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VECTOR MEASURES AND NUCLEARITY 

MILOSLAV DUCHON 

It is well known [1, p. 48] that every finite complex-valued measure on the 
delta ring has finite variation, and hence every vector-valued measure on the 
delta ring with values in a finite-dimensional locally convex space has finite 
variation. This is, however, not the case for infinite-dimensional normed spaces 
as can be exhibited by a counter-example. Nevertheless there is a quite large 
class of infinite-dimensional locally convex spaces necessarily non-normable 
that are "well behaved" in this respect. In this paper we give a characterization 
of a class of the locally convex spaces X with the property that every X-valued 
vector measure on the delta ring has finite variation. This class contains, e. g., 
all nuclear spaces and dual-nuclear spaces which once again shows that nuclear 
locally convex spaces are substantially closer to finite-dimensional spaces than 
normable ones. We mention some open problems to. 

Let X be a locally convex Hausdorff topological vector space — shortly 
locally convex space — and P = (p)pGP a family of continuous seminorms 
defining the locally convex topology on X. 

Recall that if we are given a family (x/)/G/ of elements of the locally convex 
space X, where I is an arbitrary index set, then (x)ieI is said to be scalarly 
summable (also called weakly summable [2, 1.2]), if for every x' in X\ X' 
denoting the space of all continuous linear forms on X, the complex family 

(xxi)iei is absolutely summable, i. e. £ |JC';C,| is finite for every x' in X'. A family 
iel 

(xi)iei is said to be absolutely summable if £P(x/) is finite for all p in P. 
iel 

Let D be a delta ring of subsets of a set S and m: D -• X a sigma additive set 
function, i. e. m is a vector-valued measure on D with values in X. Let p be in 
P. Recall thet the p-variation of m on D is a non-negative extended-valued 
function defined by the relation 

n 

mp(E) = sup £ p(m(E,)) 
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where the supremum is taken over all finite families of the disjoint sets in D with 
n 

vj E{ = E. We say that m: D-*X has finite variation if for every p in P the 
/ = i 

p-variation is finite. 
We shall say that a locally convex space X has the property (sas) if every 

scalarly summable family of the elements of X is absolutely summable. 
We shall prove the following result. 
Proposition. Let X be a locally convex space with the property (sas). Let S be 

a sigma algebra of subsets ofS. Then every vector measure m: S-* X has bounded 
variation on S, i.e. for every p in P the quantity mp(S) is a finite number. 

Proof. Let x' be in X'. Then the scalar measure E->mx(E) = x'm(E) is 
bounded on S [1. p. 34], hence for every x' the scalar measure x'm has bounded 
variation v(x'm) [1, p. 35], i.e. there exists a non-negative finite constant Mx 

such that v(x'ra, S) ^ Mx.. From this we obtain the inequality 

(1) £ \x'm(E)\ = M, < co 
/ = I 

for every finite family of mutually disjoint sets (£,) in S forming a decomposition 
of the space S. 

If there is a p in P such that mp(S) is infinite, then there must exist a sequence 
of finite families of disjoint sets (£?) in S each forming a decomposition of S 
such that 

*„ 
(2) ZPW£,"))>2", H = 1,2, ... 

/ = i 

From the relation (1) there follows, for every x' in X', the relation 

t £Ux'm(En\<Mx,<oi. 
n=\/=12 

Hence the family 

{2-"m(En:i=h ...,*„; w = 1, 2, ...} 

with a countable index set I = {(i,n):i= 1, ...,kn, n = 1,2, ....} is scalarly 
summable. Since Xhas the property (sas) by assumption, this family is absolute
ly summable. So for every p in P there holds 

f £ 2-p(m(En) < oo, 
n = \ / = 1 

which is not possible if the relation (2) should be valid. This contradiction 
proves our Proposition. 
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Corollary. Let X be a nuclear locally convex space. Let S be a sigma algebra 
of subsets ofS. Then every vector-valued measure m: S -» Xhas bounded variation 
on S. 

Proof. This follows from the fact that every nuclear locally convex space 
has the property (sas) [2, 4.2.2]. 

Remark. We have mentioned that every nuclear space has the property 
(sas). It remains an open problem what properties should a locally convex space 
with the property (sas) posses in order to be nuclear (cf. [2, 4.2.6]). 

Recall that if D is a delta ring, then for every set E in D the family of sets 
from D which are subsets of £ is a sigma algebra. Thus we have proved the 
following. 

Theorem 1. Every vector-valued measure m on the delta ring D with values in 
a locally convex space X with the property (sas) in particular with values in a 
nuclear space, has finite variation on D. 

Recall that a locally convex space is said to be dually-metrizable [2, 0.7.5], if 
it is sigma quasibarelled and has a countable fundamental system of bounded 
sets. 

We shall show that for metrizable or dually-metrizable locally convex spaces 
there holds in a certain sense a converse assertion to Theorem 1. 

Theorem 2. Let X be a metrizable or dually-metrizable locally convex space. If 
every vector-valued measure m: D-+ X has finite variation on D, then X is a 
nuclear space. 

Proof. It suffices to prove that every summable sequence of elements of 
X is absolutely summable in this case [2, 4.2.5]. 

Let (x„ ieN) be a summable sequence of elements of X, where IV is the set 
of positve integers. First suppose that X is sequentially complete. Define a set 

function m: P(N) -> X by m(E) = £ xi9 for all E from P(IV) — the system of all 
/ e £ 

oo 

subsets of the set N— especially m(N) = £ xt. From the summability it follows 
/ = i 

that m is a vector measure with values in X which has by assumption bounded 
variation, hence m^IV) is a finite number. Then 

£ P(x/)l = £ Pimm)) = £ mp({i}) = mp(N)< oo. 
i - i / = I / = i 

So (xh ieN) is an absolutely summable sequence. If the space Xis not complete, 
we take its completion and show that this is nuclear, hence X is nuclear as a 
subspace of a nuclear space [2, 5.1.1]. The proof is complete. 

If we adjoint to the assumptions of Theorem 2 else the completeness of the 
space X, then the space X not only is nuclear but must be even reflexive and in 
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case of a normable space even finite-dimensional as the following theorem 
shows. 

Theorem 3. Let X be a complete metrizable or quasi-complete dually-metrizable 
locally convex space. If every vector-valued measure on the delta ring with values 
in X has finite variation, then the space X is (not only nuclear but also) reflexive. 

Proof. From Theorem 2 it follows that X is nuclear and the complete
ness implies that X is semireflexive [2, 4.4.11] and since X is metrizable or 
dually-metrizable, it is reflexive [2, 4.4.12]. 

A similar theorem as that for nuclear spaces holds also for dual-nuclear 
spaces. Recall that a locally convex space Xis said to be dual-nuclear if its strong 
dual is nuclear. 

Theorem 4. A vector valued measure on the delta ring with values in a dual-
nuclear space has finite variation. 

This follows from Theorem 1 since every dual-nuclear space has the property 
(sas) [2, 4.2.8]. 

Conversely we have the following. 
Theorem 5. If X is metrizable or dually-metrizable locally convex space and 

every vector-valued measure on the delta ring with values in X has finite variation, 
then X is dual-nuclear. 

Proof. According to Theorem 2 the space X is nuclear and since it is 
metrizable or dually-metrizable, it is also dual-nuclear [2, 4.3.3]. 

The last theorem can be else generalized if we consider locally convex spaces 
with the property (B): For every bounded set B of absolutely summable sequen
ces of elements of X there exists a closed absolutely convex bounded set B in X 
such that 

x 

X PB(xn) < °° f ° r a ^ (xm -V) from B, 
n= 1 

where pB is the Minkowski functional of the set B. All metrizable and dually-
metrizable locally convex spaces have the property (B). For such spaces we have 
the following 

Theorem 6. Let X be a locally convex space with the property (B). If every 
vector-valued measure on the delta ring with values in X has finite variation, then 
X is dual-nuclear. 

Proof. In the same way as in Theorem 2 we show that every summable 
sequence of elements of X in the given assumptions is absolutely summable, 
from which it follows that X is dual-nuclear. 

Remark . In general a dual-nuclear space need not be nuclear and a nu
clear space need not be dual-nuclear [2, 4.3.4]. 

Corollary 1. If under the assumptions of Theorem 6 the space X is quasi-
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complete, then X is semireflexive in particular if X is metrizable, then X is 
reflexive. 

Recall that every quasi-complete dual-nuclear locally convex space is semire
flexive [2,4.4.11]. 

As a corollary of the preceding results we can give the following well-known 
result. 

Corollary 2. Let X be a normable locally convex space. If every vector-valued 
measure on the delta ring with the values in X has finite variation, then X is 
finite-dimensional. 

Proof. Under the assumptions the space X must be nuclear and this is 
possible only in the case X is finite-dimensional [2, 4.4.14]. 

From the results of this paper we may concede the following. In the class of 
the locally convex spaces with the property (B): All vector-valued measures on 
the delta rings with values in (quasi-complete) space X have finite variation if 
and only if the space X is dual-nuclear (only if X is semireflexive). In the class 
of metrizable or dually-metrizable locally convex spaces X: All vector-valued 
measures on the delta rings with values in (complete) X have finite variation if 
and only if X is nuclear (only if X is reflexive). 

Thus for arbitrary locally convex spaces the similar questions remain still 
open. 
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BEKTOPHblE MEPbl M flflEPHOCTb 

Miloslav Duchon 

Pe3K)Me 

B pa6oTe xapaKTepH30BaH Kjiacc .noKajibHo BbinyKjiHx npocTpaHCTB, B KOTOPMX Kâ ĉ aa BeK-
TopHaa Mepa Ha .aejibTa-KOJibue co 3HaHeHH*iMH B TaKOM npocrpaHCTBe HMeeT KOHenHyio Bapna-
UHK>. TaKHMH npocTpaHCTBaMH cyTb, HanpHMep, Bee $mepnbie npocrpaHCTBa. 
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