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, MAXIMAL ADDITIVE AND MAXIMAL
MULTIPLICATIVE FAMILY FOR THE FAMILY
OF #-DARBOUX BAIRE ONE FUNCTIONS

LADISLAV MISIK

1. In his book [1], p. 14, A. M. Bruckner defines the maximal additive and the
maximal multiplicative family for a given family F of real functions in this way: A
subfamily F, of the family F is called the maximal additive (multiplicative) family
for F iff F, is the set of all functions f of F such that E+ geF(fgeF)forallgeF.

In [2], p. 109, A. M. Bruckner and J. G. Ceder proved that the maximal
additive family for the family of all real Darboux Baire one functions of a real
variable is the family of all real continuous functions of a real variable.

In the cited book [1], p. 15, A. M. Bruckner presents the problem of finding the
maximal multiplicative family for the same family. Recently, R. Fleissner solved
this problem in [3]. The maximal multiplicative family for the family of all real
Darboux Baire one functions of a real variable is the family of all real Darboux
Baire one functions f of a real variable which have the following property:

If f is discontinuous from the right (from the left) at a, then f(a)=0 and there
exists a decreasing (an increasing) sequence {a.}.-1 converging to a such that
f(as)=0 for all n.

Let X be a topological space and let 8 be a base for the topology in X. In [4]
there is given the following definition: A real function f defined on X is called
B-Darboux iff for each A € B, every x, ye A (A denotes the closure of A) and
each c e (min (f(x), f(y)), max (f(x), f(y))) there exists a point z € A such that
f(z)=c.

It is natural to ask whether similar characterizations as the above one hold also
for the maximal additive family and for the maximal multiplicative family for some
families of all real B-Darboux Baire one functions. In this paper it will be
demonstrated that similar characterizations hold for such families of functions if X
is a finite-dimensional Banach space with a strictly convex norm and if % is the
base of all spherical neighbourhoods. The characterization of the maximal multip-
licative family and the maximal additive family for the family of all 8-Darboux
Baire one functions if X is an euclidean space and 9 is the base of all open intervals
in X is given in [6]. '
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2. The proofs of the cited propositions on the maximal additive family and on
the maximal multiplicative family in the case of real functions of a real variable are
based on the following three facts:

a) Let ae(— o, ). If f is a discontinuous function from the right (from the
left) at a, then there exists a closed interval I=(a,b) (I=(c, a)) and a, B such
that a <f3 and for each decreasing (increasing) sequence {a. }.-: contained in I and

converging to a, there holds: a=sup inf f((a, a.)) < inf sup f((a, a.))=p

(a=sup inf f((as, a)) < inf sup f((an, a))=B).

b) Each real Darboux Baire one function defined on a closed interval I
possesses an extension in the family of all real Darboux Baire one functions of
a real variable. '

c) For the family of all real Baire one functions of a real variable the Young
criterion states the condition under which a real Baire one function has or has not
the Darboux property.

We recall that the generalization of the Young criterion for real Baire one
functions in the case of B-Darboux functions was proved in [5]. This generalization
of Young’s criterion is as follows: .

Theorem 1. (Satz 9, p. 425 in [5]) Let X be a complete metric space and let 2B be
a base in X having the following two properties :

(1*) For each open neighbourhood U of a point x € X and for each Be B
satisfying x € B there exists a C € B such that CcUnB and xe C—C.

(2) For each B € & and for each decomposition of B into two non empty disjoint
sets A, and A, such that UnBc A,, resp. UnB c A, for each U € B, which is
contained in A, resp. A., the sets AinA: and AinA; are non empty (A1 denotes
the derivative set of A).

Then a real Baire one function f defined on X is B-Darboux iff for each B € B
and for each x € X satisfying x € B— B, there exists a simple sequence {X.}r-i

converging to x such that x.e B forn=1, 2, 3, ... and lim f(xa)=f(x).

3. Now we give some propositions concerning strictly convex Banach spaces. We
recall that a Banach space X is strictly convex iff for every x, y € X the equality
[lx+yll = |lIxl| + |ly|l implies that there exists a non negative number A such that
x =Ay.

Lemma 1. Let X be a strictly convex Banach space, let U, = {xe X: ||x||<r}
and V=b+U. and W=a+ U,, where r and p are positive. Let xe€ X and
xeV—Vand xe W—W. Then Wc'V holds iff p=<r and a=Ab + (1—1)x for
appropriate A € (0, 1).

Proof. Let Wc V. Then 2p = diam W = diam V = 2r (diam W is the
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diametet of W) and thus p=r. There holds r—p = ||b—x| — [la—x| =
||b—a|| If b~a=0, we have p=r and a=b. Let ||b—a||>0. Then we have

b- ||b al (b—a)éV and therefore also b — n_-r-aﬂ(b_“)é W. This gives:

r—|lb—a = (_r_ - 1) b—all = “ —'r———1>(b—a

Il I b —al| I ||b all )
a—b+”b al (b- a)” Z p. Thus we have that ||b—al = r—p and
therefore there holds that ||(b—a) + (a—x)|| = |[b—x| = = ||b—al|
+ p = ||b—all + |la—x||. Thus there exists a non negative number a such that

R a
b—a = a(a—x), which implies a—1+ab + T7a”

Let p<randa = Ab + (1-A)x for Ae(0,1). Let ue W. Then |[u—al| <
= |la—x|| = Ar. Therefore holds that ||b—u|| = ||b—al| + [la—ull = (1-2)
r + |la—ul|<r. Thus ue V. Therefore Wc V.

Lemma 2. Let X be a strictly convex Banach space, let xe X, a.€ X, bn€ X,
beX,r.>0,p.>0andr>0foralln.LetV =b + U,, V. = bx + Un, Wa = a.
+ Up,xeV=V, x€V,= Vo, xe Wa =Wy, Varr € Vu € V, Wor1 € W,
V for all n and llm diam W, = lim diam V,,=0. Then foreachn=1, 2,3, ... there

n—so

exists k. and l. such that W, <V, and Vi, c W.,.

Proof. From Lemmal we have: b, = Ab + (1—A.)x and a. = p.b
+ (1—pa)x for some A, . €(0, 1). There holds: 2p, = diam W, = 2p.r, 2ra
= diam V, = 2A.r and therefore 'llirg pr = limry, = lim r» = lim rA» =0. Thus

n—so n-—sc

for each n=1, 2, 3, ..., there exists k. and . such that w, <A. and A, <p.. Then

pk"<r"’ r"‘<p"’ ‘;kna A'IHE(O 1) and ak.. = %:‘nbn + (1_‘1:")x’ bl,. = %an

+ (1 —%)x. From Lemma 1 we get that Wi, V, and Vi, c W,.

n

4. Let X be a metric space and let B be a base in X. Let x € X and B € & such
that x € B— B. We shall say that a sequence {C.}.-1 of elements of B converges

fromBtoxiffx € C,— C,, Car1 € C, = Bforn=1,2,3, ... and lim diam C,=0.
We shall say that a real function f defined on X is B-discontinuous from B at x iff

there exists a sequence {C.,}~-1 converging from B to x such that sup inf f(G) <

inf sup f(C.).
We shall say that a metric space X and its base & have the property (a) iff for
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each xeX, for each Be® satisfying xe B— B and for each real function

l f B-discontinuous from B at x there exists D e 3 and a, 8 such that D c B,

xeD - D and for each sequence {C.)n-: converging from D to x we have a
= sup inf f(C.) < inf sup f(C.)=8.

Let X be a topological space and % be a base in X. We shall say that a real
function defined on B, where Be®, is B-Darboux on B iff for each Ue B
contained in B, for each x, yeU and for each ce(min (f(x),f(y)),
max (f(x), f(y))), there exists a point z € U such that f(z)=c.

We shall say that a metric space X and its base % have the property (b) iff for
each real B-Darboux Baire one function ¢ defined on B, where B € &, there exists
an extension in the family of all real B-Darboux Baire one functions defined on X.

Lemma 3. Let X be a separable Banach space and let S be :f sphere {x e X: ||x —
al||=r}, wherea e X and r >0. Let ¢ >0. Then there exists a subset A c S such that
|la—b||>¢ foreverya, be A, a# b and for each x € S, there exists an a € A such
that ||x —al|<2e.

Proof. As X is separable, there exists a countable dense set H in S. By
mathematical induction it is easy to see that there exists a subset A of H such that

(i) for every b, ce A, b#c, we have ||b—c||>¢,

(ii) for each x € H, there exists a y € A such that ||x — y||=¢€.

Now let x € S. Then there exists a y € H such that ||x — y|| <e. By (ii) there exists
a be A such that ||y — b||=e. But then we have ||x —b|| <2e.

Lemma 4. Let X be a separable Banach space of dimension at least two, let € >0
and let n be a positive integer. Let S be $ sphere {xe X:||x—al||=r}, where a € X,
r>0. Then there exists a continuous function f, defined on S such that |f.(x)|=n
for each x € S and such that for each u € S there is —n = min f.(D) < max f.(D)
= n, where D = [z€S:||z—u|=¢€}.
£
3
a subset B of S disjoint with A such that there is one and only one c € A for each

Proof. Let A be a set of Lemma 3 for =. It is easy to see that there exists

b € B such that ||b —c|| <—§— and such that there exists one and only one b € B for

each c € A such that ||b—c||<§.

Let F= AuUB. Then F is a closed subset of S. Indeed, letn = ﬁ andueF.LetD

be a subset {z€S:||z—u||=n} of S. Then it is evident that the intersection DNF
has at most two points. Therefore u € F.
By the construction of A and B, it is evident that A and B are closed subsets of

S. Let @. be a function defined on AuUB as follows: @.(b) = —n for b e B and
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@-(c)=n for each ceA. By the Tietze extension theorem, there exists
a continuous function f. defined on § such that |f.(z)| =n for each z € S and f.(z)
= @n(z) for each ze AUB.

It is easy to prove that f. is a desired function in the lemma.

Proposition 1. Let (X, ||.]]) be a strictly convex Banach space of finite
dimension. Let@ be the family of all sets of form a + U,, where a € X, r>0 and U, 7 i)
= (xeX:||x||<r}.

Then for X and B (1*), (2), () and (b) are satisfied.

Proof. The property (1*) is evident.

(2) Let B=a+ U,, where ae X and r>0. Let B=A,UA:, where A, and A.
are non empty disjoint subsets of B satisfying UNnB c A,, resp. UnB € A,, for
each U € B contained in A, resp. A.. It is easy to prove that Aic Aiand A.c A;.
Let AinA:=0. Then AicBnAic A, and the set A, is closed relatively to B.
Then A; is a non empty open set relatively to B. From the connectivity of B it
follows that AinA:#@. Let ue AinAj. Then there exists a positive number @
such that u + U,, = B. Then there exists a point v such that v € A> n (u+ U,). The
point v is an interior point of A.. Therefore the set W = u{v+ U.: t>0,
v+ U c A;} is a set of the form v + U. for some positive number €. There holds
e<|lu—v]||, because u e A;. Since e <||lu—v||, theset K = A: n (v + Uju-vy)
— W) is a non empty compact set and Kn(W—-W) = @ (there holds
W — W c A;). Therefore there must exist a positive number 7 such that ||x — y|| =
n for each xeK and each ye W— W. But then v + U.+,c A,. This gives W
=v + Ugv + U.nc W, which is impossible.

(@) LetxeX,BeBandxe B—B.ThenB=a+ U, and ||x —a||=r>0. Let f
be a real function B-discontinuous from B at x. Then there exists a sequence

{C.}n-isuch that xe G, — C, Cuvi = C, <« Bforn=1,2,3, ..., lim diam C,=0

and a =sup inf f(C.) < il'nlf sup f(C.)=B. Then there exist ana, e X and a r, >0
such that lim r.=0 and C. =a. + U, for all n.
From Lemma 1 we get: rn+1=r, and a. =% a+ (1 - %)x We put D = B. Then

for each sequence {D.}.-1 of elements of & converging from B to x we have: a
= sup inf f(D.) < inf sup f(D.) = f3, since there exist, by Lemma 2, positive
integers p. and g. such that D,,c C, and C,, c D..

b) This follows from the following extension theorem:

Theorem 2. (Extension theorem) Let X be a separable Banach space and let
be the system of all sets a + U,, whereae X, U, = {xe X:||x||<r} and r>0. Let
Be®. Let @ be a real B-Darboux Baire one function on B. Then there exists
a B-Darboux Baire one function defined on X which is an extension of . '
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Proof. Let B=a+ U,, where ae X and r>0. Let S=a+ {xe X: llxll=r}.

Then S=B-B. Let B, = {xeX:le—al|<r<1—anl>} and S. =
1

_ {xex: llx—all = ’<1+E>}'

If X is a one-dimensional Banach space, then the theorem is evidently true.
Let X be an at least two-dimensional space. Then let f. be a function defined on

S. from Lemma 4 for ¢ =Zr' Since the function ¢ is on B of the Baire class one,
there exists a sequence {h.}n-: of continuous functions defined on B such that
lim h.(x) = @(x) and | h.(x)| =n for each x € B. By the Tietze extension theorem,

there exists a sequence {gn}.-: of continuous functions defined on X such that
lgn(x)|=n for each xe X, g-(x)=f.(x) for each x € S., gn(x)=h.(x) for each
x € B.US and g.+1(x) = gn(x) for each x € X satisfying the inequality ||x —a||=

r(l +%) and forn = 1, 2, 3, .... It is easy to prove that the limit lim g.(x) exists
for each x € X. Let f(x) = lim gn(x) for each x € X. Then f(x)=@(x) for each

x € B. For x € X, which satisfies the inequality ||x —a|| = r( 1 +’ll) , there holds

f(x) = ga(x). Therefore f is of the first class of Baire and it is an extension of .

Let Ce B, x, y € C and min (f(x), f(y)) < ¢ < max (f(x), f(y)). If C< B, then
f(x) = @(x), f(y) = @(y) and there exists a z € C such that ¢(z)=c. But then
f(z)=@(z) and therefore f(z)=c.

If C < X — B, then the function f is continuous on C and therefore there exists
a z € C such that f(z)=c.

If C—B+#¢ and CnB+9, then C—B is a non empty open set. Let n be
a positive integer such that —n<c<n. We can easily prove that there exist

a positive integer k and a point u such that ue S, kZn and u+ U,x—BcC.
- r

Then D =Scn(u+ Uwk) = {v eSc:flv—ul = E}' From Lemma 4 it follows that

—k = min fi(D) = min f(D) < max f(D) = max fi(D) = k. Therefore there

exists a z € D such that f(z) = fi(z) = c. It is evident that z € C. We have proved

that the function f is B-Darboux on X, and thus the extension theorem is proved.

Proposition 2. Let X be a strictly convex Banach space of finite dimension. Let
B ={a+ {xeX:|lxll<r}:aeX, r>0}. Let f be a real B-Darboux Baire one

function on X. Then f is discontinuous at x iff it is B-discontinuous from some
B at x.
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Proof. If X is a one-dimensional Banach space, it is evident. If f is B-discon-
tinuous from some B at x, then it is obvious that f is discontinuous at x.

Let X be a strictly convex Banach space of dimension at least two and let f be
discontinuous at x. Since f is a B-Darboux Baire one function on X which is
discontinuous at x, there holds: a =sup inf f(x + U,)<in£ sup f(x+ U,)=p and

r> . r>

a=f(x)=p.Let S={zeX: ||z—x| =1}. Since S is compact, there exists a finite
- subset A of S such that for each z € S there exists an a € A such that ||z —all<1.
For eachae A we put S.={ueX: |[u—al<1}. Then xeS.—S. foreachac A.
Let {C,, »}n-1 be a sequence of elements of & such that { C,, »} -1 converges from S.
to x. Let a.=sup inf f(C, »)=inf sup f(C., .)=p. for each ae A. Since f is

RB-Darboux, we have a. =f(x)=p. foreach ae A.

We shall assume that f is not %B-discontinuous from any B of & at x. Then
a.=f.=f(x) for each ae A. Let n be a positive number that satisfies (a, )
- (f(x) — n, f(x) + n) # 0. Since A is finite and since a. = . = f(x) for each
a € A, there exists an n such that Ca, »<= S. and f(C.,») = (f(x) — n, f(x) + n)for
each ae A. Let ¢ = min {diam C.,n:a€ A}. Let uex+ U,, u#x. Then ||x —

u||>0andv=x + (u—x)eS. There exists an a € A such that v € S,. Let

llx —ull

Can=bi+ U, bs = ket + (1=2Aa)x, ra=|ba—x| = Aa = 0 > ||x —u||. We put
—_ — .. —_
c = l"l—”ﬂu + (1—“—"T"ﬂ)x. Since v € Sa, x €. — S, o<”—"l—“”<1 and

since X is a strictly convex Banach space, we have: c € S.. But then ||b. — ul|
= ||Aa(a — ¢)|| <Aa. Therefore u € Ca, ». Thus we have proved that (x + U,) — {x}
c u{Csn:acA}. Then we get: f(x+U,) = f(x+U,) — {x}) u {f(x)} <
U{f(Can):ae A} U {f(x)} = (f(x) — n, f(x) + n). Therefore there holds: f(x)
-n=inff(x+U,) = a<pf =supf(x+U,) = f(x) + n. Thus (a, B)
= (f(x)—mn, f(x)+n) = 0. But this is impossible. Therefore f must be B-discon-
tinuous from some B at x. ‘

5. Theorem 3. (The maximal additive family for the family of all %B-Darboux
Baire one functions). Let X be a finite dimensional strictly convex Banach space
and let B be the system of all sets a + U,, whereae X, U, = {x e X:||x||<r} and
r>0. The maximal additive family for the family of all B-Darboux Baire one
functions defined on X is the family of all continuous functions.

Proof. Let f be a continuous function on X. According to the theorem 13
(Satz 13) in [5], p. 427, f+ g is a real B-Darboux Baire one function for each
R-Darboux Baire one function g. Therefore f belongs to the maximal additive
family for the family of all -Darboux Baire one functions defined on X.

Now let f be a function from the maximal additive family for the family of all
R-Darboux Baire one functions defined on X. Then f is evidently a real
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RB-Darboux Baire one function, since f+0=f is a real B-Darboux Baire one
function.

We shall assume that f is discontinuous at x. According to Proposition 2, it is
AB-discontinuous from some B, Be % at x. According to Proposition 1 (a) is
satisfied. Therefore there exist a D € 8 and two numbers a, § such that a <f,
D cB and for each sequence {C.}.-1 converging from D to x we have: «

= sup inf f(C,) < inf sup f(C.)=f3. There also holds that a =f(x)=, since f is

a B-Darboux function. Let g be a function defined on B as follows: g(u) = f(u)
forue B—{x} and g(x)e(a, B) — {f(x)}.

The function g is a Baire one function on B and we shall prove that it is also
B-Darboux on B. Let Ce B, C<B, u, veC and let min (g(u), g(v)) < ¢ <
max (g(u), g(v)). If u#x and v# x, then there exists a point z € C such that
f(z) =c, since g(u)=f(u) and g(v)={f(v). But there is also z# x (z is in C) and
therefore g(z) = f(z) = c.If u=x,thenxe C— C and C c B. From Lemma 1 we
get that there exists an integer n such that Cic < C for all k =n. There exists a k
such that k=n and g(x) € f(C«) = g(C). Since G = C, itis g(x) € f(C). But then
there exists a z € C such that g(z) = f(z) = ¢. In the case v = x we proceed similarly.

The function —g is also a %-Darboux Baire one function on B. From the
extension theorem there exists a function h which extends the function —g and
which is a -Darboux Baire one function on X. Therefore the function k=f+h
must be a B-Darboux Baire one function on X. But k(u) = f(u) + h(u) = g(u)
+ (—g(u)) =0foreachue B—{x}and k(x) = f(x) + h(x) = f(x) — g(x) # 0.
Therefore the function k can not be a #B-Darboux function.

Thus we have proved that f cannot be %B-discontinuous from any B of 4 at any
point of X. According to Proposition 2 the function f is continuous.

Theorem 4. (The maximal multiplicative family for the family of all 8-Darboux
Baire one functions) Let X be a finite dimensional strictly convex Banach space and
let B be the system of all sets a+ U,, where ae X, U, = {xe X:||x||<r}, r>0.
The function f belongs to the maximal multiplicative family for the family of all
RB-Darboux Baire one functions defined on X iff

(i) f is a B-Darboux Baire one function on X

(ii) if it is discontinuous from B, Be B, at x, x € X, then f(x)=0 and there

exists a simple sequence {xi}«-1 of points of B such that f(xi)=0fork=1,2,3, ...

and ‘!im Xk = X.

Proof. Let f be an element of the maximal multiplicative family for the family
of all B-Darboux Baire one functions defined on X. Then f is a -Darboux Baire
one function on X, since f- 1=f is a B-Darboux Baire one function.

Let f be B-discontinuous from B, B € %, at x, x € X. From the property (a)
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there exist a D € B and two numbers a, B such that D = B and for each sequence
{ Ca}n=1 converging from D to x we have : a =sup inf f(C,) < inf sup f(C.)=B.

Let f(x) # 0. We can assume that f(x) >0 (by multiplying by —1 we can transfer
the case f(x) <0 to the case f(x)>0). For the number a either & >0 or a =0 can
hold.

We treat the case a>0. There exists a Ce R such that f(C)c(g, ZB). The

function @ defined on C by ¢@(u)=f(u) for ue C—{x} and @(x) e (a,B)
— {f(x)} is a B-Darboux Baire one function on C. According to the extension
~ theorem there exists a B-Darboux Baire one function g on X which extends ¢. Let

h =max (2, ) According to Theorem 13 (Satz 13, [5], p. 427), the function h is
a B-Darboux Baire one function on X. For u € C we have: h(u) = g(u) = @(u).

The function hl— is also a B-Darboux Baire one function on X. In fact, it is a Baire

one functxon since h is a Baire one function and h = =2 5 Let Be®, u, veB and
1 ) . 1
(@)’ h(v) (@)’ h(v) Then min (h(u), h(v)) < c <

max (h(u), h(v)). But h is a B-Darboux function on X, therefore there exists

mm( ) < ¢c< max(

a zeC such that h(z)=%. This gives that ﬁ=c. Therefore ;ll- is also

a RB-Darboux function.
bi
h
maximal multiplicative family for the family of all 8-Darboux Baire one functions

on X. But the function ! is not a $B-Darboux function on X, since ({-) (x)

h

f((x))#:land <f>( ) = f((L:"))=1.for all ue C—{x}.

Therefore the case a >0 is impossible.
Let a =0. Then we have: a =0<f(x)=p. Let £ be a such positive number that

f()

The function +- must be a 8-Darboux Baire one function, since f belongs to the

0<eg<=;~. Let @ be a function defined on D by the equality: @(u)

= max (g, f(u)) vfor ueD—{x} and @(x) = _f%x_) The function @ is a Baire one

function on D. It is also a B-Darboux function on D. In fact, let Ce B, C<D,
u,veC€ and min(¢), p(v)) < ¢ < max (p(u), ¢(v)). Then we have:
min (f(u), f(v)) = min (@(u), P(v)) <c < max (@(u), @(v)) = max (f(u), f(v))
and ¢ <c. There exists a z € C such that f(z) = c. But there is @(z) = max (¢, f(2))
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= max (g, ¢)=c. From the extension theorem we get a B-Darboux Baire one
function A on X which extends ¢. Let g =max (g, h). Then g is also a 3-Darboux

f

. . ) 1 ) .
Baire one function on X. It is also 5 a B-Darboux Baire one function. Therefore 5

f

must be a %B-Darboux Baire one function on X. But the function 5 is not
f
g
< f _ fw) - e

e=f(u), p (u) = - <1 for each ueD — {x} satisfying f(u) < ¢ and
f

(E) (x)=2. Therefore the case a =0 is also impossible.

a B-Darboux function on X, since ( ) (u)=1 for each ue D — {x) satisfying

Therefore we cannot have f(x)# 0. Also we have proved that f(x)=0.

If there does not exist a simple sequence {x«}«-: of points of B converging to x
such that f(xx)=0 for k=1, 2, 3, ..., then there exists Ce A such that Cc B,
xeC—C and f(C)<(0, ©) or f(C)c(— =, 0). It is sufficient to treat the case
f(C) <= (0, »). There exists an E € B such that xe E—E, EcC and diam E <
diam C. Then E — {x} = C. We define a function ¢ as follows: @(u)= f(u) for
ueE—{x} and @(x)e(a, ). Then we have @(x)# f(x). The function ¢ is
a B-Darboux Baire one function on E. From f(C)c (0, ), E—{x}<=C and
@(x)e(a, B) it follows that @(u)>0 for all ue E. According to the extension

theorem there exists a #B-Darboux Baire one function g on X which extends é

Therefore the function gf must be a B-Darboux Baire one function on X. But
f(w) = f(x)

there holds: u) = —=<=1 for ue E—{x} and x) = —==0.
holds: (gf) (u) = 3 (x) and (9f) (x) = 25

Therefore the function gf can not be a B-Darboux function. Thus there exists in B

a simple sequence {x«}x-: such that ‘l(ixg xx=x and f(xx)=0 for k=1, 2, 3, ....

Let f be a B-Darboux Baire one function which satisfies: if Be %, x € X and f is
R-discontinuous from B at x, then f(x)=0 and there exists a simple sequence

{ x« } k=1 of points of B such that ’l(im xx=xand f(xx)=0fork=1,2,3, ... Let g be

a B-discontinuous one function on X. Then gf is a Baire one function on X. To
prove that gf is also 8-Darboux, we use the generalization of the Young theorem.
Let Be®, xe X, xe B—B. Let f be not B-discontinuous from B at x. Let
{C.)n-1 be a sequence of elements of %B converging from B to x. Then

sup inf f(C,) = inf sup f(C.) holds. From the generalization of the Young theorem
it follows that there exists a sequence {x,}n-: such that x,e C. and lim g(x.)
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= g(x). From x.€C, and f(x) = sup inf f(C.) = inf sup f(G.) it follows that

lim f(x.) = f(x). Thus we have: x.€B for n=1, 2, 3, ... and lim (gf) (x)
= (gf) (®)- |

Now let f be B-discontinuous from B at x. Then f(x)=0 and there exists
a simple sequence {x.}n-: of points of B such that f(x,)=0forn=1, 2, 3, ....

Therefore we have: lim (gf) (x.) = 0 = (gf) (x). From the generalization of the

theorem of Young it follows that the function gf is B-Darboux. Thus we have
proved that gf is a 8-Darboux Baire one function and therefore f belongs to the

maximal multiplicative family for the family of all 8-Darboux Baire one functions
defined on X.
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MAKCI/IMAIIIJHI)IPI AIIVUTUBHBLII 1 MYJIBTUIUIMKATHABHBIN KIIACC
I KIIACCA ®YHKIIMHN B-TAPBY 1-OrO KIIACCA B3PA

Jlagucnas Mumuk

Pesiome

B pabore paccMaTpMBaeTcs MaKCHMANbHBIA aAAMTHBHBIA M MAaKCHMAJbHBIA MYJIbLTHIUTMKATUBHBIA
Knacc ais kinacca dynkpit B-ap6y 1-oro kinacca Bapa, onpefeneHHbIX Ha KOHEYHOMEPHOM CTPOIO
BBIYKJIOM NpocTpaHcTBe Banaxa X, mpudeM B siBnsiercss 6a3uCOM LIApOBBIX OKPECTHOCTEM B X,
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