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A STRUCTURAL PROPERTY OF PLANAR GRAPHS
AND THE SIMULTANEOUS COLOURING OF THEIR
EDGES AND FACES

O. V. BORODIN

Let G be a planar graph with the minimal and maximal degrees 6(G) and
A(G). respectively. Denote by n, , the number of vertices in G having degree s and
being incident with exactly ¢ triangles, and let n¥, = ) n,,. It was proved in [5]

izt
that any 3-connected 5-regular planar graph has a vertex which is incident with
more than three triangles. From [9], it follows under the same assumptions that
2ns5 + ns 4 > 24. Our first result is /

Theorem 1. Let G be a planar graph with §(G) = 3. Then
6ny5 + Sny, + 4nyy + 3ny + Ang g + 30,5 + 20y + nyy + 2055 + nsy > 24

Proof. Without loss of generality, G may be assumed to be connected. It
follows from the Euler formula that

Y @) -6+ Y Qk—6)F=—12, 1)

ve V(G) k=4

where s(v) is the degree of a vertex v, and F, — the number of k-faces in G.
Indeed, we have:

V—-—E+F=2; (2

2E= Y s(v); 3)
ve V(G)

2E =Y kK. Q)]

K>3
To obtain (1), multiply the inequality (2) by 6, the inequality (4) by two and
add them with (3).

Denote by fi(v) the number of i-faces incident with v, then (1) may be
rewritten as

Y (s()—6+ _Z k — 6) fi(v)/k) = —12,

ve V(G) . k=4
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or

> g)=—12, )
ve V(G)
Denote by V;, the set of those s-vertices which are incident with exactly ¢
triangles. Clearly, if ve V, ,, then g(v) = s — 6 + (s — 1)/2 = h(s, 1), so from (5)
it follows that : :

—12 = Z Z gv) = Z n, h(s, ).

{(s.t)} ve P;_, {(s.0)}

Hence,

— > n his,t) =12 + Y ng his, 1) = 12,

s.t):h(s.1) <0} {(s,0): h(s, 1) =0}

or
5 3 3 1 1
3ny5 + 5’13.2 + 2ny, + 3 Ny + 2n4 + > ng; + ng, + 5 Mgy + Nss + 3 ns, = 12.

This completes the proof.

Corollary. If G is a planar graph with 6(G) = 3, then 3n¥, + 2n¥, + n¥, > 12.

We now apply the Corollary to the problem of a simultaneous colouring the
edges and the faces of planar graphs (any two edges and/or faces should be
coloured with different colours provided they are adjacent or incident). Let
Z(G) denote the minimal number of colours needed to colour G in this way. In
[4, 3] this problem was considered for 3- and 4-regular 3-connected planar
graphs. For arbitrary planar graphs, by analogy with Kronk and Mitch-
em’s conjecture x,.(G) < A(G) + 4 on the entire colouring [6], MeInikov
conjectured [7, Problem 9, p. 543] that x.(G) < A(G) + 3. It was proved in [1]
that x.(G) < 6 if A(G) = 3. The second result of the present note is

Theorem 2. Let G be a planar graph without separating 3-cycles, then
1AG) < A(G) + 4.
Proof. In proving the Lemma below as well as the Theorem 2 itself, we use
the concept of assigned colouring, introduced in [8] and [2].

Lemma. Let a set A(e) of admissible colours is assigned to every edge e of a
planar graph G such that |A(e)] = A(G) + 2 + t(e), where t(e) stands for the
number of 3-faces incident with e. Then for every edge a colour admissible to it can
be chosen so that the colours of any two adjacent edges would be distinct.
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Proof. Assuming the contrary, denote by G, a counterexample to the Lem-
ma with the least number of edges. Let a set-system A4, = {A4,(¢):ec E(G)}
contain no admissible edge colourings of G.

It is easily seen that 6(G,) = 3. If there were a vertex of degree 1 or 2 in G,
then it would be incident with an edge e, adjacent to at most 1 + A(Gy) — 1 =
= A(G,) edges. But then, by the minimality of G,, the graph G, — e might be
coloured in accordance with A4,. Afterwards e might be coloured with that
element of A,(e) which does not occur at the edges, adjacent to e.

By the Corollary, there exists in G, such a vertex v, such a vertex v, that at
least one of the possibilities takes place:

(@) s(vo) =3;
(b) s(v,) = 4 and v, is incident with a 3-face;
(¢) s(vy) = 5 and v, is incident with at least four 3-faces.

Denote by ¢, an edge of G, which, respectively,

(@’) is incident with v,; '
(b’) is incident with v, and at least one 3-face;
(¢’) is incident with v, and two 3-faces.

Colour the edges of G, — ¢, in accordance with 4, i.e. choosing the colour
for every edge e from the set A,(e) so that the resulting colouring of the whole
graph is admissible. It is easily verified that, in each of the situations (a)—(c),
the edge ¢, is adjacent to at most A(G,) + 1 + (e,) edges, so ¢, may be coloured
with an element of A4,(e,) not occupied at the edges adjacent to e,.

We have obtained an admissible edge colouring of G, chosen from 4, which
is a contradiction.

The Lemma is proved.

Now we are prepared to prove Theorem 2. First, colour all the nontriangular
faces of a graph G with the colours 1, 2, 3, 4, 5. Next, for any edge e take as A(e)
the set of those colours 1, 2, ..., A(G) + 3, A(G) + 4 which do not occur at the
faces incident to e. By the Lemma, all the edges may be coloured in accordance
with the assignement A. Finally, colour all the triangular faces of G: each of
them is in contact with 6 edges and faces, whereas the total number of colours
available is A(G) +4> 7.

This completes the proof.

REFERENCES

[1] BORODIN, Q. V.: Consistent colorings of graphs on the plane Met. diskr. anal., Novosibirsk,
1987, 45, 21—27 (Russian).

[2] ERDOS, P.—RUBIN, A. L—TAYLOR. H.: Choosability in graphs. Proc. West Coast Conf.
Combin, Graph Theory Humboldt State Univ., 1979, 125—157.

115



[3] FIAMCIK, J.: Simultaneous colouring of 4-valent maps. Mat. Cas. 21, 1971, 9—13.

[4] JUCOVIC, E.: On a problem in map colouring. Mat. Cas., 19, 1969, 225—227.

[5] KOTZIG, A.: From the theory of Euler’s polyhedrons. Mat. Cas., 13, 1963, 20—34 (Russian).

[6] KRONK, H—MITCHEM, J.: A seven-color theorem on the sphere. Discrete Math., 5, 1973,
253-—260.

[7] Recent advances in graph theory. Proc. Int. Symp. Prague, 1974, Academia, Praha 1975.

[8] VIZING, V. G.: Coloring the vertices of a graph with assigned colors. Met. diskr. anal.,
Novosibirsk, 29, 1976, 3—10.

[9] ZAKS, J.: Extending two theorems of A. Kotzig. Discrete Math., 43, 1983, 309--316.

Received September 16, 1988 Institute of Mathematics
Novosibirsk, 630090
USSR

OJ1IHO CTPYKTYPHOE CBOWCTBO IJIOCKUX FPA®OB U COBMECTHAS
PACKPACKA WX PEBEP U I'PAHEN
0. V. Borodin
Pe3roome
B nro6oM nyiockom rpade ¢ MUHMMAJBHOM CTENEHbIO HE MEHbIe 3 HaliaeTcs bo 3-Bep-
mKHA, JTH00 4-BepUIMHA, MHIMACHTHAS TEYroJIbHUKY, MO0 5-BepllMHA, HHIIMACHTHAS YEThIPEM

TpeyrojbHukaMm. Pebpa u rpanu moboro niockoro rpada G 6e3 pasjessiomiux 3-1UKIOB C
MaKCHMaJIbHOMN cTeneHbio A(G) MOXHO COBMECTHO packpacuTth B A(G) + 4 useros.
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