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ON THE PRODUCT TOPOLOGY ASSOCIATED
WITH SEMI-CLOSED SETS

NANDA DULAL BENERJEE—CHHANDA BANDYOPADHYAY

Introduction

In 1963 N. Levine introduced the idea of semi-open sets in a topological space.
Later S. G. Crossley and S. K. Hildebrand in their paper [3] introduced the
idea of semiclosed sets and semi-closure of a set in a topological space (X, 7). In
the same pape r they proved the existence of a minimal set D, (with respect to set
inclusion) for each set A = X such that scl (AuD,uB)=AuD,uscl B for all
subsets B« X. Also by defining ¢: P(X)—AX) by the rule: cA = AuD, for all
A € P(X) where P(X) denotes the class of all subsets of X, it has been shown that
c is a Kuratowski closure operator on X. The topology induced by the Kuratowski
closure operator ¢ on X is denoted by A 7). In [3] it has been shown that F(J) is
finer than J on X. The characterization of the set D, for any set A = R, where R
denotes the set of reals with usual topology can be found in [4]. This characteriza-
tion has also been extended to a first countable topological space by C.
Bandyapadhyay in her Ph. D. Thesis [1].

In this paper we consider the spaces (X,J) to be first countable. In [2] we have
proved that the class of realvalued continuous functions on (X, ) and the class of
real-valued continuous functions on (X, 7)) are identical. In this paper, taking
(Y, %) to be a regular space, we have proved that the classes of continuous
functions from (X, J) to (Y, %) and from (X, A J)) to (Y, %) are identical. Now
we consider a finite number of spaces {(Xi, 7;): i=1, 2, ..., n}. Hence there are

associated the two product topologies for the Cartesian product [] Xi: One is
i=1

F(T1X T%...x J,) and the other is F(T) X F(T>) X ...X F(T,). Questions
naturally arise about the usual :partial order relation viz, the relation of inclusion,
between these two topologies. It has been shown that F(J,)X F(J2)X...X
F(T) = F(T1x T, X ...xT,). An example has been cited to show that there are .
spaces where the inclusion is proper. As regards the classes of continuous functions,

it has been shown that € ((12[ X, "Zl,-), (Y, "Zl)) for j=1, 2, 3 are identical, where
i=1.
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%=1 %=[] F(7) and %:9;:(1“[ 97) and where 6 (X, 7), (Y, %))

i=1 i=1

denotes the class of continuous functions from (X, 7) to (Y, %).
Definition 1. Let (X, J) be a space and A c X. Then A is said to be semi-open

if there exists an open set O in X such that O c A c O, where () denotes the T
— closure [5].

Definition 2. Let (X, J) be a space and A, Bc X. Then A is semi-closed iff
X — A is semi-open and the semi-closure of B denoted by scl B is the intersection
of all semi-closed sets of X containing B [3].

Theorem 1. For a topological space (X, J) a subset G c X belongs to #(J) iff

for each x € Gi there is an J — open neighbourhood N, of x such that (G_°) SN,
where ( )° denotes the J — interior [2].

Theorem 2. Every real-valued continuous function on (X, %(J)) is continuous
on (X,9J) [2].

Theorem 2. Every real-valued continuous function on (X, %(9)) is continuous
on (X, T) [2].

Theorem 3. Let (Y, %) be a regular space. f: (X, #(9))— (Y, %) is continuous
iff f: (X, T)—(Y, %) is continuous.

Proof. Sufficiency. Since 7 < F(J) it follows immediately that f: (X, #(9))—
(Y, %) is continuous whenever f: (X, 7)—(Y, %) is continuous.

Necessity. The proof follows by using the lines of proof of Theorem 1.2 [2] where
we have only utilized the regularity property of the set of reals with the usual
topology.

Example 1. Let X={a,b,c}, T=(0, X, {a}}. By Theorem 1, #(J)=
{ﬂ’ X, {a}’ {a’ C}’ {a’b}} )

Let Y={x, y, z}, %={90, Y, {x}} Clearly (Y, %) is not regular. Let us define
f: (X, F(T)—>(Y, % By the rule f(a)=f(b)=x, f(c)=y. We see that
f: (X, F(9)—(Y, %) is continuous but f: (X, T)— (Y, %) is not continuous.

Remark 1. By virtue of the above example 1 we see that the condition (Y, %)
to be regular in Theorem 3 is not redundant. Now we extend our discussion to
product spaces.

Theorem 4. Let {(X;, 7:): i=1,2} be two spaces. Then F(T,) X F(T>)c
F(T1 %X T>).

Proof. Take G € #(T,) X #(T>). Let (x, y) € G. Thus there are (J;)-open U
of x and %(J,)-open V of y such that (x, y)e UX V< G. Since Ue F(7,) and
Ve F(J,) it follows from Theorem 1 that there are a J;-open neighbourhood N,
of x and a ,-open neighbourhood N, of y such that 7; —Int U is J,-everywhere

230



dense in N, and 9, —Int Vis J,-everywhere dense in N,. Clearly (x, y) € N, X N,.
We claim that (7, X ;) —Int G is (J; X I,)-everywhere dense in N, X N,. Choose
W to be any non-empty open subset in N, X N,. So there are non-empty Re 7,
and S € 7, such that RXx Sc Wc N, X N,. By Theorem 1 it follows that Rn(J,
—Int U)#@ and SNn(J,—Int V)# 0. Choose EeRn(7,—IntU) and
neSN(J;—Int V). Thus, (§,n)e(T,:—Int U)x(T,—Int V) = (I,XT,)—
Int(UxV) < (7:x%)—IntG. Hence (&, n)eW and Wn(7,xT)
—Int G#@. Thus according to Theorem 1 it follows that G € #(T; X T>).

Corollary 1. For a family of spaces {(Xi,%): i=1,2, ..., n} we have ﬁ Jic
. i=1

[1%(T)=%F (H 37.) The converse of the Theorem 4 is not necessarily true.
i=1 i=1

Example 2. Let X,={a,b}, 7:={0, X,,{a}} and X;={x,y}, T.=
{ﬂ, Xz, {X}} Now J; X gZ:[ﬂ’ {(a1 x), (ba X), (a1 )’), (b9 .V)}’ {(a’ x)’ (a’ y)}’
{(a, x), (b, x)}, {(a, x)}, {(a, x), (a, y), (b, x)}].

By Theorem 1, we have #(7,) = {0, Xi, {a}} and F(J.)={0, X;, {x}}. Clearly
Ti X T2=F(T1) X F(T2). Now, F(T1 X T2)=[0, {(a, x), (b, x), (a, y), (b, y)},
{(a, x), (a, y), (b, x)}, {(a, x), (a, )}, {(a, x), (b, x)}, {(a, x), (b, y)}, {a, x)},
{(a, x), (a, y), (b, )}, {(a, x), (b, x), (b, y)}].

Hence, 9"(9',))( g(gz)gg(g-l X g.z)

Theorem 5. Let {(X;, 7}): i=1,2, ..., n} be a family of spaces and (Y, %) be
a regular space. Then the following statements are equivalent.

@ f: (]:! X, l:[ g})—»(Y, ) is continuous.
(ii) F: (]2[ X, l:I 9(9}))—»(Y, ) is continuous.
Gi) f: ([T X, (H F)~(Y, %) is continuous.

Proof. (i) implies (ii) and (ii) implies (iii) from Corollary 1. Since ( 1% 1] :ur)

i=1 i=1
satisfies the first axiom of countability, it follows from Theorem 3 that (iii) implies
(i). This completes the proof of the theorem.
We state below the well-known result.

Lemma 1. A topological space X is disconnected iff there exists a continuous
mapping of X onto the discrete two-point space {0, 1} [6 p. 144].
The following theorem is an easy consequence of Lemma 1 and Theorem 5.
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Theorem 6. Let {(X;, 7}): i=1,2,...,n} be a family of spaces. Then the
following statements are equivalent.

)] (ﬁ X, f[ 9;) is connected.
i=1

i=1

(ii) (I:I X, ﬁ 3"(9})) is connected.

(iii) (fl X, F (ﬁ ,)) is connected.

i=1 i=1
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INDIA

O TOTIOJOIUU MPOU3BENEHUS CBI3AHHOM C I1OJ1Y3AMKHYTBIMU
MHOXECTBAMH

Nanda Dulal Banerjee—Chhanda Bandyopadhyay

PesoMe

B paborte paccMaTpHBaeTCcst KOHEYHOE CEMECTBO TOMOJIOTHYECKUX IPOCTPAHCTB YAOBIETBOPSIOLLIHX
nepBoii akcHoMe cyeTHocTH. KpoMe Tomonoruu mpomsBegeHHA Ha A€KapTOBOM MPOM3BEIE€HHH ITHX
MPOCTPAHCTB TOXE M3y4alOTcs ABE APYrMX TOMONOTHA COOTBETCTBYIOIUMX MONY3aMKHYTBIM MHOXeC-
TBaM. [Toka3aHo, YTO ITH TPH TONOJNOTHH Pa3THYHBIE, HO CEMENCTBA BCEX HENMPEPBIBHBIX 0TOGPaXeHHH
M3 KaXx[goro ¢ 3THX MPOCTPAHCTB B Ji06G0e peryiasipHoe MPOCTPaHCTBO, COBMafaloT. [laHbI TaKkxke
COOTHOLIEHHA MEXNY CBA3HOCTbIO 3THX MPOCTPAHCTB.
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