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MILD LAW OF LARGE NUMBERS 

AND ITS CONSEQUENCES 

JAROSLAV MOHAPL 

(Communicated by Milan Medved') 

ABSTRACT. Let (K, d) be a metric space and let T : X —> X be a continuous 
n 

mapping. If lim — V] foTk exists and defines a uniformly continuous function 
n^°° n fc=i 

on X whenever / is uniformly continuous, we say tha t T satisfies the Mild Law 
of Large Numbers (MLLN). Sufficient conditions under which MLLN holds 
are given. Ergodic theorems for deterministic and stochastic dynamical systems 
with trajectories taking values in X following from MLLN are derived. For 
stochastic systems existence of invariant measures is also discussed. 

1. Introduction 

The results of this paper, concern ergodic theorems and laws of large num­
bers for deterministic as well as for stochastic dynamical systems. They will be 
formulated as a consequence of what we can call a mild law of large numbers 
(MLLN). Although the nature of this law is non-probabilistic, it yields an inter­
esting insight into the structure of stochastic systems and of the classical strong 
law of large numbers (SLLN). The most important result guarantees a possi­
bility to decompose the phase space into disjoint sets on which the system has a 
regular ergodic behaving provided the appropriate invariant a-smooth measures 
supported by these sets exist. The reader interested in the application of this 
result is referred to [7], where the existence of such a decomposition is the basic 
hypothesis (cf. [8, Ch. 14]). 

In order to present the results we introduce the notation used throughout 
the paper: (X, d) - a separable metric space, C(X) - the Banach space of all 
real bounded continuous functions on (X, d) with the supremum norm, Ud(X) 
and Ld(X) - the subspaces of all uniformly continuous and Lipschitz functions 
from C(X), respectively, B(X) - the algebra of Baire sets that is generated by 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28D05, 60F05, 60J05, 58F11. 
K e y w o r d s : Contractive map, Invariant measure, Markov process, Law of large numbers. 
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the open subsets of X, M(X) - the class of all Baire measures on B(X) with 
finite variation representing the norm dual of C(X), Ma(X) - the subspace of 
all (T-smooth measures in M(X), w - the weak topology of the duality pair 
(Mcr(X), C(X)) , (T*) - a flow of continuous mappings from X into X . 

We will prefer to write T instead T 1 and I (identity) for T ° . Sometimes 
instead (X, d), x, y, • • • G X symbols like (5, g), s, s • • • G 5 will be used and 
then we will write C(S), UQ(S), LQ(S) etc. As to the used terminology the 
reader is referred to [1, 4, 15, 19]. 

2. MLLN for contractive mappings 

In this section T will denote a contractive map. We call T contractive pro­
vided d(T n x, T n y) < CTd(x,y) for a finite constant c r that is common for 
all x, y G -K and all natural numbers n . In the case when CT < 1, the well-
known assertion [5, Ch. 2, §4] states that there is just one x0 G X such that 
l i m T n x = x0 for each x G X and, consequently, l i m / o Tnx = / x 0 for each 
/ G C(X). Obviously, x0 is the fixed point for T , i.e. Tx 0 = x0 , and the rela-

1 n 

tion l i m / o T n x = / x 0 is stronger then the relation lim — ^2 f ° Tk% = / ^o > 
71 fc=i 

the SLLN. The point (Dirac) measure 6Xo with mass concentrated in x0 is the 
unique invariant ergodic measure for T , that is, 6XoT~1 = 6Xo and 6Xo J = 0 or 
1 for each J G B(X) with the property T J = J . These facts remain to be true 

1 n 

if we replace (Tn) by any more general flow (T*) and the operators — ]T by 
n fc=i 

1 * 
—- J ds. The situation 1 < CT < oo is rather complicated as can be shown by 
t o 

numerous examples, but 

THEOREM 2 . 1 . If T is a contractive map of (X,d) into (X,d). then for each 

f G Ud(X) [— J2 f oTk) is a Cauchy sequence in Ud(X). If in addition T 
V n fc=i ' 

belongs to a flow (Tl), then [ — J f o Ts ds) is also a Cauchy sequence in 
\ t 0 / 

Ud(X). 

The assertion of Theorem 2.1 will be called the MLLN and, as it will be 
shown later, it can hold also for non-contractive systems. 

Provided the MLLN holds, the map / - * / * , where / G Ud(X) and /* = 
1 n 

lim — Y2 f °Tk defines a bounded linear functional from Ud(X) into Ud(X). 
n k=i 

Using the Riesz representation theorem we can to each x G X relate a measure 
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6* e M(X) (not necessarily Dirac or cr-smooth) such that f*x = <5*/ for all 
/ e Ud(X) (we write mf instead J fx m(dx) for m G M(X) and measurable 

/ ) • 

THEOREM 2.2. The relation = defined for each couple x,y G X by x = y if 
and only if 6* = 6* is an equivalence. If £ is the class of equivalences defined 
by =. then the sets in £ are measurable and invariant. 

P r o o f . / * G Ud(X) whenever / G Ud(X) and therefore {x : f*x = pf, 
x e X} is a closed set for each p G M(X) (perhaps empty). Therefore 
{x : 6* = p , x e X} = D ix : f*x = Pf i x ^ X} 1S a closed, obvi-

feud(X) 
ously invariant, set. 

The class £ forms the ergodic decomposition of X. Its main feature is that 
for each / G Ud(X) the restriction of / * to / G £ is a constant function. 

THEOREM 2.3 . If p e Ma(X) and I = {x : 6* = p, x e X} = 0 , then the 
restriction of p to 13(1) is an ergodic invariant measure for Ti, Ti\ I —» I, 
where Tj is the restriction of T to I. 

P r o o f . If p e Ma(X), and if the MLLN holds, then by Alexandrov's 
1 n 

theorem [16, Ch. 7] l imsup— 5Z XF ° Tkx < pF for each x G X and each 
n k=i 

closed set F C I. But then, using the invariantness of p and Fatou's lemma, 
we obtain that 

n - ~ n 

pF = lim - ^ / XF ° -Tfcx p (dx) < / limsup - ^ X F ° Tkx p (dx) 
U k=i \ j U k=l 

<pFpI<(pI)\ 

and as p is a regular measure, pi = sup{pF : F C 7 , F closed} < (p / ) 2 

which can hold if and only if pi = 0, or pi = 1 (0 < p < 1). 

Since the procedure remains to be valid for any invariant subset of 7 , the 
ergodicity of p is proved. 

Theorems 2.1-2.3 state, that if for each x e X the sequence ( — Yl t>xT~k) 
^ n k=i J 

C Ma(X) is relatively compact in (Ma(X),w) then X can be decomposed 
into in some sense maximal invariant subsets on which the restriction of T has 
a unique ergodic invariant measure. 

Note that here and latter we will use the important conjunction XE ° Tx = 

6XT~XE that holds for each x e X emd E e B(X). In this notation — £ 6XT~X 
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is what M e y n in [10] calls the occupation probability or what can be called 
the empirical probability. The MLLN states that these empirical probabili­
ties always converge in some sense to a possibly finitely additive measure with 
p 0 = 0, pX = 1 and 0 < p < 1. Value of this assertion can be well checked 
if we realize that it may be 6* 7-= 6* if x 7-- y (as an example take T = I). 
Immediately from [20, Ch. 13, Thm. 2] and from the MLLN we can obtain this 
version of Birkhoff 's ergodic theorem (cf. with [10, Proposition 4.2]). 

THEOREM 2.4. If T is a contractive map from (X) d) into (X, d), then the 
following conditions are equivalent: 

i) there exists an invariant measure p E M(X) for T such that for each 

( 1 n \ 

— J2 f ° Tkx) is a Cauchy sequence for 
n k=i ' 

p almost all x E X; 

( 1 n \ 

— J2 6xT~k J is relatively compact 
n k=l ' 

in (Ma(X), C(X)). 
Now it is time to prove the basic Theorem 2.1. For this purpose we introduce 

the sets L(c, d) that are defined by 
L(c,d) = { / : \fx-fy\<cd(x,y) for all x,y e X and | | / | | < c] . 

Their specific feature is that they are sequentially compact in the topology of 
pointwise convergence on X . 

P r o o f of T h e o r e m 2.1. Each separable metric space X is due to the 
known Urysohn's theorem [4, Ch. 4, Thm. 16] homeomorphic with a dense sub­
set X0 of a compact metric space (X,d). The homeomorphism H of X0 onto 
X defines a metric dc on X by the relation dc(x,y) = d(H~1x, H~xy). A con­
tinuous map from a metric compact into a metric space is uniformly continuous, 
hence, 

V 3 V dc(x,y)<6 ^ d(x,y)<e. (*) 
e>0 6>0 x,y£X 

This follows from the equations dc(x,y) = d(H~1x,H~1y) = d(x,y) and 
d(Hx, Hy) = d(x, y) provided we put x = Hx and y = Hy. 

Let / E L( l , d). Then ( — J2 f°Tk) C L(cT, d) has a pointwise convergent 
^ n k=i ' 

subsequence, denoted for simplicity again ( — ^ f °Th J , with a limit function 
v n k=i ' 

/ * E L(CT, d). Let e > 0 be a given number and 6 > 0 be the number from 
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(*). To 6 we can find a finite sequence (xp) C X such that each x has any 

xp lying in the circle {y : dc(x, y) < <5, y G X } . If we choose no so that 

1 n I 
— !C / ° -^fcxp ~~ / * X P < e ft*1 aH X P £ (XP) a n d n greater than some no, 

fc=i 
then 

n n 

\j[ S / ° Tkx " /*x| - C т d ( x ' X P ) + І7Г 5 ľ / ° *̂** " / * X P | + cтd(xP, x), 
fc=l fc=l 

and the right-hand expression is by (*) less than 2CTS + e for all n > no if xp 

is sufficiently near to x. This shows that our subsequence converges uniformly 
to / * . 

If we define the operator UT on Ud(X) by Ur/ = / ° -f\ then UT is linear 
and its operator norm is less or equal to one, hence, by [20, Ch. 8] 1Z(I — UT)CI = 

/ : lim — ^2 f °Tk = 0, / £ Ud(X) > and using the previous proved result 
71 fc=i J 

( 1 n \ 

— zC f°Tk ) is a Cauchy sequence for each / G L(l,d) 
n fc=i ^ 

(see[20, Ch. 8]). 
Since each / G Ld(X) is a multiple of a function from L(l,d) this assertion 

remains to be true for all / G Ld(X). But Ld(X) is norm dense in Ud(X) and 
this completes the first part of the proof. 

In the continuous time case we can use a known trick. We fix some x G X 
l 

and put mxE = f \E ° Tsx ds. For each / G Ud(X) 
o 
n 1 

l i m i IfoT8xds = lim±J2 ffoTs+kxds 

n X 

= [limilbfoTky [ 6*T~s(dy)ds • 
Applying the first part of this theorem and the bounded convergence theorem 

l 
we obtain that the last expression is equal to J f*y mx(dy) = J f*Tsx ds. By 

o 
the way, mx is non-negative and mxX = 1, hence 

\[iit(foTky-ry)m*(dy)\-\\iitf°Tk-f* 
fc=i fc=i 
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Now it is clear that ( — / / o Ts ds J is a Cauchy sequence in Ud(X). 

R e m a r k 2.5. For each / G Ud(X) f* is a constant on each I G £ and 
TI = I. Therefore for each x G / , / G £ , /* O T 5 X = f*x whatever is s. So we 

can conclude that (— £ / o Tfc) and ( | / / o T 5 ds ] have the same limit 

for each / G Ud(X). 

Now we can widely generalize the results from [20, Ch. 13, §4]. 

EXAMPLE 2.6. Let (S,Q) be a locally compact separable metric space. Let 
Co(S) be the Banach subspace of all functions from C(S) that vanish at infinity 
and let (Tl) be a flow of continuous mappings from Co(S) into Co(S) with T 
contractive. Then to each s G S there exists a measure 6* G Mff(S) such that 

t 

lim sup U- lTTx(s)di- í x(s) 6*(dš) 
xeCo(s) \ t J J 

o s 

= o. 

The space S can be decomposed into a class X of disjoint measurable subsets 
so that to each I G I except at most one we can relate a probability 717 G M^(S) 
with the property jTlx(s) 7T/(ds) = Jx(s) 7Tj(ds) for each x G Cn(S) and 
t > 0 and I is the maximal set on which J x(s) 6*(ds) is constant for all 

s 
x G C0(S). 

P r o o f . For each s G S 63 G Ma(S) and by [19, Ch. 3] Ma(S) can be 
identified with X*, the norm dual of X. As X* C Ud(X), where d(x, y) = 
sup{|x(s) — y(s)\, s G 5 } , the first assertion is now a consequence of Theo­
rem 2.1. 

The ergodic decomposition I of S can be defined like in Theorem 2.3 by 
means of the equivalence = defined for each s, u G 5 by s = u if and only 
if 6* = 6* . As to the measurability of J G I note that if (xp) is a countable 

{ 1 n "\ 

x* : x* = lim — ^Z Tkxp, xp G (xp) \ is 
n k=l J 

dense in {x* : x* = lim— ^Tkx, x G C0(S) \, hence \s : x*(s) = 
^ n k=i J l 

Jx(s) 7rfj(ds), s£S, xex\=f){s: x*p(s) = Jxp(s) ^(ds), s e s \ , 
s } p l s J 

7Tj = c/7ij for all / G I . 
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Generally, 1 is not contained in Co (S) and therefore we cannot exclude the 
situation 6* = 0 like in Theorem 2.3. That is why for one J G I 717 ought not 
exist. 

The just presented example can be extended to metric spaces (S, g) without 
the local compactness property using Ud(S) and a flow (Tl) of mappings from 
Ud(S) into Ud(S) with T contractive, provided Ud(S) is separable. 

Let us suppose for a moment that Theorem 2.1 can be generalized to non-
separable metric spaces. Then for each metric space (S, g), X = C(S) and 
Tx(s) = J x(s) P(s,ds), where P is a Feller transition probability, 

s 
1 n 

lim— J2 Jx(s) Pk(s,ds) for each x G X and s G 5 . Since (Ma(S),w) 
71 k=i s 

is sequentially complete [19, Ch. 2, Thm. 6], there is a probability - G MG(S) 
such that J P(s, B) 7r(ds) = TTB for all B G B(X). It is easy to give an example 
of S and P(s, B) with Feller property for which ir does not exist. This event 
can be explained by 

THEOREM 2.7. / / (Tl) is a flow of mappings from (X,d) into (X,d) with T 
contractive, then for each m G Ma(X) the following two conditions are equiva­
lent: 

iii) I -7- J mT~s ds J is a Cauchy sequence in (Mff(X),w) . 

i v ) ( — -C rnT~k J is relatively compact in (Ma(X),w) . 

P r o o f . The relation iii) => iv) is a consequence of Remark 2.5. Let 

M = (— Yl rnT~k) . By the assumption M is relatively compact in 

(M(T(X), w) . The weak topology of the duality pair (Ma(X), Ud(X)) (denoted, 
say, w') is coarser than w, but it is again a Hausdorff topology, hence w 
and wf agree on M [4, Ch. 5, Thm. 8], and (M, w1) is relatively compact 
in (Ma(X),Ud(X)) with wf. Now it suffices to apply Theorem 2.1. 

R e m a r k 2.8. Theorem 2.7, iv) ==> iii), can be proved without the sep­
arability of (X,d) and Theorem 2.1 provided X is complete and m G Mt(X), 
where Mt(X) is the space of all tight measures on B(X) [19, Ch. 1] considered 
in the w topology induced from M(T(X). We can define on Mt(X) a norm 
|| • || by the relation ||m|| = sup{ |m/ | : / G L ( l , d ) } . This metric defines in 
Mt(X) the same convergent sequences like w and the norm dual of Mt(X), 
|| * jj can be identified with C(X) (m G Mt(X) has a separable support and 
therefore it can be written as a iu limit of a sequence of measures of the type 
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X) ai$xi; therefore each continuous linear functional L on Mt(X) has the prop-
1 = 1 

erty L(m) = JL(8X) m(dx)). 

Now we can apply the result from [20, Ch. 8, §3] to the linear operator that 
relates to m G Mt(X) the measure raT-1 G Mt(X). 

We conclude this section by the question whether the fixed point theorem 
that holds for contractive mappings with CT < 1 has any extension to CT > 1. 

PROPOSITION 2.9. Let (X,d) be a real normed space with d(x,y) = \\x — y\\ 
for x, y G X and let T be a contractive map from (X, d) into (X, d). If to 
given x G X there exists XQ G X such that for some subsequence (n*) C N 

v) l i m - L g | | r f c . r - x o | | = 0 , 
U* k=l 

then #0 is a fixed point for T. 

P r o o f . If v) holds, then lim — £ / o Tkx = fx0 for each / G Ld(X). 
n 

n k=l 

Consequently / o TXQ = fxo for each / G Ld(X), specially for each continuous 
linear functional on X, and we can conclude that TXQ = XQ . 

( 1 n \ 

— \p TfcxJ is 
relatively compact in X implies v) remains to be an open problem and its answer 
can show an interesting relation between the above developed theory and the 
Schauder fixed point theorem [1, Ch. 3]. 

3 . SLLN in genera l s tochas t i c s y s t e m s 

The following theorem is based on a similar idea like Example 2.6. 

THEOREM 3 .1 . Let T be a homeomorphism of X onto X. Then X can be 
equipped by a metric d such that for each x G X and f G Ud(X) 

I — zC / ° Tkx\ is a Cauchy sequence. If T belongs to a flow (Tl), then ft 
v n k=i ' 

each x G X and f G Ud(X) l-r J f o Tsx ds j is a Cauchy sequence. 

P r o o f . Let X, Xo, d and H have the same meaning like in the proof 
of Theorem 2.1 and let d(x,y) = d(H~1x,H~1y) for all x,y G X. The homeo­
morphism H defines an isometric isomorphism between C(X) and Ud(X) and 
the map To = H-1 oT o H defines a homeomorphism of Xo onto Xo . If the& 
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homeomorphism T arises by the continuous extension of T 0 from X0 to X, 
then the relation / —• / oT defines a contractive map from C( X) into C( X). 
Since C( X) is now separable in the supremum norm the MLLN holds and 

( i n __ k_\ _ — 

— ~2 f °T x) * s a Cauchy sequence for each x G X and / G C( X). Be-
71 k=i ' _ 

cause of the homeomorphism between Ud(X) and C(X) we can consider the 
first assertion proved. The second one can be verified by the same considerations 
like in the proof of Theorem 2.1. Hence d is the desired metric. 

The assertion of Theorem 3.1 will be called the SLLN. This election prefers 
more the practical and historical reasons then the logical; MLLN asserts more 
than SLLN. 
COROLLARY 3.2. Let X be a real separable Banach space with a biorthogonal 
Schauder basis (e*) C X, (e'k) c X* and T be a map from X into X that 
satisfies the SLLN. 

II °° II 
If for given x G X sup||Tn | | < oo and lim sup ~2 (Tnx,efc)e'J = 0, p—oo n 

n 
fc=l+p 

then 6* G Ma(X) and ( — _ ] 6XT k) is a Cauchy sequence in (Ma(X),w) . 
\ n *=i ' 

If 6* is concentrated in a point xn, then xn is a fixed point for T. 

P r o o f . Under the given assumptions (— _ ] 6xT~kJ is relatively compact 

in (Ma(X), w) [18, Ch. 1, Sec. 9]. On M+(X) w agrees with the weak topology 
of the pair (Ma(X), Ud(X)) . Integrating in the SLLN we can derive the first 
assertion. As to the second see the proof of Proposition 2.9. 

A homeomorphism T of X onto X is called uniquely ergodic if there exists 
just one measure m* G M+(X) such that ra*T_1 = m* and m*X = 1. 

As it is well known, if X is compact and if T is a uniquely ergodic home­
omorphism of X onto X, then [15, Ch. 1, Thm. 1], the MLLN holds, and, 
identifying X and T with those in the proof of Theorem 3.1, we can derive 

COROLLARY 3.3. If T is a uniquely ergodic homeomorphism of (X, d) onto 
(X, d), then the MLLN holds. 

Note that if T is uniquely ergodic, then T is uniquely ergodic because each 
m G M(X) can be written as m = mH for some m G MG(X) and the 
correspondence between m and m is one to one. 

SLLN, like MLLN can be used for defining of an ergodic decomposition £ 
of X. If I G £, then T restricted to I is uniquely ergodic, hence, we can use 
Corollary 3.3 for strengthening of the SLLN 
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COROLLARY 3.4. Let T be a homeomorphism of (X, d) onto (X, d), let £ 
be the ergodic decomposition of X and let Tj, I G £, be the restriction of T 
to I. Then Ti satisfies the MLLN. 

THEOREM 3.3. Let (Tl) be a flow of continuous mappings from (X,d) into 
(X,d) that satisfies the MLLN. If m G M+(X), then these two conditions are 
equivalent: 

vi) I — fmT~sE ds J is a Cauchy sequence for each E G B(X). 

vii) I — f rnT~s ds J is uniformly a-smooth. 

P r o o f . We will present only the more complicated part of the proof. The 

( 1 n \ 

— ~~ mT~k J in 
71 k=i ' 

(Ma(X),w) . By Theorem 2.7, that holds for each T satisfying the MLLN, 

(— ~2 mT~k) is a Cauchy sequence in (M(T(X),w) . Using the uniform 
<r-smoothness and [12, Thm. 1.8] we can prove that I— ~2 mT~kEj is a 

Cauchy sequence for each E G B(X). If we have to do with a continuous time 
flow, then it suffices to apply the just proved result to the measure 

l 
m = f mT~s ds. 

o 

THEOREM 3.4. Let T be a homeomorphism of (X, d) onto (X, d). Then the 
condition vii) is equivalent to 

viii) there is m* G M+(X) such that 

lim var íj ímT-sds-m*\ = 0 . 

P r o o f . If T is a homeomorphism and vii) holds for the given m G M+(X), 

( 1 n \ 

—, ~2 rnT~kE\ is a Cauchy sequence for each 
n k=i ' 

E G B( X) and it defines a measure m* G M+(X). Let us suppose for a moment 
that /// and m* are defined on a cr-algebra, this can be always achieved. We 
will show that mT~n are absolutely continuous with respect to m* . 
286 
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Since T is a homeomorphism, the sets TnA are measurable provided A is 
oo 

measurable and A* = (J TnA is a T invariant set. Therefore mA* = m*A* 
n=—oo 

oo oo 

and if mA > 0, then m*A > 0 (otherwise 0 < mA* £ m*TnA= ]T m*A = 0 
n== — oo fc=—oo 

- a contradiction). 

Now we can again employ the one to one property of T and show that mT-n 

is absolutely continuous with respect to m*T-n for each n and 
dmT-n/dm*T-n = / o T " , where / = dm/dm* [16, Ch. 6, Thm. 48.7]. 

1 n 

From the proved results we can conclude that lim — ~2 f f ° T-kx m*(dx) = 
n fe=l E 

fm*(dx) which is equivalent to the weak convergence of the sequence 
E 

(— £ / ° T~k) t o 1 i n Ll(X,m*). The relation / -> / o T"fc defines a 
v n fc=i ' 

bounded linear operator from Lx(X,m*) into L^Xjm*) , hence by [20, Ch. 8] 
1 n 

— E / ° -^~fc converges to 1 in LX(X, m*). If the flow is discrete time, then 
n fc=i 

the proof follows from the relation 

n M n 
sup H^2mT"kE^rn*E\^ /\-k^2foT~kx-'1 m*(^)-

£ ? € 6 ( X ) n
 fc=1 / n

 fc=1 

For continuous time flows viii) is a consequence of the last relation applied to 
l 

m = fmT~9ds. 
o 

Let S be a separable metric space and il = f [ S be the infinite Carte-
nez 

sian product of S endowed with the product topology. As known, Q is again 
a separable metric space and the map T , denoting now the Bernoulli shift, 
(-*>n)n€Z —• (k>n+i)nez- is a homeomorphism of Q. Due to Theorem 3.1 there 
exists a metric d on Q such that MLLN holds for all / € Ud(tt) and u) Gil. 
The construction of d allows to state, that the restriction (u;n)n€z —• (^n)nez+ 
is a uniformly continuous map, provided f j 5 is again considered in the prod-

nGZ+ 

uct topology. This allows to state: 

LEMMA 3.5. / / S is a separable metric space, then on fl = f j S we can 
nez+ 

define a metric d such that the Bernoulli shift relating to each (o;n)nez+ the 
element (t->n+i)n€Z+ satisfies the MLLN. 
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In the rest of this section we are going to assume that S and Ct are the spaces 
from Lemma 3.5. The projection q defined by the relation (uin)nez+ —• wo is 
a uniformly continuous map from fi onto S. The mappings £n > defined by the 
equations £n = q o Tn, where T is the Bernoulli shift and n G Z + , is called 
the canonical stochastic process. From this definition and arguments above we 
obtain: 

THEOREM 3.6. If (£n)nez+ is the canonical stochastic process with values in 
S, then S can be equipped with a metric g such that for each x G Ue(S) and 

UJ G fi ( — X) x ° €k(v)) is <*> Cauchy sequence. 
^ n k=i ' 

This non-probabilistic version of the SLLN allows to prove the main ergodic 
theorems arising in probability theory. 

Let Bo C B(Q) be the smallest algebra to which £o ( = q) is measurable 
and P be a probability measure on B(Q). Due to [16, Ch. 6] P determines 
on S x B(Q) a conditional probability Ps with properties Es(x o £n | Bo) = 
fxo£n(uj) P s ( d J a.s. Pfa1 for each x G C(S), and fP.EP^'^ds) = PEPi 
n B 

^U"1JB for each B G -3(5), and E G B(tt). In practice usually only Ps is 
known and there is a question whether there exists a measure n G M(T(S) such 

that if we put P^Q1 = K, then P = f Ps7r(ds) becomes an ergodic invariant 
s 

measure with respect to the Bernoulli shift. If we put for B G B(S) Pn(s) B) = 
fXB° f n M Psdfoj), then Pn(s, •) G Ma(S) for each seS. 

THEOREM 3.7. Let (£n) be a canonical stochastic process defined on 
(fi, S(fi), P) and with values in S. Then S can be equipped with a metric g so 
that S admits a decomposition into a class X of disjoint sets with properties: 

ix) to each I £ 1 we can relate a measure 717 G M(S) so that for each 
x G Ue(S) (x G C(S) as long as 717 G Ma(S)) and s e I 

l i m i E /*(*) ?*(*,**) = I'*(*) Mds), 
k=i{ { 

xi) if for given s G S Ps is ergodic, i.e. PsJ = 0 or PSJ = 1 for each shift 
invariant set, then for each x G Ue(S) (x G C(S) if ni G M<j(S)) 

lim — 22,xo £k = / #(š) 7Г/(dš) a.s. 
Ä;=l í 
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P r o o f . Assertion ix) is an immediate consequence of Theorem 3.6 and of 
the Fubini theorem. The decomposition T of S can be defined in the same 
manner like in Example 2.6. 

1 n 

If Ps is ergodic, then the function x*(u) = lim — ~~ xo £k(w), x G Ue(S), 
n fc=i 

is shift invariant, hence constant a.s. Ps and after integrating f x(s) 717 (ds) = 
s 

fx*(uj) Ps(duj) = X*(UJ) a.s. Ps. 
n 

Even if 717 is the measure computed in x), the measure P = f Ps 717 (ds) 
s 

ought not to be shift invariant without additional assumptions about Ps. But 
if (£n) has with respect to P the Markov property, then it becomes an ergodic 
invariant measure. This can be verified using 

PROPOSITION 3.8. If Ps belongs to a Markov process, then it is ergodic with 
respect to the Bernoulli shift. 

P r o o f . Let J G B(Q.) be shift invariant, i.e. TJ = J. If we put I = qJ, 
then X J ( £ I ) = XqTJq°T = Xqjoq = XJ(£O) and consequently P(s,I) = xi(s) • 
Ps is uniquely determined by its values on cylindrical sets E = ~\ Bn, where 

n€Z+ 

(Bn) C B(S) and Bn 7-= S for at most first no + 1 sets, no finite. If 

PSE = XBQ(s) J P(s,d*i) J P(suds2) . . . J P(sno.udsno), 
Bl ~1 ~no 

then using the cr-smoothness of Ps and considering J instead E we can easily 
compute that PSJ = Xi(s) a n d trris completes the proof. 

An attempt to prove Theorem 3.7 for Markov chains with a locally compact 
phase space and a unique invariant measure can be found in [10]. 

THEOREM 3.9. Let us consider the objects (5, g), (fi, B(Q), P), (£ n ) , J and 
(~i)iex from Theorem 3.7. Let us suppose that F: fi —• ft is a measurable map, 
r]n = £n o F for n E Z+ , 717 G Ma(S) for any I G X, Ps is ergodic for any 
s G / and P S F _ 1 is absolutely continuous with respect to Ps . Then there is 
TT'S G M(j(S) such that for each x G C(S) 

1 n 

xii) lim — J2 x o nk = f x(s) 7rs(ds) a.s. Ps . 
n k=l s 

P r o o f . Due to Theorem 3.7 xi) we can find a measurable set i l s C i l such 

is a 
that Pstis = 1 and for each x G C(S) and u ; G f i 5 (— ^2 x o £fc(u;)) 

v n k=i ' 
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Cauchy sequence. But then (— ]T) x o r]k(v)) is a Cauchy sequence for each 
v n k=i ' 

x G C(S) and u E F~1Qs. Since PSF~X is absolutely continuous with respect 

to Ps , ( — ]C xor]k(^)\ is a Cauchy sequence for all x G C(S) and almost all 
^ n k=i ' 

u) G ft (= F_ 1£2 a.s. Ps). The assertion is now a consequence of ergodicity of 
P8, of the fact that the limit is defined for all x G C(S) and of the sequential 
completness of (Ma(S),w) . 

COROLLARY 3.10. Let (£n) be a canonical Markov process on (Q,B(Q,),P) 

with values in (5, g). Let G: S x 5 —> 5 6e (B(5 x S),B(S)) measurable and 

let T] = (r]n), where 

*7n+i = G(rjn, £ n +i ) , n > 0 . 

J/ the process (£n) is ergodic with a unique invariant measure ~ G M+(S) and 
if Pst)"1 is absolutely continuous with respect to Ps for each s G S, then the 
process (r/n) is ergodic with a unique invariant measure irf G M£(S) such that 
xii) holds for all x G C(S). 

P r o o f . By Proposition 3.8 we can apply Theorem 3.9 to the mapping 
F: (o;o,wi,a;2,...) —• {no, Gfao-^i), G(G(rj0,u;1),uj2), • • • ) , where the relation 
^o —> Vo can be defined arbitrarily, but measurable. 

The previous method cannot be extended immediately to the continuous time 
case because of the heavy measurability problems arising as long as 
fi = n /S is considered in the product topology. However, if we restrict our 

te<o,oo) 
attention to ilc = {u : u G f2 and u is continuous in t on (0, oo)} , then 

the Bernoulli shift (Tl) maps fi,c onto f2c and the mappings T* restricted to 
Qc are continuous in the product topology induced on fJc from fi . So (T*) is 
a flow of continuous mappings from Clc onto fic and T agrees with the shift 
discussed previously on ~\ & • 

n6Z+ 

Let (£t) be the canonical process defined on Q by £t(w) = qo Tlu>, u G fi, 
£ > 0. Then, using the same trick like in the proof of Theorem 2.1 we can show 

that for each x G U6(S) and w E ilc ( — Jxo£s(u)ds) is a Cauchy sequence, 

because (— ~~] x ° €k(w)) is a Cauchy sequence. Considering a probability P 
v n k=i ' 

on B(Q) with support contained in f£c we can easily derive the continuous time 
analogy of Theorem 3.7. 
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Comparison of the above derived results with the known ones leads to the 
conclusion that for Markov chains we have obtained a new method how to derive 
some assertions from [13, 17] (see there the historical remarks). Theorems 2.7, 
3.3 and 3.4 are analogies to the non-topological approach in [3]. Remarkable 
remains the generality of the results. 

Supposing that the assumption T is homeomorphic can be replaced by the 
weaker hypothesis T is one to one, our theory could be extended to automor­
phisms admitting only (j-finite invariant measures (cf [3]), but this problem we 
leave open. 
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