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A STRUCTURAL PROPERTY OF PLANAR GRAPHS 
AND THE SIMULTANEOUS COLOURING OF THEIR 

EDGES AND FACES 

O. V. BORODIN 

Let G be a planar graph with the minimal and maximal degrees 5(G) and 
A(G). respectively. Denote by nst the number of vertices in G having degree s and 

being incident with exactly t triangles, and let n*, = ]T ns f. It was proved in [5] 
i> t 

that any 3-connected 5-regular planar graph has a vertex which is incident with 
more than three triangles. From [9], it follows under the same assumptions that 
2n5 5 + n5 4 ^ 24. Our first result is / 

Theorem 1. Let G be a planar graph with 5(G) ^ 3. Then 

6n3 3 + 5n3 2 + 4n3j + 3n30 + 4n44 + 3n43 + 2n42 + n4, + 2n5 5 + n54 ^ 24. 

Proof . Without loss of generality, G may be assumed to be connected. It 
follows from the Euler formula that 

£ (s(v)-6)+ £ (2k-6)Fk=-l2, (1) 
veV(G) k>4 

where s(v) is the degree of a vertex v9 and Fk — the number of k-faces in G. 
Indeed, we have: 

V-~E + F=:2; (2) 

22s == X s(v); (3) 
veV(G) Y 

2 E = I kFk. (4) 

To obtain (1), multiply the inequality (2) by 6, the inequality (4) by two and 
add them with (3). 

Denote by ff(v) the number of /-faces incident with v9 then (1) may be 
rewritten as 

£ (s(v) - 6 + £ (2k - 6)fk(v)/k) = - 1 2 , 
i'6 V(G) k^4 
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or 

I *(»)=- -12. (5) 
veV(G) 

Denote by Vst the set of those s-vertices which are incident with exactly t 
triangles. Clearly, if ve Vst3 then g(v) ^ s - 6 + (s — t)/2 = h(s, t), so from (5) 
it follows that 

- 1 2 = I I g(v)> S nMh(s,t). 
{(*,/)} u e ^ , {(.«,/)} 

Hence, 

X яfв ,h(s, t) ^ 12 + X ^ iA(-У, 0 ^ 1 2 , 
{(.*, / ) : Л(.v, /) < 0| {(.?, / ) : A(.v, /) ^ 0} 

or 

3/i3,3 + -«3,2 + 2/i3J + ™n3,0 + 2n44 + - n43 + n42 + - n4J + n5 5 + - n54 ^ 1 2 . 
— .-- JL /* JL 

This completes the proof 

Corollary. IfG is a planar graph with 8(G) ^ 3, then 3n*0 + 2w£, + n*4 ^ 12. 

We now apply the Corollary to the problem of a simultaneous colouring the 
edges and the faces of planar graphs (any two edges and/or faces should be 
coloured with different colours provided they are adjacent or incident). Let 
Xer(G) denote the minimal number of colours needed to colour G in this way. In 
[4, 3] this problem was considered for 3- and 4-regular 3-connected planar 
graphs. For arbitrary planar graphs, by analogy with K r o n k and Mi t ch -
em's conjecture #vef(G) ^ A(G) + 4 on the entire colouring [6], Mefn ikov 
conjectured [7, Problem 9, p. 543] that #ef(G) ^ A(G) + 3. It was proved in [1] 
that Xef(G) ^ 6 if A(G) = 3. The second result of the present note is 

Theorem 2. Let G be a planar graph without separating 3-cyc/es, then 
XJG) ^ A(G) + 4. 
Proof . In proving the Lemma below as well as the Theorem 2 itself, we use 
the concept of assigned colouring, introduced in [8] and [2]. 

Lemma. Let a set A(e) of admissible colours is assigned to every edge e of a 
planar graph G such that \A(e)\ ^ A(G) + 2 + t(e), where t(e) stands for the 
number of 3 faces incident with e. Then for every edge a colour admissible to it can 
he chosen so that the colours of any two adjacent edges would be distinct. 
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Proof . Assuming the contrary, denote by G0 a counterexample to the Lem­
ma with the least number of edges. Let a set-system A0 = {A0(e):eeE(G)} 
contain no admissible edge colourings of G0. 

It is easily seen that S(G0) ^ 3. If there were a vertex of degree 1 or 2 in G0, 
then it would be incident with an edge e, adjacent to at most 1 + A(G0) — 1 = 
= A(G0) edges. But then, by the minimality of G0, the graph G0 — e might be 
coloured in accordance with A0l Afterwards e might be coloured with that 
element of A0(e) which does not occur at the edges, adjacent to e. 

By the Corollary, there exists in G0 such a vertex v0 such a vertex v0 that at 
least one of the possibilities takes place: 
(a) 8(iI0) = 3 ; 

(b) s(v0) = 4 and v0 is incident with a 3-face; 
(c) s(v0) = 5 and v0 is incident with at least four 3-faces. 

Denote by e0 an edge of G0 which, respectively, 
(a') is incident with v0; 
(b') is incident with v0 and at least one 3-face; 
(c') is incident with v0 and two 3-faces. 

Colour the edges of G0 — e0 in accordance with A09 i.e. choosing the colour 
for every edge e from the set A0(e) so that the resulting colouring of the whole 
graph is admissible. It is easily verified that, in each of the situations (a)—(c), 
the edge e0 is adjacent to at most A(G0) + 1 + t(e0) edges, so e0 may be coloured 
with an element of A0(e0) not occupied at the edges adjacent to e0. 

We have obtained an admissible edge colouring of G0, chosen from A09 which 
is a contradiction. 

The Lemma is proved. 
Now we are prepared to prove Theorem 2. First, colour all the nontriangular 

faces of a graph G with the colours 1, 2, 3, 4, 5. Next, for any edge e take as A(e) 
the set of those colours 1,2,..., A(G) + 3, A(G) + 4 which do not occur at the 
faces incident to e. By the Lemma, all the edges may be coloured in accordance 
with the assignement A. Finally, colour all the triangular faces of G: each of 
them is in contact with 6 edges and faces, whereas the total number of colours 
available is 4(G) + 4 ^ 7 . 

This completes the proof. 
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ОДНО СТРУКТУРНОЕ СВОЙСТВО ПЛОСКИХ ГРАФОВ И СОВМЕСТНАЯ 
РАСКРАСКА ИХ РЕБЕР И ГРАНЕЙ 

О. V. ВогосНп 

Р е з ю о м е 

В любом плоском графе с минимальной степенью не меньше 3 найдется либо 3-вер-
шина, либо 4-вершина, инцидентная теугольнику, либо 5-вершина, инцидентная четырем 
треугольникам. Ребра и грани любого плоского графа С без разделяющих 3-циклов с 
максимальной степенью Л(С) можно совместно раскрасить в Л(С) 4- 4 цветов. 
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