability axioms and local compactness on free (abelian) topological groups. 

Section 2 contains the definitions, notations and results we need concerning 
uniform semigroups and free uniform semigroups. 

We assume familiarity with the notions of free algebraic semigroup [2, Ch. 11 
and free (abelian) topological group (in the sense of M a r k o v [8]). 

2. Definitions and notations. The material in this section is taken primarily from 
|9] and [101. 

For a set X let A(X) denote the diagonal of XxX, i.e., A(X) = 
{(JC, x) :x e X). If U is a uniformity on X we denote by \X, U] the uniform space 
determined by X and U, by T(U) the uniform topology relative to U and by E(U) 
the set of all uniformly continuous pseudometrics on fX, U] bounded by I. For 
details concerning the theory of uniform spaces the reader is referred to [7, Ch. 6] 
and [4, Ch. 15]. 

* The author gratefully acknowledges the financial support of the Marquette University Summer 
Faculty Fellowship Program. 
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2.1. Definition. A uniform semigroup is a triple (T9 \i9 W), where 
(ui) [T, W] is a uniform space; and 

(uii) fi is an associative, uniformly continuous mapping from [T, W] x [T9 W] 
into [T9 W]. 

If Tis a group with respect to [i then (T9 fi9 W) is called a uniform group. 
We usually shorten (T9 pi9 W) to (T, W). 

2.2. [9, Thm. 3]. If (T9 W) is a uniform group, then t—>t_1 is uniformly 
continuous, hence (T9 r(W)) is a topological group. 

A uniformly continuous, semigroup homomorphism from one uniform semig­
roup to another is called a uniform homomorphism. A semigroup isomorphism is 
called a uniform isomorphism if both it and its inverse are uniformly continuous. 

A pseudometric / on a semigroup T is called subinvariant if f(xz, yz)^f(x, y) 
and f(zx9 zy)^f(x9 y) for all x9 y and z in T. A base B for a uniformity on T is 
said to be subinvariant if and only if 

A(T)WuWA(T)^ W 

for each W e B. 
The following theorem is a consequence of Theorem 2 [9]. 

2.3. Theorem. For a semigroup T and a uniformity W on T, the following are 
equivalent: 

(a) (T9 W) is a uniform semigroup; 
(b) W has a subinvariant base; and 
(c) the gage of W has a base consisting of subinvariant pseudometrics. 

2.4. Definition. Let [X9 U] be a uniform space. A uniform semigroup 
(S(X)9 Us) is called the free uniform semigroup on [X9 U] if there exists a 
mapping rj:[X9 U]^>(S(X)9 Us) such that 

(si) r\ is a uniform embedding; 
(sii) rj[X] generates S(X) algebraically; and 
(siii) for any uniform semigroup (T9 W) and uniformly continuous 

co: [X9 £/]—i>(T9 W)9 there exists a (unique) uniform homomorphism 
Q:(S(X)9US)-+(T9W) such that Qorj = o). 

If in 2.4 'uniform semigroup' is replaced everywhere by 'abelian uniform group' 
we then have the definition of the free abelian uniform group on [X9 U]. 

The remainder of this section contains notations and results, pertaining to the 
construction in [10, §3] of the free uniform semigroup, which will be used in §3. 

Let [X9 U] be a uniform space and S(X) be the free algebraic semigroup on the 
set X. For/ e E(U) and for nonnegative reals dl9 ..., 8m let (/; 8,,..., 6m) denote 
the set 

{(*, ...xm9yx ... ym):f(xl9yi)^di9 i=l, ...,m). 
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Let D denote the set of diadic rationals in the interval [0,1] and let A be the family 
of functions a: D—>[0,\] satisfying 

(ri) a(r) = 0 if and only if A* = 0 ; 
(rii) q^r implies a(q)^a(r); and 

(riii) q + r^l implies a(q) +a(r)^a(q + r). 
Finally, for f e E(U), a e A and n e N set 

m 

f[n, a] = u{(f; a(r,), ..., a(rm)) : m e AT, £ n = 21-}. 
1 

2.5. If g^f, k^n and Y^a, then g[k, y] .= /[/*, «] . 

2.6. For each f, n, and a, f[n + 1, a]°f[n + 1, a] <^f[n, a]. 

2.7. For each f, n, and a, A(S(X))(a, b)u(a, b)A(S(X))czf[n, a] if and only 
if (a,b)ef[n,a]. 

It follows from 2.5—2.7 that the collection {f[n, a]: f e E(U), n e N and 
a e A} is a subinvariant base for a uniformity Us on S(X). In fact, (S(X), Us) is 
the free uniform semigroup on [X, U]. The mapping property (siii) of 2.4 is a 
consequence of 2.8 below. 

2.8. [10, 3.3.]. Let co be a uniformly continuous mapping from a pseudometric 
space [X, f] to a pseudometric space [T, g]. Then there exists an a e A satisfying 
the additional property 

(riv) g(o(x), co(y))^r, whenever f(x, y)^a(r). 

3. The free abelian uniform and topological groups. Let H> = H>, ... wm be a word 
in the free semigroup S(X) on the set X. By a permutation of w we mean a word 
u = ux ... um in S(X) such that for some permutation s of {1,2, ..., m), H>, = «a(l)for 
/ = 1, 2, ..., m. The set of all permutations of w will be denoted by P(w). 

Define the congruence relation F on S(X) x S(X) according to ((a, b), 
(c, d)) e F if and only if be e P(ad) and let AG(X) be the collection of 
F-equivalence classes in S(X) x S(X). Letting g denote the natural homomorph-
ism from S(X) x S(X) onto AG(X), it can easily be shown that 

g((axa2 ... an,bxb2 ... £*))-> 2 ^ " S *< 
i i 

is an isomorphism between AG(X) and 2{ZX : x e X}, whence AG(X) is the free 
abelian group on the set X. 

Let [X, U] be a uniform space and B2 be the collection of all sets 

p[n,a] = {((a,b),(c,d)):(a,c)e f[n,a] and (b, d) e f[n, a]} 

(f e E(U), n e N, a e A). Then B2 is a base for the product uniformity Us on 
S(X) x S(X). Finally, let UG denote the image filter {(g x g) [ V]: V e Ul}. It will 
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now be shown that U(i is a uniformity on AG(X) and that (AG(X), Ua) is the free 
abelian uniform group on \X, U\. 

3.1. The filter U(i is n uniformity on AG(X). 
Proof. It will suffice to show that {(Q*Q)\V]: V e B2} is a base for 

a uniformity. 
(i) Th it each (Q X Q)\p\n, a\\ contains A(AG(X)) is clear. 

(ii) Given p\n, a\ and cj2\m, ft\ in B2, set h -=sup {/, g}, k = max {n, m} and 
} inf {«,/?}. It is easy to prove that y e / 4 . Moreover, since / / [ k , y | c 
/[// a\nq\m,ft] (2.5), it follows that (Q X Q)\h2\k, y|j cz 
(QXQ)\f\n,a]]n(QXQ)\cf

2\m,ft]]. 
(iii) Let U = (Q X Q)\p\n, a]\ and V=(Q X Q)\p\n + \, a]]. It will be shown 

that VoV<^U. Suppose (Q(U, b), Q(C, d)) and (Q(S, t), Q(U, V)) are elements ot V 
and Q(C, C/) = Q(S, t). We can assume that 

{(a,c),(b,d),(s,u),(t,v)\^f\n+\,a\, 

hence, according to 2.7, that 

{(asd, csd), (csd, cud), (bet, dct), (dct, dev)} c /f / i + 1, a | . 

This implies that ((asd, bet), (cud, dev)) e p\n, a]. Furthermore, Q(cud, dcv) = 
Q(U, v) and, since ds e P(ct), Q(U, b) = Q(asd, bet). Thus (Q(U, b), Q(U, V)) e U. 

3.2. Theorem. For n uniform spuce \X, U], (AG(X), Ua) is the free uniform 
group on [X, U]. 

Proof. The collection B2 is a subinvariant base for Us, therefore {(Q X Q)\ V]: 
V e B} is a subinvariant base for U(i. According to 2.3, (AG(X), U(;) is a 
uniform group. 

Let x be fixed in X and define ^: X^> AG(X) by ^(x) = Q(XX , x). The 
mapping ^ is clearly a uniformly continuous injection and ^X] generates AG(X) 
algebraically. The uniform continuity of the inverse of ^ will now be shown. For 
f e E(U) and EX) set V= {(x, y) : f(x, y) ^ E}. Choosing a e A such that 
a(\ ) ^ E, set 

U = (QXQ)\r\2,a]]n(n\X]xn\X]). 

If (r](x), 7/(>!)) e U there exists ((a, b), (c, d)) e p\2, a] such that Q(U, b) = 
Q(XX ,x) and Q(C, d) = Q(yx, X), whence bx e P(a) and dy e P(c). Therefore 
(bx, (dy)') e /[2, a] for some (dy)' e P(dy). Since (d, b) is also in f\2, a], 
(dbx, b(dy)') e f\\, a]. It follows from 4.3 that (x, y) e f\\, a], hence (x, y) e V. 
We conclude that ^ is a uniform embedding. 

The mapping property (siii) remains to be shown. Let (T, W) be an abelian 
uniform group, co : \X, U]-+(T, W) be uniformly continuous and Q: AG(X)—• T 
be the group homomorphisrh satisfying Qo^ = co. For each subinvariant 
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pseudometric (j in E( W) there exists some / e E(U) such that (o is a uniformly 
continuous mapping from the pseudometric space [X, f\ to the pseudometric space 
| F, (j\. Now select a e A satisfying (riv) of 2.8. Letting U = (Q X g)\p\n, a\\ and 
W={(.v,/) : A\ t e T and </(.v, 1 ) ^ 2 " } , it will be shown that (Q x Q)\U\ <= VV, 
thus implying the uniform continuity of Q. 

Suppose (c(a, b), o((\ d)) e U with (a, c) and (/?, d) in /[tz, a\ and suppose 
that <7 and c have the length m and that /> and d have the length k. Then for some 

m A 

choice of diadic rationals r r„, and q qk for which ^ r, = ^ q, =2l ", 
i i 

/"(</,, r f )^a ( r f ) and /(/>,, </,•)*-=«(</,•), 1 ^ / ^ A A / and 1 ^ / ^ k . Observing that 

QQ((I* h) = (o(a{) + ... + (o(a„,) — (o(bi) — ... — (o(hk) 

and 

QQ((\ d) = (o(c,)+ ... + (o(cn,)-(o(dx)- ...-(o(dk)^ 

we conclude that 

(j(Q0(a, />), Qi)(c, d))^ ff((o(aX (o(ct))+ V q((o(b,), (o(d,)) 
i i 

«fir,+i«7<. 
i i 

= 2 ". 

3.3. Theorem. Let X be a completely regular space and let U be the largest 
admissible uniformity on X. Then (AG(X), T(U(!)) is the free abelian topological 
group on X. 

Proof. Let T be an abelian topological group and let W be its right ( = left) 
uniformity. If (o is a continuous mapping from X to 7\ it is a uniformly continuous 
mapping from [A\ U] to [F, W] [4, 15G5, p. 234]. Now let Q: (AG(X)^ Ua)-» 
(F, W) denote the uniform homomorphism satisfying Qot] = (o. Since (0 must be 
continuous as a mapping from (AG(X), T(U(!)) to F, the proof is complete. 

3.4. Remark / Free uniform semigroups can also be used to topologize the free 
group G(X) on a completely regular space X. Let U be an admissible uniformity 
on X, \X\ U'] be a uniformly isomorphic copy of [AT, L/], and (S(Xu AT'), Ws)be 
the free uniform semigroup on the disjoint union of [A\ U] and \X\ U'\. If 
V>: S(XuX')—> G(X) is the natural homomorphism, then V = 
{(xp x i/;)[ W]: We Ws) is a uniformity on G(X) having a subinvariant base. Thus 
(G(X), T(V)) is a topological group. In general, T(V) is too small to be the 
topology of the free topological group [11], even if U is the largest admissible 
structure on X. 
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3.5. Q u e s t i o n . For a uniform space [X, U], (S(X), T(US)) is known to be the 
free topological semigroup on the space [X, r(U)] 10, 4.2].Since (AG(X), UG) is 
a uniform quotient of (S(X)xS(X), Us), it is natural to ask if the free abelian 
topological group is a topological quotient of the direct product of the free 
topological semigroup with itself. The situation is complicated by the fact that the 
topology of a quotient uniformity need not be the quotient of the uniform topology 
[6, 5(a), p. 32]. 

4. A base for the neighborhood system of e. The identity element of AG(X) will 
be denoted by e or a — a for any a e S(X). In place of the nonzero elements 
g(ab, a) and g(a, ab) we will write b and — b respectively. If a = b or if (a, b) is a 
reduced pair, i. e., if a and b have no common letter, we will write a — b in place of 
g(a, b). The elements b and — b will be called positive and negative, respectively, 
and for the element a-* we will refer to a^as the positive part and b as the 
negative part. 

Let N(e) denote the neighborhood system of e relative to the topology T(UG). 

Since the collection {(g x g)[ V] : V e B2} is a base for the free uniformity UG (see 
the proof of 3.1), it determines a base for N(e). Associated with the entourage 
(g x g)[f[n, a]] is the following neighborhood of e: 

{a-b: g(a, b) = g(c, d) and (c, u), (d, u) e f[n, a] 
for some c, d, u e S(X)}. 

In order that a-b be an element of this set, the pair (a, b) must satisfy conditions 
involving words other than a and b. In this section we provide another base for 
N(e), where the condition for the membership of a - b in a given neighborhood (in 
the base) involves only a and P(b), the set of permutations of b. It will be helpful 
to first establish several additional properties of the sets/[rz, a] (f e E(U), n e N, 
a e A). The first of these follows directly from the definition of f[n, a]. 

4.1. If (a, ... am, b, ... bm) e f[n, a], then (aa(1) ... aa(m), ba(l) ... ba(m)) e f[n, a] 
for every permutation o of {I, ..., m}. 

4.2. If (ca, (cb)') e f[n, a] where (cb)' e P(cb), then (a, b') e f[n, a] for 
some b' e P(b). 

Proof. It will be sufficient to prove this for c a word of length one. Set u = ca 
and v = (cb)' and suppose v, = c. If / = 1, the result follows from 2.7. Assume /=£ 1. 

If m is the length of u and v, there exist r,, ..., rm e D such that ^ r, = 21 " and 
i 

/(«,-, Vj)^a(n), l^l^m. Letting a denote the permutation (1 , / ) of {I, ..., m}, 
we observe that 
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f(Uj, Va(n)=f(ui, V,)^f(Uj, Vj)+f(Ut, vx) 

^a(n) + a(r.) 
^a ( r /+ r . ) . 

Thus (u2 ... um, va(2) ... va(m)) e f[n, a]. 

4.3. Let (a, b) be a reduced pair in S(X)xS(X). If (s, t) e f[n, a] and 
g(s, t) = g(a, b), then (a, b') e f[n, a] for some b' e P(b). 

Proof. Since bs e P(at) and a and b have no common letters, either 
(/) s e P(a) and / e P(b) or (//) there exist words c and d in S(X) such that 
s e P(ca) and f e P(db). If (/) is true, the result becomes obvious. Suppose that 
(//) holds. Then bca e P(adb), hence c e P(d) and s e P(da). Using 4.1 and the 
symmetry of f[n,a], we conclude that (da, {db)') e f[n, a] for some 
(db)' e P(db). The result now follows from 4.2. 

For each / e E(U),- n e N and a e A set 

B(f,n, a) = {a-b: (a, b') ef[n,a] for some b' e P(b)} 

and let M be the collection of all such sets. 

4.4. Theorem. The collection M is a base for the neighborhood system of 
e e (AG(X), UG). 

Proof. Since B(f, n, a) cz {a - b : (e, a - b) e (g x g)[f[n, a]]}, we have only 
to show that each member of M is a neighborhood of e. Consider the set 
MeN(e), where M= {a-b: (e, a-b) e (g x g)[p[n + 1, a]]}. If a-beM, 
there exist words c, d and u in S(X) such that g(c, d) = g(a, b) and 
((c,d), (u, u)) ep[n + l, a]. But then (c, d) e f[n, a] (2.6) and, by 4.3, 
(a, b') e f[n, a] for some b' e P(b). Thus B(f, n, a) contains the neighborhood 
M. 

4.5. Remark. Recall that a and b' must be of equal length in order that (a, b') 
be in f[n, a]. Thus a condition necessary (but not sufficient) for a nonzero word 
a — b to be an element of B(f, n,a)\% that its positive and negative parts have an 
equal length. 

4.6. If [X, U] is a Hausdorff uniform space, then (AG(X), UG) is Hausdorff. 
Proof. Suppose a — b is a nonzero word in AG(X) and that a and b have the 

equal length m. Since a and b have no common letter, f(ax, £,)=£0, l^i^m, for 
some f e E(U). If a: D—• [0,1] represents the inclusion mapping and n e N 
satisfies V~n < {min/(a,, bt): / = 1 , ..., m}, then (a, b) & B(f, n, a). 

According to 3.1 the free uniformity UG is the image filter of LFS under the 
mapping gxg. Consequently each base for Us is carried by g x g onto a base for 
UG. In addition to B2 we will consider one other base for U%. 

Let A0 be the collection of all monotone increasing functions /?: D —> [0,1] such 
that p(r) = 0 if and only if r = 0. For / e E(U) and p e A0 define f[l9.0] as in §2 
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and set ftLft\ = {((a,bl (c\</)):(a,cl (/>, d) e /'(1, ft\). Let « ' 
[ft\Ji\:f eE(U) nnd ft e A}. 

4.7. The collection B2 is n base for Us. 
Proof. Given ft e A , a ' r-^r ft (r) is an element of A and u<ft. Therefore 

ft U a\cftl,ft\. It folio s that B2c LFS. Conversely, if a e A and // e N are 
given, define// by ft(r) = a(2 "r) for each r e D. Then /-[ 1, ft\ c= /"[//, a | , whence 
B2 generates a uniformity finer than Us. 

4.8. The collection M of all sets {a - b : (a, b') e f\ I, ft\ for some 
b' P(b)}(f e E(U), ft e A ) is a base for the neighborhood system of 
c e (AG(X\ [/,,) 

5 Properties equival nt to Fscreteness in (AG(X), U(;). For the remainder of 
this paper \X, U] will denote a Hausdorff uniform space. 

In this section it is shown that no sequence of words in (AG(X), U(i) whose 
lengths increase without bound can have a limit (Abels f 1) has shown this to be a 
property of the free topological group). Using this theorem we obtain some familiar 
results concerning the countability axioms and local compactness on the free 
(ahelian) topological group. 

The length of a word w in AG(X) will be denoted by \w\. 

5.1. Let {s(n)} be a sequence in (AG(X), U(;) such that n^\s(n)\< 
\s(n + 1)| for all n e N. Then there exists a neighborhood M of e for which 

s(n) I M for all n. 
Proof. According to 4.5 we may assume that for each n, \a(n)\ = \b(n)\, where 

a(n) and b(n) denote, respectively, the positive and negative parts of s(n). For 
n e N let mn indicate the length of \a(n)\, and let Y be the set of all letters 
appearing in the words s(n), i.e., let Y= {x: x = s(n)t for some n e N and 
I ^ / ^ | . y ( « ) | } . Since [A\ U] is Hausdorff and Y is countable, there exists an 

f e E(U) for which / (x , y)£0 for all distinct points x and y in Y. Setting 
e,„n =min {f(a(n)i, b(n),)): / , / = 1 mn), we observe that €,„n > 0 . Now select 
ft E A such that ft(2 k)<£,„n for the finitely many mn satisfying 

2 k ]<mn
l^2 \ 

Such a ft is easily shown to exist. Finally, set M= {a- b: (a, b') e f[ 1, ft] for some 

b' E P(b)} (4.8). If n e N and r„ ..., r,„n E D with 2 n = U then r,**m„l for 
i 

some j^m„. Thus if 

2 * ' < m „ ' s £ 2 *, 

p{r,)*£p{2 *)<£•„,„, whence 
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f(a(n)hb'(n ) , ) < / ? ( ' , ) 

for every permutation b'(n) of b(n). Consequently a(n)-b(n) I M. 

5.2. Theorem. Let {w(n)} be a sequence in (AG(X), U(l) for which 
[\w(n)\ : n e N) is unbounded in N. Then {w(n)} fails to converge. 

Proof. Let u be any element of AG(X) and define v: N—> AG(X) by 
v(n)=w(n)- u for all n. Then {|?J(AI)| : n e N) is unbounded in N and thus 
\v(n)} has a subsequence {s(n)} satisfying the hypothesis of 5.1. It follows that 
{v(n)} does not converge to e, hence {w(n)} does not converge to u. 

5.3. // \X, U\ is not discrete, then every neighborhood of e in (AG(X), U(l) 
contains a sequence {w(n)} for which {\w(n)\ : n e N} is strictly increasing. 

Proof. Consider the neighborhood B(f, m, a) e M (4.4) and let x be a 
nonisolated point in X. If for each n e N we select xn e X satisfying 

(Xf(xn,x)<a(2x '"-"), 

then (2nxn, 2nx) e f\m, a]. Setting w(n) = 2nxn -2"x, we observe that 
w(n) e B(f, m, a) for all n. 

The following theorem is an immediate consequence of 5.3 and 5.2. 

5.4. Theorem. If the uniform space [X, U] is Hausdorff, the following proper­
ties are equivalent in (AG(X), U(i): 

(/') discreteness 
(//) 1st countability 

(Hi) metri: ability 
(iv) local compactness. 

In particular, if (AG(X), U(i) is 2nd countable, it must be discrete. 

5.5. Let X be a completely regular Tx-space. In the free (abelian) topological 

group on X, the properties (/)—(iv) of 5.4 are equivalent. 
Proof. This result follows from 3.3 and the fact that each of these properties is 

preserved under open-continuous homomorphisms. 

The equivalence of (/), (/'/) and (///) in the free (abelian) topological group was 
established by G r a e v [5]. The equivalence of (/') and (iv) follows from a stronger 
result, which is due to D u d l e y [3, p. 589]. 
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B O O K REVIEWS 

J. F a r k a s and M. F a r k a s : INTRODUCTION TO LINEAR ALGEBRA. Akadémiai Kiado, 
Budapest 1975.205 stráň. 

V poslednom čase sa veía pozornosti věnuje metodike vyučovania matematiky. Je iste správné, ak je 
úsilie naučiť študenta myslieť prostredníctvom rnoderných matematických pojmov a metod. Velakrat 
však študenti ťažko prijímajú modernu matematiku, lebo im chyba příprava, ktorá by im umožnila chápat' 
moderny matematický jazyk prirodzene a nielen ako systém axióm a pod. Autoři tejto knihy sa pokusili 
napísať knihu, ktorá by umožnila študentom prvých semestrov vysokých škol připravit' sa na studium 
modernej algebry a myslím, že sa im to aj podařilo. 

Kniha je rozdělená do šiestich kapitol: 
V kapitole I sú vysvětlené základy vektorovej algebry a na konci tejto kapitoly sú uvedené příklady 

aplikácie vektorov v analytickej geometrii a v mechanike. 
Kapitola II je věnovaná komplexným číslam. 
V kapitole III sú vysvětlené základy maticovej algebry a teorie determinantov. 
Kapitola IV je věnovaná systémom lineárnych algebraických rovnic Ako příklad aplikácie teorie 

systémov algebraických rovnic je uvedený základný problém lineárneho programovania. 
V kapitole V sú uvedené definície grupy, okruhu, tělesa, vektorového priestoru nad telesom, bázy 

a transformácie bázy. 
V kapitole VI sú vysvětlené základy teorie lineárnych operátorov a kvadratických foriem. 
Na konci každej kapitoly sú cvičenia. Odpovede a návody na riešenie týchto cvičení sú uvedené na 

konci knihy. 
Kniha bude cennou pomóckou pře poslucháčov matematiky na vysokých školách univerzitneho aj 

technického směru. 

Milan Medvěd, Bratislava 
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