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(Communicated by Milan Medved') 

ABSTRACT. The purpose of this paper is the study of a generalized asymptotic 
equivalence between the solutions of the difference equations 

y(n + l) = A(n)y(n) (I) 

and 
x(n + l) = A(n)x(n) + F(n,x(n),Tx(n)) . (II) 

By means of the contraction mapping principle, we prove the existence of a home-
omorphism H between the sets of bounded solutions of (I) and (II). 

Introduction 

The purpose of this paper is the study of a generalized asymptotic equivalence 
between the solutions of the difference equations 

y(n + 1)= A(n)y(n) (I) 

and 

x(n + l) = A(n)x(n) + F(n,x(n),Tx(n)) . (II) 

By means of the contraction mapping principle, we prove the existence of 
a homeomorphism H between the sets of bounded solutions of (I) and (II). 
Moreover, we are going to investigate the (g,p) asymptotic equivalence between 
equations (I) and (II) such that to each bounded solution 

x(n) = Hy(n) of (II) 

we have 

Iff-^n) [y(n) - ffy(n)] | 6 . p . 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 39A10; Secondary 34E10. 
Key words : difference equation, asymptotic equivalence, bounded function, k-dimensional 
real euclidean space, matrix, matrix function. 

57 



JAROSLAW MORCHALO 

The relationship between the asymptotic behavior of a homogeneous differential 
equation and a nonhomogeneous perturbation of that differential equation has 
been widely investigated. The objective of this paper is to develop part of these 
problems for some classes of difference equations. 

Our results extend some theorems obtained by T a 1 p a 1 a r u [6], which 
proved an asymptotic relationship between the solutions of (I) and (II) using 
Schauder's fixed point theorem. 

Notations and definitions 

Denote by N+ = {nQ,nQ + 1 , . . . } , where nQ is a natural number or zero, 
k 

Rk — the fc-dimensional real euclidean space with the norm |x| = ^ | x j , 
2 = 1 

x = ( x x , . . . , xk), Mk — the space of k x k matrices A = (a- ) with the norm 
k 

\A\ = max J2 l%l > I — t h e identity matrix. We denote by Q = Q(N+o, Rk) the 
•7 i = l 

space of all functions from N+o into Rk, B = B(N+o,R /e) — the Banach space 
in Q for all bounded functions from N+ to Rk with the norm 

MB = \X(U)\B = suP{Xn)l '• ^ N + } . 

We will be interested in establishing an asymptotic relationship between 
the solutions of systems (I) and (II), where z , y are fc-dimensional vectors, 
A: N+ -> Mk an invertible matrix function for n G N+ , F: N+ xDxD -+Rk 

no no ' no 

(D — a region in Rk ) is for any n E N+" continuous with respect to the last two 
arguments, and T is a continuous operator from Q(N+Q,D) into Q(N+Q, D). 

Let Y(n) be a fundamental matrix of (I). The matrix Y(n) = A(n—\)A(n—2) 
. . . -4(n0) is the fundamental matrix of (I) such that Y(nQ) = I. 

We can impose various meanings on the operator T. 
Let g(n) be a nonsingular fc x fc matrix that g_1(n) exists for all n E N ^ . 

DEFINITION 1. We will say that a function z is g-bounded on N+o if 

s u p l l s - ^ n M n ^ o o , n 6 N+ } . 

DEFINITION 2. We shall say that two systems (I) and (II) are (g>p) (p > 1) 
asymptotically equivalent on N+ if for each solution y of (I) there exists a 
solution x of (II) such that 

\g-\n)[x(n)-y(n)]\elp, (III) 

and conversely. 
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Let Bg be the space of all functions x: N+o —> Rk such that 

\x\g= sup \g~x (n)x(n)\ < + 0 0 . 
nGN+0 

The following theorems will be used in our subsequent discussion: 

THEOREM 1. ([1], [2]) Let C be the Banach space of bounded functions x: 
J —• Y (where Y is a finite dimensional linear space) with the norm \\x\\ = 
sup{|x(£)| : t G J = (£ 0 ,co)}. Let G: C —• C be a contraction, and Vx, V2 

non-empty subsets of C such that (I — G)V2 £ Vlf where I is the identity 
operator. If H: V1 —• V2 satisfies relation Hy(t) = y(t) + GHy(t), t £ J, 
y € Vlf then H is a homeomorphism of V1 into V2. 

THEOREM 2. ([5]) Suppose that Z is a mapping from a complete metric space 
(X, d) into itself and 

d(Z(x),Z(y))<q0(a,b)d(x,y) 

for each (x, y) € X such that a < d(x, y) <b, where q0(a, 6) < 1 for b > a > 0. 
Then there exists a unique u E X such that u = Z(u). 

A preliminary result 

The following lemma will be used in the sequel. 

LEMMA 1. Let the following conditions be satisfied: 

1° g(n) is a k x k matrix such that g_1(n) exists for all n £ N+ , 
2° <p(n) is a positive function for n G N^o , 
3° Y(n) is a non-singular matrix for all n £ N "̂0 , 
4° P is a projection (P2 = P), 

5° ( t l ^ H y o o p Y - i O M * ) ! ' ) ' < * < °°, n € N+, g > l, 
\ s=n0 J 

K = const . 
00 / n x 1 / 1 

6° £ exp(-K-" E \<p-1(s)g(s)\-*)<oo, ^{a) = - 1 p+q = pq, 
n=nQ

 v s=n0 ' ^\s) 

Then 

lim \g-1(n)Y(n)P\=0, (1) 
n—>oo v y 

\g-1(n)Y(n)P\elp, p>2. ( 2) 
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P r o o f . We follow first the proof due to T. G. H a 11 a m [3] for a differential 
equation: 

Let 

h(n) = (<p(n))q\Y(n)P\-*. 

Then from the identity 

n n 

Y(n)P £ h(s) = £ Y(n)Ph(s) 
s=no 

n 

J2\^-1(s)Y(s)PrY(n)PY-l(SMs)V>-l(s)Y(s)P, 

S=Пo S=Пo 
n 

s=no 

it follows by using Holder's inequality that 

\g-l(n)Y(n)P\ £ h(s) 
s=n0 

n 

< J2 ^-1(s)Y(s)P\^\g-1(n)Y(n)PY-1(sMs)\\V,-l(s)Y(s)P\ 
s=n0 

J2 Ifl-'Wy^py-1^)^^)!')' ( £ i^-^^y^p^1-^)" 
s=n0 / \ s=n0 / 

= ( £ \g-l(n)Y(n)PY-HsMs)A " ( £ \v-\s)Y(s)P\-<>) " . 
\s=n0 / \s=n0 / 

Hence 

\g-Hn)Y(n)P\ < ( £ /.(*)) " ( £ \g-\s)Y(n)PY-\s)<p(s)\i\ ' , 
\ s = n 0 / \s=n0 / 

and, by 5°, we have 

\g-\n)Y(n)P\<K(J2h(s)\ \ (3) 
\ s = n 0 / 

Use the notation 
n 

then 
\g-\n)Y(n)P\<K(n(n))-". (4) 
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Since 

we have 

\<p-1(s)Y(s)Ph(8)\ < \<p-1(8)Y(s)P\\<p-1(3)Y(s)P\-" 

= \<p-1(s)Y(s)P\1-«, 

\lp-1(s)Y(s)Ph(s)\" < \<p-l(8)Y(s)p\-« = h(s). 

From the above and 5°, it follows that 

\<p-l(n)Y(n)P\( £ h(s)) " = ( £ b - 1 ( n ) Y H P | - ' / » W > 

., S = ПQ 
к S=ПQ 

^ ^ ( n M n ) ! ! £ b-1(n)Y(n).PY-1(.Mi)|-
(5) 

. s=n0 

<K\<p-l(n)g(n)\. 

Hence 

K-*\<p-\n)g(n)\-* < h(n) ( £ h(s)) • 
\ s=n0 J 

Since h(n) = fi(n) — fi(n — 1), it follows that 

Ai(n) - n(n - 1) = ( ^ ^ ^ ^ ( n J P I ) - ' > K~* ( £ h(s)) \<p-\n)g(n)\-* , 
\s=n0 / 

and so 
H(n) [1 - K-*\<p-n(n)g(n)\-«} > M(n - 1) for n 6 N+ . (6) 

Using the well-known inequality 1 — u < exp(—tz), we obtain from (6) 

K-" £ iv-^-oswi -q 

S = ПQ 

fi(n) > /i(n0) exp 

Note that 6° implies that 
oo 

,£\<p-1(s)g(3)\-" = oo. 
s=n0 

Thus lim/i(n) = oo as n —» oo, and then (3) yields (1) and 

£ fcTVjytrOPI* < ^ f; (/x(n))-' 

(7) 
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By (7), we have 

Iv 

£ l<rV)nn)P|p 

n=n0 

N 

n = n 0
 u s=no4-l 

which, by (6), gives (2). D 

oo 

LEMMA 2. Let h(n) > 0 for n e N+Q , and let ]T kh(k) < oo. Then 
k=n0 

oo 

E M * ) e / p , n € M +
o l P > i . 

k=n 

P r o o f . 
oo oo 

(*) If £ fc/i(fc)<oo,then £ fc(fc) < oo. 
fc=n0 A:=no 

Moreover, 

oo / oo \ oo / oo \ oo 

E(E*(*)) = E E *(*)) = E ( * + 1 - « O W * ) < « > . (8) 
n=n0 \ k=n I k=n0 \ n=n0 / k=n0 

(EM*))* 
From (*), we have that lim -£ = 0, and hence, by (8), the proof 

"— E Kk) 
k=n 

of the lemma follows from the comparison principle. D 

Asymptotic equivalence 

We now prove our main results. 

T H E O R E M 3. / / . 

1° r: R, x R, —> R, is a non-decreasing function with respect to each 
variable separately and such that 

S U P { ^ § & . «<"' u < 6 ' 0<a<6}<l, 
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2° there exist supplementary projections P{ (i = 1,2) and a constant K > 0 
such that 

(Xi|P-1(n)y(n)p1y-1(5 + i)Ng 

\ s = n 0 / 

+ ( E Ig-H^YinjP^-^s + 1)|* ] ' < K < oo for n e N+ , 

3° Mere exist a nonnegative function h defined on N+ and positive con
stants a , JRTJ 5ncA that 

\F(n,u(n),Tu(n)) - P (n ,v (n ) ,T i ; (n ) ) | 

< h(n)r (\g-\n) [u(n) - v(n)] |, |Tu(n) - Tv(n)f) , 

|T(ti) - T(v)\ < a\g-\n) [u(n) - v(n)] \, 

0 < a < 1, \ul\v\ < oo, h e lp, K[ £ hP(n)Y < Kx < 1, 

\ n=n0 / 
p > 1, p + ^ = p g , 

4° F ( n , 0 , 0 ) e Z p , p > l , 

then there exists a homeomorphism H from the set of g-bounded solutions of (I) 

into the g-bounded solutions of (II). 

P r o o f . Let y = y(n) be a g-bounded solution of (I) on N+ . Then there 
exists a constant a > 0 such that y G B , where 

£g ,a = {* € Q : s u p f l j T V M n ) ! ) < a, n <E N+ } . 

Define the operator P for x G S 2 a ky 

n-1 

Px(n) = y(n)+ £ y ^ P ^ 1 ^ + l)P(5 ,x(5) ,Tx(5)) 
j = n 0 

oo 

- ^ y H ^ r ' ^ + l l F ^ x W . f t W ) for n e N + . 
s=n 

(9) 
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Write di(n,s)=g-1(n)Y(n)PiY-1(s+l), i = 1,2, then 

la-V^WI 
n - l 

<a + 53 \dx(n,s)F(s,x(s),Tx(s))\+ Y}d2(n,s)F(s,x(s),Tx(s))\ 
S=Пo s=n 

< a + £ |d1(n,в)|(Mз)r(|í/-
1Wx(в)|, \g-\s)x(s)\)) 

S=Пo 

oo 

+ J2\d2(rг,s)\{h(s)r(\g-1(s)x(s)\,\g-1(s)x(S)\)) 
S=П 

n — 1 oo 

+ 53 И1(nlв)||F(в,0,0)| + 53l'-2(n»«)ll-î,(я.O»0)l 
S=ПQ S=П 

{ n — 1 oo ^ 

^ |dx(n, 5)1/1(5) + ]Г \d2(n, s)\h(s) > 
s = n 0 s = n J 

n — 1 0 0 

+ 53 K(n,5)||F(S,0,0)| + 53И2(n,S)||F(S)0,0)| 
s = n 0 s = n 

<a + r(2a,2a) j ( £ И^n,*)!') ' ( £ «*(*)) ' 
.. s = n o / \ s = n o 

( 0 0 \ q / oo \ p 

53K(n,S)r 53 ^ 
s = n / \ s=n / 

+ (^\d1(n,s)\Aq (^\F(s^0)A' 
\s=n0 / \ s = n 0 / 

+ ( f > 2 ( n , 5 ) M (f ; |F( S ,0 ) 0)H 

If we choose n0 such that 
x 

( 00 \ p 

Y,hP(s)) <\ 
n=n0 / 

and 

( 0 0 \ p 

53 \F(s,0,0)\p) < | » 
n = n 0 / 64 
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we have that R maps B 2a into itself. Now, using Theorem 2, we are going to 
demonstrate that the operator R has a unique fixed point in B 2a. 

For xvx2 E B 2 a , we have 

\g-l(n)[RXl(n)-Rx2(n)]\ 
n - l 

< £ |d1(n,.s)||F(5,x1(5),rx1(5))-F(5,x2(5),rx2(5))| 
з=n0 

0 0 

+ ~l\d2(n,s)\\F(s,x1(s),Tx1(s)) - F(s,x2(s),Tx2(s))\ 
s=n 

/ 0 0 \ p 

<K[ ]£/V>) Wflz,-x^lx,-*^). 

Hence 

|fíxx - Rx2\ < r ( | x 1 - x 2 | |xj_ - x 2 | ) 

Thus we can apply Theorem 2, which yields the existence of a unique x E 
L? 2 a such that x = Rx. An easy computation shows that the fixed point 
x(n) = Rx(n), n E N+ is a solution of (II). Let B r and B u denote the 
species of ^-bounded solutions of (I) and (II), respectively. We define the map
ping H: B j —» B jj as follows: for every y 6 Bg 7 , Hy is the fixed point of 
the contraction R. This means Hy(n) = RHy(n). We prove that H is homeo-
morphism. For this purpose, let yx,y2 E BgI be such that Hyx = Hy2. Then 
we obtain yx = y2. Moreover, H is continuous. 

Next we define the inverse mapping of H, H~l: Bg u —> Bg 7 , by 

H~lx(n) = x(n) — Rxx(n), 

where 
n - l 

i t ^ n ) = 5Z ^(nJP^" 1 ^ + l)F(s,x(s),Tx(s)) 

OO 

- J2 Y(n)P2Y-\s + l)F(s, x(s), Tx(s)) . 
s=n 

H_1 is one to one, continuous mapping. • 
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THEOREM 4. If: 

1° the assumptions of Theorem 3 hold, 
oo oo 

2° Y, |P iy
_ 1(n + l)|ft(n)<+oo, £ \P1Y~\n + l)||P(n,0,0)| < +00, 

n=no n=no 
0 0 00 

3° £ nh(n)< 00, £ n|F(n,0,0)| < 00, 
n=no n=no 

i/ien \g-x(n) [Hy(n) - j/(n)] | e lp. 

Proo f . From (8) and the assumptions of the theorem, we have 

\g-\n)[Hy(n)-y(n)]\ 
n - 1 

< £ \g-\n)Y(n)P1Y-\s + l)\\F(s,Hy(s),THy(s))\ 
S=Пß 

00 

Hence 

+ J2\9-\n)Y(n)P2Y-\s+l)\\F(s,Hy(s),THy(s))\ 
s=n 

, n—1 

la-^yWPjjr^a) £ \PxY~\s + l)\h(s) (10) 
^ s=n0 

+ £|p1y-1(5 + i)||F(s,o,o)|} 
s=n0 ' 

0 0 

+ r(2a, 2a) £ | íT
1(n)y(n)P2y-1(s + l)\h(s) 

s=n 
0 0 

+ £ Ifl^Wnn)^^"1^ + l)\\F(s,0,0)\. 

,- n—1 

|y-1(n)У(n)P1|{r(2a,2a) £ | P 1 У 1 ( в +l)|ft(s) 
^ J t = П n S = Пo 

n - 1 

+ ^ | P 1 У - Ҷ S + l)||F(s,0,0)|} 
s = n 0 

<\g-\n)Y(n)pĄr(2a,2a) £ l ^ y - Ҷ s + l)|/г(>) 
^ s = n 0 

0 0 .. 

+ £ |p 1y-Ҷ s + i)||ғ(s,o,o)|} 
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Since (from Lemma 1) |_7~1(n)Y'(n)P1| G Zp, it is evident that this first term in 
the inequality (10) belongs to I . Taking in to account the second term of the 
above inequality, we obtain 

r(2a,2a)_r|S-1(n)y(n)P_y-1( .3 + l)|n(5) 
s=n 
oo 

+ _T ^(^Y^P.Y-^s + l)||F(s,0,0)| 
s=n 

( OO \ q / OO ^ 

Y,\9-l(n)Y(n)P2Y-\s + l)\<>\ I £V(*) 
s=n / \s=n ) 

( _°°_ \ * / _°° 
+ ^|_-1(n)nn)-3.Y-1(* + l)l' £|F(s,0,0)| 

P 

s=n / \ s = n 

/ o o \ p / O O \ p 

<ii-r(2a,2a)f ]_>p(f) + tf( _T 1^,0,0)1" 
\ s = n / \ s = n 

Also from 3°, this second term belongs to I 
p 

The proof of the theorem is complete. ---

T H E O R E M 5. / / . 

1° the assumptions of Theorem 3 hold, 

2° £ exp(- .8-« £ | . ( s ) | - ' ) < o o , 
n=no ^ s=no ' 

then 
lim Iff"1 (n)[fft,(n)-y(n)] 1=0 . (11) 

n—^oo 
P r o o f . To verify that (11) holds, observe that 

\g-\n)[Hy{n)-y(n)]\<A + Bt 

where 
n - l 

A= _T |y(n)P iy-1(s + l)P(s,Fy(s),Ti?y(s))|, 
n=no 

oo 

B = _T|y(n)P2y-1(s + l)F(s,^y(s),TFy(s))|. 
s=n 

Using the assumptions of Theorem 3 and Holder's inequality we get 

oo \ P / oo \ P 

___>"(*)) +/f[_riF(S ,o,onj < - (12) 
s = n / \ s = n / 
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for n E N+ , where n1 E N+ is sufficiently large. 
Moreover, for n 2 E N+ , from Lemma 1 and 1°, we have 

n2 —1 
A = E l iTV^WY- 1 ^ + 1)F(S, JJy(s),TF/y(S))| 

a = n 0 

n - 1 

+ E |fl_1(n)Y(n)P1Y-1(« + l)F(s, tfy(S),Ttfy(s))| 
s=n2 

< | f l -
1 ( n ) Y ( n ) P 1 | ^ | P 1 Y - 1 ( . - + l)P(a,.ffy(a),THy(a))| 

s=no 
i 1 

/ n—1 \ P / i—l \ v 

(13) 

+ r(2a,2a)AГ £ ЛҶв) + Я £ |F(s ,0,0)M < | f (a ,0 ,0) | ' l < £ 

\ S=Tl2 / \ S=Tl2 / 

for n E N ^ and n2 sufficiently large. From (12) and (13) we obtain (11). • 
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