
Mathematica Slovaca

Martin Knor; Ľudovít Niepel; Ľubomír Šoltés
Centers in line graphs

Mathematica Slovaca, Vol. 43 (1993), No. 1, 11--20

Persistent URL: http://dml.cz/dmlcz/130834

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/130834
http://project.dml.cz


Mathematica 
Slovaca 

© 1 9 9 3 
... . ^ . .* /-..-..-..-.x »., -, .... «,* M a t h e m a t i c a l Ins t i tu te 
M a t h . SlOVaCa, 4 3 ( 1 9 9 3 ) , NO . 1 , 1 1 - 2 0 Slovák Academy of Sciences 

CENTERS IN LINE GRAPHS 
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(Communicated by Martin Skoviera) 

A B S T R A C T . For every graph H without isolated nodes there exists a graph G 
such that H is the center of G and the line graph of H is the center of the line 
graph of G . Graphs which are the periphery of some line graph are characterized 
and other distance related concepts in line graphs are s tudied. 

1. Introduction and basic results 

Suppose an official has to find a suitable place for an emergency facility 
(such as a fire station) in a given traffic network. It is naturally to locate it in 
such a way that the distance to the furthest node will be as short as possible, 
hence to build the fire station in the center of the corresponding graph. This 
is one reason for which centers in graphs have been studied in many papers. 
It is known [2, p. 41] that for each graph H there is a graph G having the 
center H and containing at most four noncentral nodes. The minimum number 
of noncentral nodes A(H) among graphs having the center H was found by 
B u c k l e y , M i l l e r and S l a t e r [3] in the case H is a tree. Some graphs 
H with A(H) = 3 were presented by B i e 1 a k [1] and C h e n [ 4 ] . B u c k l e y , 
M i l l e r and S l a t e r [3] have also shown that for each graph H with n > 9 
nodes and an integer k > n + 1 there exists a k -regular graph G having the 
center H. So far little is known about centers of special graphs. Clearly the 
center of a tree consists of either a single node or a pair of adjacent nodes. All 
seven central subgraphs admissible in maximal outerplanar graphs were listed 
by P r o s k u r o w s k i [10]. The greatest contains six nodes. L a s k a r and 
S h i e r [8] studied centers in chordal graphs. The center in the cartesian product 
[2, p. 23] of two graphs equals the product of their centers ( N i e m i n e n [9]). 
Spanning subgraphs with a prescribed central node were studied b y C h e s t o n , 
F a r l e y , H e d e t n i e m i and P r o s k u r o w s k i [5]. They suggested an 
0(m,n) algorithm which for every node v in a biconnected graph G with n 
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nodes and m edges produces a spanning tree T such that v is a central node 
in T . A good survey on centers can be found in the book [2]. 

In this paper we focus our attention on centers in line graphs. In general, 
our terminology is consistent with general usage, such as in B u c k l e y and 
H a r a r y [2]. If a graph posseses no edges, then it is said to be a trivial graph. 
Let G be a connected graph, v be its node and / be its edge. Then the ec
centricity ec(v) or e(v) of v is the distance to a node furthest from v. The 
eccentricity eG(f) or e(f) of the edge f equals the eccentricity e^G)(f) of 
the node / in the line graph of G. The radius r(G) is the minimal eccentricity 
of the nodes, whereas the diameter d(G) is their maximal eccentricity. Further, 
v is a central node if e(v) = r(G) and the center C(G) of G is the subgraph 
induced by all central nodes, while the periphery Per(G) of G is the subgraph 
induced by the nodes with the greatest eccentricity. 

The connections in distance properties of a graph and its line graph are 
investigated in this paper. Relations between the eccentricity of an edge and 
the eccentricity of its endnodes are provided. We prove that for every graph H 
without isolated nodes there is a graph G such that H is the center of G and 
the line graph of H is the center of the line graph of G. If the line graph of 
a graph H has the radius at least three, then the similar result holds for the 
periphery instead of the center. Two conjectures on centers are presented. 

We start our investigation with several observations on distances. By dc(x, y) 
or d(x, y) we mean the distance between the nodes x and y in a graph G. Let 
e = ab and / = uv be two edges in a connected graph G. Then for their 
distance in the line graph of G we have dr,(G)(e> / ) = 0 if e = / and 

dL(G)(o>b,uv) = 1 + min{d(a, u),d(a, v),d(b, u),d(b, v)} (1) 

otherwise. Further, for an integer fc and two nodes x and y in G, we mean by 
Sk(x, y) the subgraph in G induced by the nodes which have the distance from 
both x and y at least fc. Now we can express the eccentricity in a line graph 
in the following way: 

OBSERVATION 1. Let u and v be adjacent nodes in a connected graph G 
with at least three nodes. Then the eccentricity of the node uv in L(G) equals 
the maximal k > 0 such that the subgraph Sk-i(u,v) contains an edge. 

A node is eccentric to a node v if their distance equals e(v). The next 
Lemma provides relations between the eccentricity of an edge and that of its 
endnodes. 

LEMMA 2. Let u and v be adjacent nodes in a connected graph G. Then 
\eL(G)(uv) — eG(v)\ < 1 holds. Moreover, if u and v have distinct eccentricities, 
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then \e(u) — e(v)\ = 1 holds and the eccentricity of the edge uv equals the 
eccentricity of one its endnodes. 

P r o o f . Note that \e(u)—e(v)\ < 1 as u and v are adjacent. Now it suffices 
to prove that \eL(G)(uv) — CQ(V)\ < 1 holds. If G has two nodes, then G is K2 

and Lemma 2 holds. From now on assume that G has at least two edges. Then 
there exists an edge distinct from uv and due to (1) we have e(uv) < 1 + e(v). 
Further, we verify that e(uv) > e(v) — 1 holds. Let a be a node eccentric to 
v and distinct from u, b be a neighbour of a. Then the distance between any 
node from {u, v} and any node from {a, b} is at least e(v) — 2 , since otherwise 
there will be a v — a path with the length shorter than e(v) . A s uv ^ ab, 
according to (1) we have e(uv) > d(uv, ab) > 1 + e(v) — 2 = e(v) — 1. • 

A connected graph is selfcentered, if C(G) = G holds. Now some conse
quences for the radius and the center in a line graph follow. 

THEOREM 3 . For a connected graph G with at least three nodes we have: 

(1) : \r(L(G)) - r(G)\ < 1, moreover, r(L(G)) = r(G) + 1, if and only if 
for each two adjacent central nodes x and y there is an edge f such that both 
endnodes of f are eccentric to both x and y. Further, r(L(G)) = r(G) — 1 if 
and only if for each edge f joining central nodes and each other edge g at least 
one endnode of f has the distance at most r(G) — 2 to some endnode of the 
edge g . 

(2) : If G has a nontrivial center and a greater radius than its line graph, 
then C(L(G)) is an induced subgraph in L(C(G)) . Moreover, if L(G) is self-
centered, then also G is selfcentered. 

(3) : If G has a nontrivial center and a smaller radius than its line graph, 
then L(C(G)) is an induced subgraph in C(L(G)) . Moreover, if G is selfcen
tered, then L(G) is selfcentered, and L(C(G)) = C(L(G)) if and only if G is 
selfcentered. 

P r o o f . Part (1) follows directly from Lemma 2 and Observation 1. As
sume G has the radius R. 

(2) : Let r(L(G)) =R-1. Then for a node uv in C(L(G)) we have e(u) > 

R and e(v) > i? , Lemma 2 gives e(v) = e(u) = R, hence uv is in L(C(G)) . 

Moreover, if L(G) is selfcentered, then C(L(G)) = L(G) is an induced subgraph 
in L(C(G)) , so G is a subgraph in C(G) and G is selfcentered. 

(3): Let r(L(G)) = R + 1. Then, for a node uv in L(C(G)), we have 

e(u) = e(v) = iJ , which gives e(uv) < R + 1 = r(L(G)) and that is why uv is 

in C(L(G)) . Moreover, if G is selfcentered, then L(G) is an induced subgraph 

in C(L(G)) . hence L(G) is selfcentered. Further, if G is selfcentered, then 
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we have L(C(G)) = L(G) = C(L(G)) . On the other hand, suppose that G 
is not selfcentered. Then it contains an edge cy joining a central node c to a 
noncentral node y, hence e(c) = R and e(y) = R + 1. Then e(cy) < R + 1 
due to Lemma 2 and cy is in L(C(G)). Hence C(L(G)) = L(C(G)) does not 
hold. D 

Theorem 4 provides results on the periphery similar to those on centers. 

THEOREM 4. For a connected graph G with at least three nodes we have: 

(1): \d(L(G))-d(G)\<l. 

(2) : If G has a nontrivial periphery and a greater diameter than its line 
graph, then L(Per(G)) is an induced subgraph in Per (L(G)) . Moreover, if G is 
selfcentered, then L(G) is also selfcentered and L(Per(G)) = Per(L(G)) holds 
if and only if G is selfcentered. 

(3) : If G has a nontrivial periphery and a smaller diameter than its line 
graph, then Per (L(G)) is an induced subgraph in L(Per(G)) . Moreover, if L(G) 
is selfcentered, then G is also selfcentered. 

P r o o f . The part (1) follows directly from Lemma 2. 

Denote by D the diameter of G. 

(2): Let d(L(G)) = D - 1. For a node uv from L(Per(G)) we have e(u) = 
e(v) = D , so e(uv) > D — 1 = d(L(G)), which gives uv is in Per (L(G)) . 
Further, if G is selfcentered, then Per(G) = G and L(Per(G)) = L(G) is an 
induced subgraph in Per(L(G)) , hence L(G) = Per(L(G)) , which means L(G) 

is selfcentered. 

If G is selfcentered, then L(G) is also selfcentered, and clearly, L(Per(G)) = 

Per(L(G)) holds. On the other hand, if G is not selfcentered, then there is an 

edge py such that e(p) = D and e(y) = D — 1 , clearly, py is not in L(Per(G)) . 

Then, due to Lemma 2, we have e(py) > D — 1 = d(L(G)) , hence py is in 

Per(L(G)) , so L(Per(G)) = Per(L(G)) does not hold. 

(3): Let d(L(G)) = D + l. For a node uv from Per(L(G)) we have e(uv) = 
D + 1, so e(u) > D and e(v) > D and u and v are in Per(G). Hence uv is 
in L(Per(G)) . Moreover, if L(G) is selfcentered, then L(G) = Per(G) and so 
G is a subgraph in Per(G), so G is selfcentered. D 

2. Line g r a p h s w i t h a p re sc r ibed cen te r 

At first we show that each line graph can be a center of some line graph. 
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THEOREM 5. Let H be a graph with n nodes and ra > 1 edges. Then there 

is a connected graph G with at most 4n nodes and at most m + n(n+ 1) edges 

such that L(H) is the center of L(G). 

P r o o f . Let V(H) = {v±,..., vn} be the node-set of H. Now we will con
struct its supergraph G as follows. Its node-set will be the set {vi, Xi, yi, Zi\ 

i = 1, . . . , n} . Further the edge set consists of the edges of H together with the 
edges joining x» to each node from V(H) — {^i}, the edges Xiyi and yiZi for 
all i = 1,. . ., n (see Fig. 1 for H = Pz). 

vз 

î/2 XУ V2( 

^ 1 Z\ 
c\ 

Z2 î/2 XУ V2( 

• \J 

Уз 

\J 

\j \J 
\ 

V2( 

• \J 

Уз 
f\ 

\J 
\ 

V2( 

w \j 

V\ 

Figure 1. The line graph of the drawn graph has L{P^) as its center. 

Clearly, each edge joining two central nodes has the eccentricity three, while 
for any other edge / let say v\ be a central node which is nearest to / . Then 
its distance to y\Z\ is at least four. Hence C(L(G)) = L(H) holds. • 

CONJECTURE 6. For a line graph F with n nodes and each integer k > n + 1 , 

there is a k-regular line graph with the center F. 

S i m i c [11] has characterized graphs G, for which the line graph transfor

mation L and the mapping K which maps a graph on its clique graph commute, 

i.e. L(K,(G)) = K(JL(G)) holds. Now we shall study a similar class of graphs, 

particularly connected graphs with a nontrivial center for which the mappings 

L and C commute, hence L(C(G)) = C(L(G)). This is in a sense, accord

ing to Theorem 3, an extremal property. Denote Ar(G) = r(L(G)) — r(G). If 

Ar(G) = 1, then, due to Theorem 3, the mappings L and C commute if and 

only if G is selfcentered. Complete graphs are examples of such graphs. But for 

any i G { 0 , - 1 } and any graph H without isolated nodes, there is a graph G 

with L(C(G)) = C(L(G)) and Ar(G) = i, as the next theorem states. 

THEOREM 7. Let H be a graph with n nodes, m > 1 edges without isolated 

nodes and i be either 0 or — 1. Then there exist connected graphs Gi such that 

H = C(Gi), L(C(Gi)) = C(L(Gi)) and i = Ar(G) holds. Moreover, G0 has 

4n + 6 nodes and ra + n 2 + 4n + 4 edges. 
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P r o o f . Let V(H) = {vi, . . . ,v n } be the node-set of H and let E(H) 
be its edge-set. We shall construct graphs G 0 and G_i with the requested 
properties and start with Go . 

Figure 2a. A graph G0 with C(G0) = P 3 and C(L(G0)) = L(C(G0)) . 

The node-set of Go equals V(H) U {a*, biy c* \ i = 1 , . . . ,n} U {a x , a 2 , a 3 , 

A , /92, /?3} . Its edge set is E(H) U { a ^ , aiQ, 6 ^ , aiVj, fixVi \ i = 1 , . . . , n} U 

{ciiLj | i ^ j} U { a i a 2 , a 2 a 3 , /3i/32, /32/3s} (see Fig. 2a). One can check that 

r(Go) = 3 and H = C(GQ) , since every node outside H has the distance at 

least four to some of the nodes a 3 and /3 3 . Further, any edge from G(Go) has 

the eccentricity three (its distance to aib i is three). As a center of L(Go) lies 

in a single block of L(Go), if any edge not from H lies in C(L(G0)) , then 

one its endnode, say v\, is in H. Then its distance to aib i is four, hence 

G ( L ( G 0 ) ) = L ( G ( G 0 ) ) holds. 

ai b\ C\ d\ 
—O O O 

aз òз cз dз 
—O O O 

Figure 2b. A graph G_i with C(G_i) = P 3 and C(L(G_i)) = L(C(G_i)) 
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Now we shall construct the graph G _ i . The node set of G-\ will contain 
V(H)\j{au bi, cu di \ i = 1 , . . . ,n}U{x{j | i^j, i = l , . . . , n , j = l , . . . , n } . 
Its edge-set consists of E(H) U {xijOi, XijVj \ i 7- j} U {a^bi, biCi, Cidi \ 
i = 1 , . . . , n} (see Fig. 2b). 

Obviously, H is the center of G_i and r (G_ i ) = 6, as d(vi,di) = 6. Note 
that every edge joining central nodes has the eccentricity five due to (1). Further, 
if an edge is adjacent to exactly one central node, say v\, then its distance to 
the edge cidi is at least six. Finally, if an edge / is adjacent to no central 
node, then its distance to some edge of the form Cidi is also at least six, so 
r (L(G_i ) ) = 5 = r (G_i ) + 1 and L(H) = C(L(G.X)) holds. • 

Figure 3. A graph having the center 2K2 • 

If H is bipartite, it suffices to add only six nodes in order to secure the 
property in question. 

THEOREM 8, Let H be a bipartite graph on n nodes and m > 1 edges without 
isolated nodes. Then there is a graph G with n + 6 nodes and m + n + 4 edges 
having the center H and satisfying C(L(G)) = L(C(G)). 

P r o o f . Let A and B be disjoint sets of nodes in H, such that adjacent 
nodes lie in distinct sets. We obtain G after the addition of the new nodes 
a, a i , 02, 6, 61 and 62 such that a is adjacent to a i and to all nodes in A, b 
is adjacent to 61 and to all nodes in B and a 2 a i and 6162 are also adjacent 
(see Fig. 3). Clearly, G has the desired property. • 

Nevertheless, the problem of finding a graph G with the minimal number 
f(H) of nodes such that C(L(G)) = L(C(G)) holds and G has a given center 
H seems to be far from its final solution. 

3. The periphery in line graphs 

Now we shall study the existence of line graphs with a given periphery. Note 
that r(Per(G)) > d(G) holds for each graph G. 
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THEOREM 9. Let H be such a nontrivial graph that L(H) has the radius at 
most two. Then L(H) is the periphery of some line graph if and only if either 
L(H) is self centered or H contains two nodes which are not endnodes and each 
edge is adjacent to just one of them. 

P r o o f . If L(H) is selfcentered, then L(H) = Per(L(H)) holds. Now as
sume H contains two nodes x and y which are not endnodes and such that each 
edge is adjacent to just one of the nodes x and y. Then L(H) = Per(L(H+xy)) 
as if we add the edge xy to H, then its eccentricity will be one, while each other 
edge has the eccentricity two, since we have dn+xyfaci, yb) = 2 for pairwise dis
tinct nodes a, 6, x, and y. 

Assume now that there exists a graph G such that L(H) is the periphery 
of L(G). Then we have 2 > r(L(H)) > r ( P e r ( i ( G ) ) ) > d(L(G)) . Hence L(G) 
is either selfcentered or has the diameter two and the radius one. If L(G) is 
selfcentered, then L(H) = Per(L(G)) = L(G), hence L(H) has to be selfcen
tered. Assume now the latter case holds. Then G contains an edge xy with the 
eccentricity one and so each edge is adjacent to i or y . Note that L(H) has 
the radius two as we have r(L(H)) > d(L(G)) = 2 . Hence the edge xy is not 
in H. Further, if x is an endnode in H and a is the only its neighbour, then as 
H is connected there exists a node 6, b ^ x adjacent to ay. But b = y as the 
edge ab is adjacent to either x or y and a is distinct from x and y. Hence ay 
has the eccentricity one which contradicts to r(L(H)) = 2 . So x and similarly 
y is not an endnode, which completes the proof. D 

If we prescribe a line graph with the radius at least three as a periphery, then 
an even stronger result holds. 

THEOREM 10. Let the line graph of a nontrivial graph H have the radius at 
least three. Then H = P e r ( # + Kx) and L(H) = Per(Z,(H + Kx)) holds. 

P r o o f . Let v be a node in H + K\ which is adjacent to all other nodes. 
As r(L(H)) > 3 holds, we have r(H) > 2 from Theorem 3 . Hence v is the 
only node with the eccentricity one and each other node has the eccentricity 
two, so H = Per(H + Ki) holds. Further, it is easy to verify that each edge in 
H has the eccentricity three in H + K\ and all edges adjacent to v have the 
eccentricity two, that is why L(H) = Per(L(H + Ki)) holds. D 
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Note that line graphs are characterized by nine forbidden induced subgraphs. 
It would be of some interest to study centers in classes of graphs which are 
characterized by finite number of forbidden induced subgraphs, a s T o m a s t a 1 

suggested. We conclude with a conjecture which predicts a result analogous to 
Theorem 5. By the claw we mean the star with four nodes. 

CONJECTURE 11. Every claw-free graph is the center of some claw-free graph. 
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