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Math. Slovaca 31.1981, No. 4, 405-415 

MAXIMAL ADDITIVE AND MAXIMAL 
MULTIPLICATIVE FAMILY FOR THE FAMILY 

OF 95-DARBOUX BAIRE ONE FUNCTIONS 

LADISLAV MlSlK 

1. In his book [1], p. 14, A. M. Bruckner defines the maximal additive and the 
maximal multiplicative family for a given family Fof real functions in this way: A 
subfamUy F0 of the famtty F is caUed the maximai additive (muitipiicative) famiiy 
for F iff F0 is the set of aii functions fofF such that£+g eF(fg eF) for aii g e F. 

In [2], p. 109, A. M. Bruckner and J. G. Ceder proved that the maximai 
additive famiiy for the famiiy of aii reai Darboux Bake one functions of a reai 
variable is the famiiy of aii rea\ continuous functions of a reai variabie. 

In the cited book [1], p. 15, A. M. Bruckner presents the problem of finding the 
maximal multiplicative family for the same family. Recently, R. Fleissner solved 
this problem in [3]. The maximai muitiplicative famiiy for the famiiy of aii reai 
Darboux Bake one functions of a reai variable is the famiiy of aii rea\ Darboux 
Bake one functions f of a reai variabie which have the foliowing property: 

If f is discontinuous from the right (from the ieft) at a, then f(a) = 0 and there 
exists a decreasing (an increasing) sequence {an}n=i converging to a such that 
/(a») = 0 for aUn. 

Let X be a topological space and let 98 be a base for the topology in X. In [4] 
there is given the following definition: A reai function f defined on X is cailed 
98 -Darboux iff for each A e S3, every x, y e A (A denotes the closure of A) and 
each ce(min (/(*),/(y)), max (/(*), f(y))) there exists a point zeA such that 
f(z) = c. 

It is natural to ask whether similar characterizations as the above one hold also 
for the maximal additive family and for the maximal multiplicative family for some 
families of all real 98-Darboux Baire one functions. In this paper it will be 
demonstrated that similar characterizations hold for such families of functions if X 
is a finite-dimensional Banach space with a strictly convex norm and if 98 is the 
base of all spherical neighbourhoods. The characterization of the maximal multip­
licative family and the maximal additive family for the family of all 98-Darboux 
Baire one functions if X is an euclidean space and 98 is the base of all open intervals 
in X is given in [6]. 
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2. The proofs of the cited propositions on the maximal additive family and on 
the maximal multiplicative family in the case of real functions of a real variable are 
based on the following three facts: 

a) Let ae(—oo?oo). I f / i s a discontinuous function from the right (from the 
left) at a, then there exists a closed interval I=(a,b) (I={c,a)) and a, p such 
that a<P and for each decreasing (increasing) sequence {an }n=i contained in I and 

converging to a, there holds: a=sup inf /((a, an)) < inf sup /((a,a„)) = j3 
„ „ 

(a =sup inf f((an, a)) < inf sup /((a„, a)) = 0). 
n „ 

b) Each real Darboux Baire one function defined on a closed interval I 
possesses an extension in the family of all real Darboux Baire one functions of 
a real variable. 

c) For the family of all real Baire one functions of a real variable the Young 
criterion states the condition under which a real Baire one function has or has not 
the Darboux property. 

We recall that the generalization of the Young criterion for real Baire one 
functions in the case of S8-Darboux functions was proved in [5]. This generalization 
of Young's criterion is as follows: 

Theorem 1. (Satz 9, p. 425 in [5]) Let Xbea complete metric space and let 2h be 
a base in X having the following two properties: 

(1*) For each open neighbourhood U of a point xeX and for each Be28 
satisfying xeB there exists a Ce2& such that Cc UnB and xeC-C. 

(2) For each B e 2ft and for each decomposition of B into two non empty disjoint 
sets A\ and A2 such that UnBcAi, resp. UnBcA2 for each Ue2ft, which is 
contained in A., resp. A2, the sets A[nA2 andA\nA2 arenonempty (A! denotes 
the derivative set of Ai). 

Then a real Baire one function f defined on X is 2&-Darboux iff for each B effi 
and for each xeX satisfying xeB-B, there exists a simple sequence {xn}n=i 

converging to x such that xneB for n = 1, 2, 3, ... and lim f(xn) = f(x). 
„-»oo 

3. Now we give some propositions concerning strictly convex Banach spaces. We 
recall that a Banach space X is strictly convex iff for every x, y eX the equality 
||jc + y|| = ||x|| + ||y|| implies that there exists a non negative number A such that 
x = Xy. 

Lemma 1. Let X be a strictly convex Banach space, let Ur = {x e X: \\x \\ < r} 
and V=b + Ur and W = a + l/p, where r and p are positive. Let xeX and 
xeV-V andxeW- W. Then Wcz V holds iff p=\r and a = A6 + (1 - A)JC for 
appropriate A e (0,1). 

Proof. Let Wcz V. Then 2p = diam W =\ diam V = 2r (diam W is the 
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diametei" of W) and thus p^r. There holds r-p = \\b-x\\ - | |a-jc| | ^ 
| | b - a | | . If b - a = 0 , we have p = r and a = b. Let | |b -a | | :>0 . Then we have 

r r 
b ~~ 771 il (b-a)£V and therefore also b - 777 JT (b-a)£W. This gives: 

| | b -a | | v | |b-a | | 

A \ b -

a-b+w=^\(b-a) ^ p. Thus we have that | | b - a | | ^ r-p and 

therefore there holds that | | ( b - a ) + (a-x)\\ = \\b-x\\ = r = | | b - a | | 
+ p = || b - a || + ||a - x ||. Thus there exists a non negative number a such that 

b-a = a ( a - x ) , which implies a = T — - b + JTa*' 

Let p ^ r and a = Ab + ( I -A)JC for Ae(0,1). Let ueW. Then | | u - a | | < 
p = \\a-x\\ = Ar. Therefore holds that | |b -w || ^ | | b - a | | + | | a - u | | = (1-A) 
r + | | a - u | | < r . Thus ueV. Therefore W c V . 

Lemma 2. Let X be a strictly convex Banach space, let xeX, aneX, bne X, 
beX, r„ > 0 , p„ > 0 and r > 0 for all n.LetV = b + Ur, V„ = b„ + Urn, Wn = a„ 
+ LTPn, x e V - V, x e K - V„, x e W„ - W„, V„+i c V„ cz V, W„+i cz W„ cz 

V for all n and lim diam Wn = lim diam V„ = 0. Then for each n = 1, 2, 3 , . . . there 
„—•<» „—•<» 

exists fc„ and /„ such that Wkn c V„ and Vn cz Wn. 
Proof. From Lemma 1 we have: b„ = A„b + ( 1 - A „ ) J C and a„ = \inb 

+ (l-iin)x for some A„, /u„e(0,1) . There holds: 2p„ = diam Wn = 2jii„r, 2r„ 

= diam V„ = 2A„r and therefore lim p„ = lim r\in = lim r„ = lim rA„ = 0. Thus 
„—»oo „—»oo „—».oo ft-»oo 

for each n = 1, 2, 3, ..., there exists fc„ and /„ such that [ikn <A„ and A.„ </x„. Then 

pkn<rn, rln<pn, ^ , ^ e ( 0 , l ) and akn = ^ b„ + ( l - * r ) x , b.n = ^ a „ 
A„ \Xn An \ A„ / |Ll„ 

+ ( l — - ) J C . From Lemma 1 we get that Wkn cz V„ and Vin cz W„. 

4. Let X be a metric space and let 38 be a base in X. Let xeX and B e 38 such 
that xeB-B. We shall say that a sequence {C„}~=i of elements of 38 converges 

from Btox iffx eCn-Cn, C„+i c C„ cz B for n = 1, 2 , 3 , ... and lim diam C„ = 0. 

We shaii say that a reai function f defined on X is ^-discontinuous from Batx iff 

there exists a sequence {Cn}n=i converging from Btox such that sup inf / ( G ) < 
n 

inf sup /(C„). 
n 

We shall say that a metric space X and its base 38 have the property (a) iff for 
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U 

each xeX, for each BeS& satisfying xeB-B and for each real function 
f $8-discontinuous from B at x there exists DeSft and a, (5 such that D c B , 
xeD-D and for each sequence {Cn}n=\ converging from D to x we have a 

= supinf/(C) < infsup/(C„) = 0. 
n n 

Let X be a topological space and S3 be a base in X. We shall say that a real 
function defined on B, where Be SB, is Sd-Darboux on B iff for each UeSR 
contained in B, for each x, yeU and for each c e (min (f(x), f(y)), 
max (f(x), f(y))), there exists a point zeU such that f(z) = c. 

We shall say that a metric space X and its base 38 have the property (b) iff for 
each real Sft-Darboux Baire one function cp defined on B, where BeSd, there exists 
an extension in the family of all real Sfc-Darboux Baire one functions defined on X. 

Lemma 3. Let Xbea separable Banach space and let Sbef sphere {x e X: \\x -
a || = r}, where aeX and r > 0. Let e>0. Then there exists a subset AczS such that 
| | a - b | | > £ for every a, b eA, a£b and for each xeS, there exists anaeA such 
that | |jc-a| |<2e. 

Proof. As X is separable, there exists a countable dense set H in S. By 
mathematical induction it is easy to see that there exists a subset A of H such that 

(i) for every b, ceA, b^hc, we have | |b -c | |>£ , 
(ii) for each xeH, there exists a y e A such that | | x -y | |^£ . 
Now let x e S. Then there exists a y e H such that ||JC - y \\ < e. By (ii) there exists 

a be A such that ||y-b||_§£. But then we have | |jc-6| |<2e. 

Lemma 4. Let Xbea separable Banach space of dimension at least two, lete>0 
and let n be a positive integer. Let S be jt sphere {xeX: | | x -a | | = r}, where a eX, 
r>0. Then there exists a continuous function fn defined on S such that \fn(x)\^n 
for each xeS and such that for each ueS there is -n = min fn(D) < max fn(D) 
= n, where D = [z eS: \\z~ w|| = e}. 

£ 

Proof. Let A be a set of Lemma 3 for - . It is easy to see that there exists 

a subset B of S disjoint with A such that there is one and only one ceA for each 
£ 

b eB such that ||6 - c|| < - and such that there exists one and only one b eB for 
o 

£ 

each ceA such that | | b - c | |<« . 
£ 

Let F = A uB. Then F is a closed subset of S. Indeed, let r\ = — and ueF. Let D 
be a subset {zeS:| |z-u| |^rj} ofS. Then it is evident that the intersection DnF 
has at most two points. Therefore ueF. 

By the construction of A and B, it is evident that A and B are closed subsets of 
S. Let q>n be a function defined on AuB as follows: q)n(b) = —n for b eB and 
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q)n(c) = n for each ceA. By the Tietze extension theorem, there exists 
a continuous function /„ defined on S such that \fn(z)\ = n for each zeS and fn(z) 
= q)n(z) for each zeAuB. 

It is easy to prove that /„ is a desired function in the lemma. 

Proposition 1. Let (X, ||.||) be a strictly convex Banach space of finite 
dimension. Let S be the family of all sets of form a + Ur, where a e X, r > 0 and Ur / <fb 
= (jc<=X:| |jc | |<r}. 

Then for X and 38 (1*), (2), (a) and (b) are satisfied. 
Proof. The property (1*) is evident. 
(2) Let B = a + Ur, where a e X and r >0. Let B = AiuA2 , where Ai and A2 

are non empty disjoint subsets of B satisfying UnBczAu resp. UnBeA2, for 
each U e 38 contained in Ai, resp. A2. It is easy to prove that A i cz A i and A2 cz A 2. 
Let AinA2 = 0. Then AicBnAIczAi and the set Ai is closed relatively to B. 
Then A2 is a non empty open set relatively to B. From the connectivity of B it 
follows that AinA2=£0. Let ueA\C\A2. Then there exists a positive number Q 
such that u + U2e cz B. Then there exists a point v such that v eA2n (u+ UQ). The 
point v is an interior point of A2. Therefore the set W = u{v + UT: T > 0 , 
v + UT cz A2} is a set of the form v + Ue for some positive number e. There holds 

e < | | u - v | | , because ueAu Since e < | | u - v | | , the set K = Ai n ((v+ U\\u-v\\) 
- W) is a non empty compact set and Kn(W-W) = 0 (there holds 
W - W c A z ) . Therefore there must exist a positive number r| such that ||JC — y \\ = 
r\ for each xeK and each y e W - W . But then v + [/c+r,c:A2. This gives W 
= v + l/e£i; + Ue+r,czW, which is impossible. 

(a) Let JceX, Be 38 and J c e B - B . Then B = a + U- and | | jc-a| | = r > 0 . Let / 
be a real function 38-discontinuous from B at JC. Then there exists a sequence 

(C„}r=i such that JC e Cn - C , C„+i cz C„ c= B for n = 1, 2, 3, ..., lim diam C„ = 0 
„—*«> 

and a = sup inf f(Cn) < inf sup /(C„) = 6. Then there exist an an e X and a r„ >0 
„ n 

such that lim r„ = 0 and C„ = a„ + Urri for all n. 
„—+oo 

From Lemma 1 we get: r„+i -§ r„ and a„ = — a + f l - —)JC. We put D = B. Then 

for each sequence {D„}"=i of elements of 38 converging from B to JC we have: a 
= sup inf f(Dn) < inf sup/(D„) = /?, since there exist, by Lemma 2, positive 
integers p„ and qn such that DqnaCn and CPncDn. 

b) This follows from the following extension theorem: 

Theorem 2. (Extension theorem) Let X be a separable Banach space and let 38 
be the system of all sets a + Ur, where aeX,Ur = {x e X: || JC || < r} and r > 0. Let 
B e 38. Let q) be a real Si-Darboux Bake one function on B. Then there exists 
a 38-Darboux Baire one function defined on X which is an extension of q). 
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Proof. Let B = a + Ur, where aeX and r > 0 . Let S = a + {x eX: \\x\\ = r}. 

Then S = B - B . Let B„ = (JC eX: | | j c -a | |< r ( l ^—)j and Sn = 

= {xeX: | | jc -a | | = r ( l + £ ) } . 

If X is a one-dimensional Banach space, then the theorem is evidently true. 
Let X be an at least two-dimensional space. Then let /„ be a function defined on 

x 
Sn from Lemma 4 for e =—. Since the function op is on B of the Baire class one, 

n 

there exists a sequence {hn}n=\ of continuous functions defined on B such that 

lim hn(x) = qp(jc) and | hn(x) | = n for each jce B. By the Tie tze extension theorem, 
n—•oo 

there exists a sequence {gfn}n°=i of continuous functions defined on X such that 
\gn(x)\=\n for each JCGX, gn(x) = fn(x) for each jceS„, gn(x) = hn(x) for each 
JC eBnvS and #r.+i(jc) = gn(x) for each JC e X satisfying the inequality ||JC - a\\ = 

r(l +—J and for n = 1, 2, 3, .... It is easy to prove that the limit lim gn(x) exists 

for each xeX. Let /(JC) = lim gn(x) for each JC eX. Then /(JC) = qp(jc) for each 
n—+°° 

xeB. For x e X , which satisfies the inequality | |jc-a | | = n 1+—J, there holds 

f(x) — Qn(x). Therefore / is of the first class of Baire and it is an extension of cp. 
Let Ce SB, JC, y e C and min (/(JC), f(y)) < c < max (/(JC), f(y)). If C c B , then 

/(JC) = cp(jc), /(y) = cp(y) and there exists a z e C such that cp(z) = c. But then 
f(z) = (p(z) and therefore f(z) = c. 

If C c X - B, then the function / is continuous on C and therefore there exists 
a zeC such that /(z) = c. 

If C-B±0 and COJB^-0, then C - B is a non empty open set. Let n be 
a positive integer such that -n<c<n. We can easily prove that there exist 

a positive integer k and a point u such that ueS k , fc^n and u + Ur/k-BciC. 

Then D = Skn(u + LU) = |u e Sk: ||v - 1 * | | -= T;}. From Lemma 4 it follows that 

-k = min/k(D) = min/(D) < max/(D) = max/fc(D) = k. Therefore there 
exists a z e D such that f(z) = fk(z) = c. It is evident that zeC. We have proved 
that the function / is O-Darboux on X, and thus the extension theorem is proved. 

Proposition 2. Let X be a strictly convex Banach space of finite dimension. Let 
28 = {a + {xeX:\\x\\<r}:aeX,r>0}.Letfbeareal2&-DarbouxBaireone 
function on X. Then f is discontinuous at x iff it is ^-discontinuous from some 
B at*. 
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Proof. If X is a one-dimensional Banach space, it is evident. If / is $)-discon­
tinuous from some B at x9 then it is obvious that / is discontinuous at x. 

Let X be a strictly convex Banach space of dimension at least two and let / be 
discontinuous at JC. Since / is a 33-Darboux Baire one function on X which is 
discontinuous at JC, there holds: a = sup inf f(x + Ur)<inf sup f(x + Ur) = |3 and 

r>0 r>0 

a ^f(x)^p. Let S = {zeX: ||z - JC|| = 1}. Since S is compact, there exists a finite 
subset A of S such that for each zeS there exists an a e A such that ||z - a| |< 1. 
For each c e A w e put Sa = {ueX: | | u - a | | < l } . Then JC eSa — Sa for each aeA. 
Let {C, „}*-.i be a sequence of elements of 93 such that {Ca,n}n*=i converges from Sa 

to JC. Let aa=sup inf /(Ca,n) = inf sup f(Ca,n) = (5a for each aeA. Since / is 
n n 

38-Darboux, we have aa^/(jc)^j3fl for each aeA. 
We shall assume that / is not 33-discontinuous from any B of 38 at JC. Then 

aa = pa=f(x) for each aeA. Let rj be a positive number that satisfies (a, j3) 
~ (/(*) - *]> f(x) + rj) =£ 0. Since A is finite and since cu = /3a =/(JC) for each 
aeA9 there exists an n such that Ca,ncz Sa and f(Ca,n) cz (f(x) - r\9 /(JC) + rj) for 
each aeA. Let g = min {diam Ca,n:a e A}. Let UGJC + UQ9 u±x. Then ||JC -

u || > 0 and v = x + r. (u - JC) e S. There exists an aeA such that v eSa. Let 
ll*-"ll 

Ca,n=ba + Ura9ba = La + (1-A„)JC, ra = \\ba-x\\ = Xa = g > | | x -u | | . We put 

c = JliZiii v + (i-fciUik since veSa, xA'-S., 0 < i ^ < l and 
Aa \ Aa / Aa 

since X is a strictly convex Banach space, we have: ceSa. But then | | b a -u | | 
= ||Xa(a - c)|| <A«. Therefore u e Ca,n. Thus we have proved that (JC + UQ) - {JC} 
cz u{Ca,n:aeA}. Then we get: f(x + UQ) = f((x + UQ) - {JC}) U {/(JC)} CZ 

v{f(Ca,n):aeA} u {f(x)} cz (f(x) - rj,/(jc) + r}). Therefore there holds: f(x) 
- 7] ̂  Mf(x + UQ) ^ a < j3 ^ sup f(x + UQ) =i f(x) + r\. Thus (a, j3) 
" ( / (*)" ^̂  f(x) +1]) = 0. But this is impossible. Therefore / must be ^-discon­
tinuous from some B at JC. 

5. Theorem 3. (The maximal additive family for the family of all 38-Darboux 
Baire one functions). Let X be a finite dimensional strictly convex Banach space 
and let Sft be the system of all sets a + Ur, where aeX9Ur = {jceX:||jc||<r} and 
r > 0 . The maximal additive family for the family of all Sft-Darboux Baire one 
functions defined on X is the family of all continuous functions. 

Proof. Let / be a continuous function on X. According to the theorem 13 
(Satz 13) in [5], p. 427, f+g is a real 38-Darboux Baire one function for each 
S)-Darboux Baire one function g. Therefore / belongs to the maximal additive 
family for the family of all 38-Darboux Baire one functions defined on X. 

Now let / be a function from the maximal additive family for the family of all 
38-Darboux Baire one functions defined on X. Then / is evidently a real 
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33-Darboux Baire one function, since / + 0 = / is a real 38-Darboux Baire one 
function. 

We shall assume that / is discontinuous at JC. According to Proposition 2, it is 
38-discontinuous from some B, Be31 at JC. According to Proposition 1 (a) is 
satisfied. Therefore there exist a De33 and two numbers a, P such that a<f3, 
DczB and for each sequence {C„}T=i converging from D to JC we have: a 

= sup inf / ( C ) < inf sup / ( C ) = /J. There also holds that a =f(x) =\ j3, since / is 
n n 

a 98-Darboux function. Let g be a function defined on B as follows: g(u) = f(u) 
for ueB- {JC} and g(x)e(a,p) - {/(JC)}. 

The function g is a Baire one function on B and we shall prove that it is also 
33-Darboux on B. Let CeS8, CczB, u, veC and let min (g(u), g(v)) < c < 
max (g(u), g(v)). If W^JC and v£x, then there exists a point zeC such that 
f(z) = c, since g(u) = f(u) and gf(v) = /(u). But there is also z£x (z is in C) and 
therefore g(z) = /(z) = c.lfu = x, then JC e C - C and C c B . From Lemma 1 we 
get that there exists an integer n such that G c= C for all fc§n. There exists a k 
suchthatk^rcand0(jc)e/(C) = g(Ck). Since GczC, it is g(x)ef(C). But then 
there exists azeC such that # (z) = /(z) = c. In the case v = x we proceed similarly. 

The function - # is also a 93-Darboux Baire one function on B. From the 
extension theorem there exists a function h which extends the function -g and 
which is a 38-Darboux Baire one function on X. Therefore the function k = f + h 
must be a ^-Darboux Baire one function on X. But k(u) = f(u) + h(u) = g(u) 
+ (-g (u)) = 0 for each ueB-{x} and k(jc) = f(x) + h(x) = f(x) - g(x)£0. 
Therefore the function k can not be a ^-Darboux function. 

Thus we have proved that / cannot be ^-discontinuous from any B of $ at any 
point of X. According to Proposition 2 the function / is continuous. 

Theorem 4. (The maximal multiplicative family for the family of all 38-Darboux 
Baire one functions) Let Xbea finite dimensional strictly convex Banach space and 
let Sfc be the system of all sets a+Ur, where a eX, Ur = {JCGX: | |jc||<r}, r > 0 . 
The function f belongs to the maximal multiplicative family for the family of all 
2ft-Darboux Baire one functions defined on X iff 

(i) / is a 31-Darboux Baire one function on X 
(ii) if it is discontinuous from B, B e 38, at x, xeX, then f(x) = 0 and there 

exists a simple sequence {jck}?=i of points of B such that f(xk) = 0 fork = 1,2,3, ... 

and lim JCk = x . 
k-»°° 

Proof. Let / be an element of the maximal multiplicative family for the family 
of all 38-Darboux Baire one functions defined on X. Then / is a 38-Darboux Baire 
one function on X, since / • 1 = / is a 38-Darboux Baire one function. 

Let / be 38-discontinuous from B, Be SB, at x, xeX. From the property (a) 
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min 

there exist a D e 2ft and two numbers a, |3 such that DczB and for each sequence 

{Cn}n=i converging from D to x we have: a = sup inf /(C„) < inf sup / ( C ) = |3. 
n n 

Let /(x) =£ 0. We can assume that f(x) > 0 (by multiplying by - 1 we can transfer 
the case f(x) < 0 to the case f(x) > 0). For the number a either a > 0 or a ;.§ 0 can 
hold. 

We treat the case a > 0 . There exists a Ce 03 such that /(C) c ( ^ , 20J. The 

function cp defined on C by cp(u) = f(u) for ueC— {x} and (p(jc) 6 (a, |3) 
~ {/(*)} is a 08-Darboux Baire one function on C. According to the extension 
theorem there exists a 33-Darboux Baire one function g on X which extends cp. Let 

h = max (- , 0j. According to Theorem 13 (Satz 13, [5], p. 427), the function h is 

a 38-Darboux Baire one function on X. For ueCwe have: h(u) = g(u) = qp(w). 

The function 7- is also a 33-Darboux Baire one function on X. In fact, it is a Baire h 

one function, since h is a Baire one function and h^-r. Let B e38, w, u eB and 

m{wrW)) K c< m&x(hb)'hh))- ™en «*»(*(«),*(«)) < J < 
max (ft(u), ft(u))- But ft is a 33-Darboux function on X, therefore there exists 

1 1 1 
a zeC such that ft(z) = - . This gives that 77-7= c. Therefore 7- is also 

c & ft(z) ft 

a 38-Darboux function. 

The function j - must be a 38-Darboux Baire one function, since / belongs to the 

maximal multiplicative family for the family of all 38-Darboux Baire one functions 

on X. But the function j - is not a 38-Darboux function on X, since f j-J (x) 

= &\±1 a n d ( | ) ( u ) = 4 ^ = l f o r all ueC-{x}. (jp(jc) \hJ cp(u) 
Therefore the case a > 0 is impossible. 
Let a ^0 . Then we have: a ^0<f(x)^p. Let e be a such positive number that 

0<e<Qp-. Let cp be a function defined on D by the equality: cp(u) 

= max (e, /(u)) for u e D - {*} and <p(x) = --Jp. The function <p is a Baire one 

function on D. It is also a S8-Darboux function on D. In fact, let Ce 98, C c D , 
u.tteC and min (<p(u), <p(u)) < c < max(<P(M), <p(u)). Then we have: 
min (/(u), /(«)) S min (q>(u), <p(u)) < c < max (<p(w), <p(u)) = max (f(u), /(«)) 
and e <c . There exists a z 6 C such that /(z) = c. But there is <p(z) = max (e, /(z)) 

413 



= max (e, c) = c. From the extension theorem we get a 38-Darboux Baire one 
function h on X which extends <p. Let g = max (e, h). Then g is also a 93-Darboux 

1 f 
Baire one function on X. It is also — a 38-Darboux Baire one function. Therefore — 

Q Q 

I 
Q 

I (u) = l for each u e D - (JC! S 

| ( M ) = £ ^ < i for ea 
GV 

f 
must be a 38-Darboux Baire one function on X. But the function — is not 

a $i-Darboux function on X, since (—J (u) = l for each K G D - { J C } satisfying 
^y' 

. S / M . $ ( « ) - ^ < 1 for each , . f l - W satisfying « . ) < . and 

( ) 0 0 = 2. Therefore the case a=^0 is also impossible. 

Therefore we cannot have / ( x ) ^ 0 . Also we have proved that /(JC) = 0 . 
If there does not exist a simple sequence {xk}k=i of points of B converging to x 

such that f(xk) = 0 for k = l , 2, 3, ..., then there exists Ce0l such that CczB, 
JC e C- C and /(C)cz(0, oo) or / ( C ) c z ( - oo, 0). It is sufficient to treat the case 
/(C)cz(0, oo). There exists an Ee38 such that J C G E - E , E C Z C and diam E < 
diam C. Then E - {JC} czC. We define a function cp as follows: cp(u) = f(u) for 
M G £ - {X} and (p(jc)e(a, (5). Then we have qp(jc)^/(jc). The function cp is 
a 38-Darboux Baire one function on E. From /(C)cz(0, oo)? E - { J C } C Z C and 
cp(x)e(a, /3) it follows that qp(u)>0 for all M G E . According to the extension 

theorem there exists a 33-Darboux Baire one function g on X which extends —. 

Therefore the function gf must be a 38-Darboux Baire one function on X. But 

there holds: (gf) (u) = ^r\=l for u e E - { j c } and (gf) (x) = ^ \ = 0. 
cp(u) l J V W J / V J q>(x) 

Therefore the function gf can not be a ^9-Darboux function. Thus there exists in B 

a simple sequence {xk}k=\ such that lim jcfc = jc and /(jck) = 0 for k = 1, 2, 3, .... 
fc—>oo 

Let / be a 53-Darboux Baire one function which satisfies: if B e 38, x e X and / is 
38-discontinuous from B at JC, then /(JC) = 0 and there exists a simple sequence 
(jCk}fc=i of points of B such that lim jcfc = JC and/(jck) = 0for k= 1,2, 3, . . . .Let g be 

k—>oo 

a ^-discontinuous one function on X. Then gf/ is a Baire one function on X. To 
prove that gf is also S8-Darboux, we use the generalization of the Young theorem. 
Let BeS8, JCGX, J C G B - B . Let / be not 38-discontinuous from B at JC. Let 
(C}n=i be a sequence of elements of 38 converging from B to JC. Then 

sup inf f(Cn) = inf sup / ( C ) holds. From the generalization of the Young theorem 
n n 

it follows that there exists a sequence {xn}n=i such that xneCn and lim g(xn) 
n—>oo 

414 



= g(x). From xneCn and f(x) = supinf/(C„) = inf sup/(C) it follows that 
n n 

lim/(*-.) = f(x). Thus we have: xneB for n = l, 2, 3 , . . . and lim (0/) (xn) 

- (tf) (x). 
Now let / be S3-discontinuous from B at x. Then /(x) = 0 and there exists 

a simple sequence {xn}n=i of points of B such that /(*„) = 0 for n = 1, 2, 3, .... 

Therefore we have: lim (gf) (xn) = 0 = (0/) (JC). From the generalization of the 
n—*oo 

theorem of Young it follows that the function gf is 33-Darboux. Thus we have 
proved that gf is a 33-Darboux Baire one function and therefore / belongs to the 
maximal multiplicative family for the family of all 38-Darboux Baire one functions 
defined on X. 
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МАКСИМАЛЬНЫЙ АДДИТИВНЫЙ И МУЛЬТИПЛИКАТИВНЫЙ КЛАСС 
ДЛЯ КЛАССА ФУНКЦИЙ ЗВ-ДАРБУ 1-ОГО КЛАССА БЭРА 

Ладислав Мишик 

Резюме 

В работе рассматривается максимальный аддитивный и максимальный мультипликативньгй 
класс для класса функций 38-Дарбу 1-ого класса Бэра, определенных на конечномерном строго 
выпуклом пространстве Банаха X, причем 38 является базисом шаровых окрестностей в X. 
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