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Math. Slovaca 32, 1982, No. 2, 127—141 

COMPLETIONS OF LATTICE ORDERED 
GROUPS 

MARIA JAKUBlKOVA 

In the presented paper there is examined the existence of the largest completion 
of an archimedean lattice ordered group. The investigation was inspired by 
a question proposed by M. K o l i b i a r at the Algebraic Winter School (Krpacova 
1980). The methods used below are analogous to those applied in the author's 
papers [6] and [7] for examining the existence of free complete lattice ordered 
groups or free complete vector lattices. 

1. Preliminaries 

For the terminology concerning lattice ordered groups cf. C o n r a d [2] and 
Fuchs [3]. Let us recall some notations we shall need in the sequel. 

Let H be a lattice ordered group. H is said to be complete if each nonempty 
upper bounded subset of H possesses the least upper bound in H. If this is the case, 
then also the corresponding dual condition is valid. An /-subgroup Hi of His called 
closed in H if, whenever X is a subset of Hi and x0 is an element of H such that 
x0 = sup X or xo = inf X holds in H, then x0 belongs to Hi. Let Y c R The set y is 
said to generate (c-generate) the lattice ordered group H if for each (closed) 
/-subgroup Hi of H with Y^Hi we have Hi=H. 

A lattice ordered group A is called archimedean if for each 0 < a e A and each 
be A there exists a positive integer n such that na£b. The following results are 
well known: (i) If H i s a complete lattice ordered group, then each /-subgroup of H 
is archimedean. (ii) For each archimedean lattice ordered group A there exists 
a complete lattice ordered group H such that A is an /-subgroup of H and A 
c-generates H. (iii) Each archimedean lattice ordered group is abelian. 

Let G be an archimedean lattice ordered group. We denote by C(G) the class of 
all complete lattice ordered groups H such that 

(a) G is an /-subgroup of H, and 

(b) the set G c-generates H. 

The lattice ordered groups belonging to C(G) will be said to be completions of G. 
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Let Gt, G2eC(G). If there exists an isomorphism <p of G\ onto G2 such that 
cp(g) = g for each geG, then we shall not distinguish G\ from G2 and we write 
G\ = G2. 

2. Quasiorders S i and S 2 on C(G) 

Unless otherwise stated, G will always denote an archimedean lattice ordered 
group. Let Ti, T2eC(G). The lattice ordered group T\ is called the a-largest 
completion of G if for each Se C(G) there exists an isomorphism <p of S into Ti 
such that q>(g) = # for each geG. The lattice ordered group T2 is said to be the 
/Margest completion of G if for each SeC(G) there exists a homomorphism VPof 
T2 onto S such that ^(j?) = g for each # e G. 

The above notions are related to the following binary relations S i and S 2 on the 
class C(G). Let S, T e C(G). We put S ^ i T i f there exists an isomorphism q? of S 
into T such that (p(g) = g for each geG. Further we put S S 2 T if there exists 
a homomorphism W of T onto S such that ^(fif) = g for each geG. The relations 
^ i and ^ 2 are obviously quasiorders on the class C(G). 

Analogous quasiorders concerning the situation when a partially ordered set is 
embedded into a lattice have been investigated by M. K o l i b i a r [9]. 

Let us illustrate the quasiorder S i by the following example. 
E x a m p l e 1. Let I be an infinite set and for each iel let G, and Ht be the 

additive group of all rationals or all reals, respectively; both G, and H are linearly 
ordered in the natural way. Put 

G = Z l € ,G , H = 2 i e J K , H ' = I L 6 J H . 

Then H a n d H' belong to C(G), H^ \ H' and Hfails to be isomorphic with H''. 
The natural question arises: what are the properties of the quasiordered class 

(C(G); S i ) or (C(G); S 2 ) ? In particular, does G always have the a-largest 
completion or the ^-largest completion? The first question seems to be rather 
difficult. It will be shown below that the answer to the second question is negative. 

We need the following result (it follows from the construction applied in the 
proof of Thm. 4.7 in [6]): 

(A) Let M be a set with ca rdM=K 0 . Let a be a cardinal. There exists 
a complete lattice ordered group Ga such that Ga is c-generated by the set M and 
card Ga^a. 

The complete lattice ordered groups Ga were constructed in [6] by means of 
complete Boolean algebras Ba having properties analogous to those of G« (i.e., Ba 

is c-generated by a denombrable set and card Ba^a); the Boolean algebras Ba 

have been described by H a l e s [4]. Let us denote by Ga the /-subgroup of Ga 

generated by the set M. 
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Since the class of all lattice ordered groups is a variety, there exists the free lattice 
ordered group FLG(^a) with K0 free generators and clearly card FLG(R0) = K0. If 
H is a lattice ordered group having a denombrable subset Mi such that Mr 
generates H, then there is an /-ideal K in FLG(tt0) such that H is isomorphic with 
FLG(#0)/K. From this it follows that tbe number of non-isomorphic types of 
lattice ordered groups with K0 generators is less than or equal to 2K°. 

The above consideration shows that there is a set {/£},ej of lattice ordered 
groups such that 1) for each i e I there is M <= Hi with card M = K0 such that M 
generates Ht; 2) for each pair i, / of distinct elements i, j of I, Ht fails to be 
isomorphic with Hj; 3) if H is a lattice ordered group with K0 generators, then 
there is iel such that H is isomorphic to Ht. 

Let Ii be the class of all i e J that have the following property: there is a cardinal 
a(i) such that Gp fails to be isomorphic to Ht for each cardinal j8 with (3>a(i). 
Suppose that Ii = I. Then there is a cardinal a0 with a 0 > a ( i ) for each iel; thus 
for each i e J, GJ* fails to be isomorphic with Hh which contradicts 3). Thus there is 
i0 e A i i ; denote G° = //,«. Hence we have 

2.1. Lemma. For eac/2 cardinal a there is a cardinal j3 with (3 > a such that G° is 
isomorphic to Gp. 

2.2. Theorem. There exists an archimedean lattice ordered group G such that 
(i) G has neither the a-largest completion nor the ^largest completion, and (ii) 
C(G) is a proper class. 

Proof. Put G=G°. Suppose that Ti is the a-largest completion of G. Denote 
card Ti = a. According to 2.1 there exists /J > a such that G° is isomorphic with 
Gp; thus without loss of generality we can assume that G° = Gp. Hence Gp is 
a completion of G°. Since card Gp § /?, there does not exist any isomorphism of Gp 
into Ti, which is a contradiction. 

Next suppose that T2 is the ^-largest completion of G, card T2 = a. Let fi be as in 
the previous consideration. From card Gp^fi>a it follows that there cannot exist 
any homomorphism of T2 onto Gp9 which is a contradiction. 

The assertion (ii) is an immediate consequence of 2.1. 
Let Ci(G) be the partially ordered class that we obtain from the quasiordered 

class (C(G), .Si) by identifying^ach pair of elements Gi, G2eC(G) which fulfil 
the relations Gi .^iG 2 , G2.-S1G1. Further let C2(G) be defined analogously. The 
question whether there must exist maximal elements in G ( G ) or in C2(G) remains 
open. 

A nonempty subclass A of C(G) is said to be an antichain in (C(G); ^ x) if for 
any pair of distinct elements Gi, G2 e A we have neither Gi =i 1G2 nor G2 ̂  t Gi. 

2.3. Proposition. Let a be an infinite cardinal. There exists an archimedean 
lattice ordered group G' such that there is an antichain A in (C(G'), ^ x ) with 
card A = a. 
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Proof. Let / b e a set, card J=a. Let G, Hand H' be as in the Example 1. For 
each jeJ iet G) = G\ further we put G' = n , e /G• . Let k be a fixed element of / . 
We set G2 = nye/Gfc/, where Gk] = H for ; = k and Gkj = H' otherwise. Then 
GkeC(G) for each keJ and A = {G2}*eJis an antichain in (C(G' ) , ^ i ) with 
card A = a. 

3. Completions of linearly ordered groups 

In this paragraph it will be shown that for each archimedean linearly ordered 
group G, C(G) is a one-element set. 

An /-subgroup Gi of a lattice ordered group G2 will be said to be an /-/-subgroup 
of G2 if whenever X c Gi, x0e G\ and x0 is the join of the set X in Gi, then x0 is 
also the join of the set X in G2. (This is equivalent to the corresponding dual 
condition.) 

Let us recall the following definition: 

3.1. Definition. The complete lattice ordered group K is called a Dedekind 
completion of the lattice ordered group G if the following conditions hold: 

(i) G is an I-subgroup of K 
(ii) For each keK there are subsets X, YofG such that sup X = k = inf Yholds 

in K 
It is easy to verify that if G possesses a Dedekind completion, then this is 

determined uniquely up to isomorphisms. It will be shown below that if K is the 
Dedekind completion of G, then G is an r/-subgroup of K (cf. 5.2.1). The 
following theorem has been proved by Cl i f ford (cf. Fuchs [3J): 

(B) Let G be an archimedean lattice ordered group. Then G possesses 
a Dedekind completion. 

The Dedekind completion of an archimedean lattice ordered group G will be 
denoted by d(G). 

Let us denote by R the additive group of all reals with the natural linear order. 
Then we have (cf. [3], Chap. IV, Thm. 1 (Ho lde r ) ) : 

(C) Each archimedean linearly ordered group is isomorphic to an /-subgroup of 
JR. 

3.2. Lemma. Let G be an l-subgroup of a lattice ordered group K Assume that 
G is linearly ordered. Let G' be the convex l-subgroup of Kgenerated by G. Then 
G' is a closed l-subgroup of K 

Proof. The case G = { 0 } being trivial we can assume that G¥={0}. Choose 
0<g eG. It is easy to verify that G' is the set of all k eK such that | k | ^ | ^ ( k ) | for 
some g(k)e G. Let 0 ^ X c G, keK and suppose that sup X= k holds in K. If X 
is upper-bounded in G, then clearly keG'. If X fails to be upper-bounded in G, 
then we have in K the relation 
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k = sup X=sup G = sup (G — g) = sup G — g = k — g<k, 

which is a contradiction. 
Let G, K and G' be as in 3.2. For each keG' denote /(A:) = {g e G, g ^ k). 

Let Gi be the set of all elements keG' such that k = sup I(k) holds in K. Clearly 
k e K belongs to G\ if and only if there exists a nonempty subset X of G such that 
(i) X is an upper bounded subset of G and (ii) sup X=k holds in K; 

3.2. Lemma. Gi is t/ze closed I-subgroup of Kgenerated by G, and G\ is linearly 
ordered. 

Proof. From the definition of G\ it follows that G\ is linearly ordered. Let 
k\, k2eG\. There are nonempty subsets X\, X2 of G that are upper-bounded in G 
such that the relations kx = sup X\ and k2 = sup X2 hold in K. Then X\ + X2 is an 
upper-bounded subset of G and k\ + k2 = sup (X\ + X2) is valid in K; thus G\ is 
closed with respect to the group operation. Hence G\ is an /-subgroup of K, 
G^G\. Let {&,}.e/be a nonempty subset of G\, k e Kand suppose that k = V«€/fc 
holds in K. Then in view of 3.2 we have keG', hence there is g e G with k^g. 
For each i e I there exists a nonempty subset Xt of G such that sup Xt = fc is valid 
in K. Therefore X=(J , 6 jX ; is a subset of G that is upper bounded by the element 
geG, and sup X=k holds in K. Hence keG\, completing the proof. 

By a dual argument we can verify that for each keG\ there exists a nonempty 
subset Y of G such that k = 'mi Y is valid in K. 

3.4. Proposition. Let G be an archimedean linearly ordered group. Then 
C(G) = {d(G)}. 

Proof. Since G is archimedean, d(G) exists by Theorem (B), and d(G) belongs 
to C(G) according to the definition 3.1. Let Ke C(G) and let G\ be as in 3.3. Since 
K is complete, it follows from 3.3 that G\ is c-generated by G. From this and from 
KeC(G) we obtain K= G\. In view of the definition of G\ and with respect to 3 3 
we infer that the condition (ii) from 3.1 is valid. Therefore K=d(G). 

A generalization of this result will be given below (cf. 4.8). 

4. Completions of direct products 

Let G be a lattice ordered group and let X c G. Put 

X6 = X6ioy={geG:\x\A\g\=0 foreach xeX}. 

The following results are well known: 
(C) (Cf. Sik [10]) X6 is a closed convex /-subgroup of G. 
(D) (Riesz ; cf. [3]) If G is complete, then X* is a direct factor of G. 

Now let G be an archimedean lattice ordered group, He C(G), G = AxB. Let 
A\ be the set of all elements h e Hsuch that there exists a subset X c A having the 

131 



property that sup X—h holds in H. Next let A ' be the convex /-subgroup of H 
generated by the set Ai. Analogously we define JBi and B'. It is a routine to verify 
that A ' can be characterized as the set of all heH that fulfil the following 
condition: 

(c) There are sets X c A + and Y c A " such that (i) sup X and inf Y do exist in 
H, and (ii) inf Y S h^sup X. 

Let ZczA', heH and suppose that sup«Z=/ i . Put X = {zvO:zeZ}, 
Y = {ZAO:zeZ}. Then supHX = ftvO and supHY = /ZAO, X C A ' , Y C A ' . 
From the convexity of A ' in H it follows that h A 0 e A ' . For each JC e X there exists 
a set P ( * ) c A with supHP(x) = x. Put Xi = U*exP(*). Hence supHX = supHXi 
= h vO, yielding hvOe A'. By using again the convexity of A ' we obtain he A'. 
Thus A ' is a closed /-subgroup of H. Clearly Ac A'. Similarly, B' is a closed 
/-subgroup of / / a n d B c B ' . In view of G = A x B w e have | a | A 161 = 0 for each 
a e A and each b e B, hence according to (c) we infer that | a ' | A | 6 ' | = 0 i s valid for 
each a' eA' and each b' e B'. Thus a' + b' = b' + a' for each a' eA' and each 
b' e B'; moreover, A ' n B ' = {0}. Thus A' + B' = A ' x S ' and A ' x B' is a closed 
convex /-subgroup of H. Since G<zzA'xB', we must have H = A ' x 5 ' . 

If 0 < a ' eA',beB, then from (c) it follows that a' A | 6 | = 0 , hence A ' c £ d ( H ) . 
Let OS v 6 B6 ( H ) . We denote by y(A') and y(B') the component of y in the direct 
factor A ' or B ' , respectively. Then y = y(A') + y(B') = y(A')vy(B'). From 
y G £ 6 ( H ) and from (c) (applied for Bf) we obtain y(B') = 0, hence y = y(A ' ) eA'. 
Thus A ' = £*(H). Similarly, B '=A* ( H ) . In view of H=A'xB' this yields A ' 
= (fr ) d ( H ) = ^(HWH) 

Let A0 be the closed /-subgroup of H generated by A and let B0 be defined 
analogously. Put Co = A0 + J50. Then Co = A0 X J30 and Co is a closed /-subgroup of 
H, G c Co. Hence Co = H. If we have either A0=>-= A ' or B0±B', then in view of 
H=A'xB' we would have dcH, which is a contradiction. Hence A0 = A' and 
B0 = B ' . 

By summarizing, we obtain 

4.1. Proposition. Le t G be an archimedean lattice ordered group, G = AxB, 
HeC(G). Ttien H=A6iH)6m x BS(H)HH). Moreover, AS(H)6(H) e C(A) and 
B*msm e C(By 

The following assertion is easy to verify: 

4.2. Lemma. Let G, A, B, H be as in 4.1 and let geG. Then g(A) 
= g(A6(H)a(H)). 

By standard induction steps we get from 4 . 1 : 

4.3. Theorem. Let G be an archimedean lattice ordered group, G = Ai x A2x 
x ... x An, HeC(G). Then H=A? ( H ) 6 ( H ) x Af(H)*(H) x ... x A*(H)*(H). 
Moreover, A? (H)a (H) € C(At) holds for / = !, 2, ..., n. 
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The following example shows that this theorem cannot be generalized for direct 
decompositions having infinitely many direct factors. 

Example 2. Let G, H and H' be as in Example 1. Let J be an infinite set and 
for each jeJ let G\ = Hf, G°j = G. Put Ki = Ui€jG

fj and let K be the set of all 
keKi having the property that the set {j e J: k(G)) 6 H} is finite. Further let 
Go = n;ejGo. Then KeC(Go), but K cannot be expressed as a direct product 
Iljej(Gl)6(K)6(K). 

Nevertheless, from 4.3 we obtain the following 

4.4. Corollary. Let G be an archimedean lattice ordered group, G = II;ejA;, 
HeC(G). Then 

(i) each A6(H)6(H) is a direct factor of H; 
(ii) if i, jeJ, i*j, then Af(H)6(H) n A6(H)6(H) = {0}; 

(iii) for each j e J, A6(H)6(H) e C(Ah). 
For an archimedean lattice ordered group G we denote by Cb(G) the class of all 

HeC(G) which have the property that for each h e H there exists g e G with h ^ g 
(in other words, the convex /-subgroup of H generated by G coincides with H). 
Clearly d(G)eG,(G). 

4.5. Lemma. Let G, Aj(jeJ) and H be as in 4.4. If He Cb(G), then A6(H)6(H) e 
Cb(Aj) for each jeJ. 

Proof. Assume that HeCb(G). Denote Bj = A6(H)6(H). Let O^bjeBj. Then 
bjeH, hence there is geG with bj^g. In view of 4.2, bj = bj(Bj) ^ g(Bj) 
= g(Aj) e Aj, thus BjeCb(Aj). 

4.6. Theorem. Let G be an archimedean lattice ordered group, G = HjeJAj, 
HeC(G). Assume that A6(H)6(H) belongs to Cb(Aj) for each jeJ. Then H= 
TljejA6(H)6(H). 

Proof. In view of 4.4 it suffices to verify that the following conditions are valid 
(we use the denotation Bj = Af(H)6(H) as above): 

a) if O^bjeBj for each jeJ, then supH{bj}jeJ does exist; 
b) if O^h eH, then h = \fjeJh(Bj). 
Let O^bjeBj (jeJ). Because of BjeCb(Aj) there exist elements ajeAj with 

O^bj^aj for each jeJ. Further there exists geG such that g(Aj) = af holds for 
each jeJ. In view of g(Aj) = g(;Bj) (cf. 4.2) we have bj^g for all jeJ. Hence 
there exists supH{bj}j€j; thus a) is valid. 

Let O^heH. Put h(Bj) = bj for each feJ and let g be as in a). Then in H we 
have g^Vjejaj, hence 

h = hAg = \/j€j(hAaj). 

Since hsajeBj and h/\aj^h, we get liAaj^h(Bj). Therefore h = \fjeJh(Bj). 
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4.7. Corollary. Let G, A, (JeJ) and Z be as in 4.4. Then the following 
conditions are equivalent: (i) He Cb(G); (ii) for each jeJ, Af(H)6(H) belongs to 
Cb(Aj). 

Proof, (i) implies (ii) by 4.5. Let (ii) be valid. Then from the condition b) in 4.6 
we obtain that (i) holds. 

4.8. Corollary. Let G be an archimedean lattice ordered group, G = njeJAj. 
Assume that all A, are linearly ordered. Let He C(G). Then H=YljeJd(Aj). 

Proof. This follows from 3.4, 4.4 and 4.6. 
Now let us consider the question what the structure of H is if G and H are as in 

4.4 and if we do not assume that HeCb(G). 

4.9. Lemma. Let G and H be as in 4.4, B} = Af(H)6(H) and let 0 < h e H. Then 
there exists jeJ with h(B})>0. 

Proof. Suppose that h(B}) = 0 for each jeJ (under the denotation as above). 
Then for each jeJ and each O^bjeB, we have hAb}=0. Let O^geG. Since 
0 = V W ( A ) = \/}ejg(Bj\ we get h/\g=0, hence Gcz{h}6(H)czH. Since 
{h}6(H) is a closed /-subgroup of H, we have a contradiction. 

4.10. Lemma. Let G and H be as in 4.4, Bj = Af(H)6(H) and let O^heH. Then 
h = \JieJh(Bj). 

Proof. Since H is complete, there exists hi = \fjGjh(Bj) in H and hi^h.If jeJ 
and (h-hl)(Bi)>0, then h(Bj) < h(B}) + (h-hi)(Bj) S hx + (h-hi) 
= h and h(B}) + (h — hi) (Bj) e Bj, which is impossible. Therefore (h — hi) (Bj) = 
= 0 for each jeJ. Thus in view of 4.9, h = hi. 

The notion of the completely subdirect product of lattice ordered groups has 
been introduced by §ik [11]; cf. also [8], §3. 

From 4.4, 4.9 and 4.10 we obtain: 

4.11. Theorem. Let G be an archimedean lattice ordered group, G = H}ejAj, 
He C(G). Then H is a completely subdirect product of lattice ordered groups 
Af(H)6(H) (jeJ). 

4.12. Corollary. Let G be an archimedean lattice ordered group, G = njeJA,. If 
the class C(A}) is a set for each jeJ, then C(G) is a set as well. 

4.13. Proposition. Let G be an archimedean lattice ordered group, G = YljeJAj. 
For each je J, let Bj e C(A}), B=nJeJBj. Then B e C(G). 

Proof. Since B is a direct product of complete lattice ordered groups, B is 
complete as well. G is an /-subgroup of B. For each JeJ, B; is the closed 
/-subgroup of B generated by Aj. Let C be the closed /-subgroup of B generated 
by G. Then B ; c C for each jeJ. Let O^beB. We have b = \/jeJb(Bj) and 
b(Bj)eC for each jeJ, whence beC; thus J9+czC. From this it follows that 
B = C. Therefore BeC(G). 
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4.14. Corollary. Let G be an archimedean lattice ordered group, G = n ; e jA7 , 
HeC(G). Then YljejAfWdm belongs to C(G). 

This follows from 4.1 and 4.13. 

5. The class Co(G) 

Let G be an archimedean lattice ordered group. We denote by Co(G) the class of 
all completions Hof G such that each element h e Hwith h ISO is a join of a subset 
of G. This class Co(G) is nonempty, since the Dedekind completion d(G) belongs 
to Co(G). The class Co(G) need not coincide with C(G) (this is a consequence 
of 2.2). 

A subset {x,}.f61of G is said to be disjoint if xt^0 for each ieland #, AJC>• = 0 for 
each pair of distinct elements i, / € J. The lattice ordered group G is said to be 
laterally complete if each disjoint subset of G possesses the join in G. 

We shall apply the following result (cf. [5]): 
(D) Let K be a complete lattice ordered group. There exists a complete lattice 

ordered group Ki such that 
(i) Ki is laterally complete; 

(ii) K is a convex /-subgroup of Ki; 
(iii) for each 0 < ki e K\ there exists a disjoint subset X of K such that 

sup X = ki holds in Ki. 
It is easy to verify that Ki is defined uniquely up to isomorphism. Ki is said to be 

the lateral completion of K and we write Ki = l(K). Clearly Ki e C(K). (Lateral 
completions of lattice ordered groups that are not assumed to be complete have 
been investigated by several authors, e.g. [1].) 

In this paragraph it will be shown that for each He Co(G) the relation 

d(G)^iHSJ(d(G)) 

is valid. 
The following lemma shows that the definition of Cb(-G) is in a certain sense 

self-dual. 

5.1. Lemma. Let He Co(G), 0>heH. Then there is a subset Sc= G such that 
/z=inf S holds in H. 

Proof. There is O^geG. We have 0<g — hy hence there exists 5i cz G with 
supHSi = g — h. Thus infH(—Si) = h — g and this yields miH (—Si + g) = h. 
Clearly -Si + gczG. 

5.2. Lemma. Let He Co(G). Then G is an rl-subgroup of H. 
Proof. It is easy to verify that G is regular with respect to joins if and only if it is 

regular with respect to meets. Suppose that G fails to be regular in H. Then there is 
5 i c G such that 
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hi = infH Si>g= infG Si. 

Put Si - g = S, h = hi - g. Then 0 = infG S<h = inf// S. There exists T c G with 
supH T=h. Since h>0, there is teTwith &0. Thus fi = fvO>0, U^h, heG. 
Further we have t^s for each seS, hence infG S=£0, which is a contradiction. 

5.2.1. Corollary. G is an rlsubgroup of d(G). 

5.3. Lemma. Let He C0(G). Let Gi be the convex l-subgroup of Hgenerated 
by G. Then Gi = d(G). 

Proof. Gi is a complete lattice ordered group and G is an t-subgroup of Gi. Let 
JC e Gi. There exists geG with — (0Ax)^g. Since — (OAX) = (JCVO) — x, we have 
x + g [S * v 0 i^ 0. Thus there is S c G with sup// S = x + g. Therefore supw Si = x, 
where Si = S — gc G. Analogously we can verify that there exists S 2 c G with 
infH S2 = *. Clearly supH Si = sup^ Si and inf// S2 = infoi S2. Therefore Gi = 
d(G). 

5.4. Corollary. Ler HeCo(G). Then d(G)^i H. 

5.5. Proposition. Let G be an archimedean lattice ordered group. Let 
He Co(G), O^heH. Then there exists a disjoint system S of elements of d(G) 
such that sup// S = h. 

Before proving 5.5 we need some auxiliary results. In 5.6—5.9 we assume that H 
is a complete lattice ordered group. For X c H w e denote 

[X] = X6iH)&(H). 

For xeHwe write [x] instead of [{*}]. Let 0 ^ x e H . For each 0 ^ y e[x] we have 
y = \J(nxAy) (n = \, 2, ...) (cf. e.g., [12]; in [12] vector lattices are investigated, 
but the proof remains valid for complete lattice ordered groups as well). From this 
it follows that 

z[x] = \Jn(nxAz[x]) = \Jn(nx[x]Az[x]) = \Jn((nxAz)[x]) = \Jn(nxAz) 

is valid for each O^zeH. 

5.6. Lemma. Let I be a nonempty set, 0^xteH for each iel, supH xt = x, 
O^yeH. Theny[x] = V « ^ y W -

Proof. We have 

y[x] = \J n(y Anx) = \/ n(y An\J ieiXi) = \J „\J iei(y Anxi) = 

= \Jiel\Jn(y A nXi) = \Jieiy[Xi] . 

5.7. Lemma. Let 0<ae Hand let 0(a) be the set of all elements a, e Hhaving 
the property that there exists a\eH with a,Aa; = 0, a.va^ = a. Then (i) 0(a) is 
a Boolean algebra, and (ii) 0(a) is a closed sublattice of H. 
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The first assertion follows immediately from the definition of 0(a). The second 
assertion is a consequence of the infinite distributivity of H. 

The following further properties of the elements of 0(a) are easy to verify: 
Let a„ ajeO(a), ceH. The we have 

a,[aj] = aiAaj, at[c]eO(a), (c[a])[a>]-= c[aAay] . 

Now let 0<aeH, 0<beH. Put 

A°={aieO(a):ai = 0 or b[at]>0}, a° = sup„A°. 

For each positive integer n we denote 

A° = {a,eA°:nai^b[ai]}, a° = supH A°. 

Then from 5.7 we obtain that a° belongs to 0(a) for n = l, 2, . . . . We also have 
a°^a°^...^a. For each positive integer n we put a\=a° — a°. This yields 
anAa°n = 0 for n = l, 2, ... 

5.8. Lemma. Let 0<a , eO(a ) , a^a\. Then nak<b[ai]. 
Proof. If b[ai]-na{ = 0, then atga°, which is impossible. Thus b[a{]-na^O. 

Suppose that 6[a,] - na&O. Hence (b[at] -naty = z>0. Clearly z e [at]. Hence 
a,[z] = aje0(a) and [*] = [-*/]. Thus 0<aj^ai^an and (b[at]-natyAZ = 0. From 
this it follows that 

0^(b[aj]-najy = (b[aj]-na[aj]y = (b-nay[aj] = 

= ((b - nay[ai])[aj] = (b[at] - naiy[aj] = (b[af] - naty[z] = 0, 

whence (b[aj]-najy = 0, implying b[aj]^naj. Hence aj^a°, a°Aan>0, which is 
a contradiction. 

5.9. Lemma. f\nai = 0. 
Proof. By way of contradiction, assume that there is 0 < x e H such that xS an 

holds for / = 1, 2, ... Then according to 5.8 we have nx S b[a\] ^ b for each positive 
integer n. This is impossible, because H is archimedean. 

Put a\ = ani, and define by induction an = a° — an-\ for each n > 1. Then we have . 

(2) a° = aiva2v...van 

for each positive integer n, and 

(3) a„Aam = 0 

for each pair of distinct positive integers n, m. Moreover, for each 0<at^an we 
have na, ^b[a,] and (n — l)a,<b[ai]. Put a'0 = \/na0

n. Then aoe0(a) and clearly 
a0^a0. If we had a0<a0, then there would be a, e0(a) with 0<at S a0 — a0 and 
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hence a^a\ for n = 1, 2, ..., contradicting 5.9. Hence \/nan = a0. From this and 
from (2) we obtain 

(4) \/nan = a0. 

From the definition of a0 we get b[a] = a0, hence according to (4) and in view of 
5 6 

(5) b[a] = b[a0] = \/nb[an]. 

In view of (3) the system {b[an]}n=x,2,.. is disjoint; moreover, 

(6) b[an]^nan (n = l, 2, . . . ) . 

Proof of Proposition 5.5: 
Let 0 < h e H. There exists a subset XczG+ such that sup X= h is valid in H. 

From this we infer by using the Axiom of Choice that there exists a disjoint subset 
{y,}je J of strictly positive elements of [X] such that (i) y} e G for each / e J, and (ii) 
if ze[X]+, z/\yj = 0 for each jeJ, then z = 0. Thus [X] = [{>>/}/ej]. Because of 
he[X] we have also he[{yj}jej] = \/,ej[y,], hence h = \/jejh[yi]. 

Let jeJ be fixed. Put y/ = a, /*[y/] = & anc* -et us write a*/ instead of an. Then 
according to (5) and (6) 

h[yj] = \Sn(h[yj])[ani], (h[yi])[ani]^nan, (n = \, 2, . . . ) , 

hence by 5.2 and 5.3 (h[yi])[ani]ed(G). Further we have 

A = V/./V-(*b/])M 
and the system {(/*[y/])[an/]} (jeJ,n = l,2,..^) is disjoint. The proof is complete. 

In 5.10—5.16 we assume that K and / / a r e complete lattice ordered groups such 
that (i) K is a convex /-subgroup of H, and (ii) for each 0<heH there exists 
a disjoint subset X in K with supH X=h. 

Let us denote H' = l(K). For distinguishing the lattice operations in H and in H' 
we shall denote the lattice operations in H' by A ' and v ' , while A, v are lattice 
operations in H. (If x,yeK, then jtAy = XA'y and jcvy = JCV')>.) 

Suppose that both {a,} ie/ and {&/}/ej are disjoint subsets of K. 

5.10. Lemma. Assume that h' eH',h' = \J'ieiai and that \Jieiat = \J,ejb,.Then 
h'^'jejbi. 

Proof. From \/ieiai = \/jejbj it follows that 

(7) at = \Zjej(atA bj) for each i e I, 

(8) bj = V« e J(bj A a,) for each / G J. 

Since K is a convex /-subgroup of H, we obtain 
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(7') ai = V i e J(af A bj) for each i e J, 

(8') bj = V« e /(6 ; A ai) for each / e J. 

According to (8'), b^h' is valid for each jeJy hence (in view of the lateral 
completeness of H') there is hieHf with AiSA' such that 

(9) AI=V;*A. 

From (9) and (7') we get A'iSAi, thus Ai = A'. 
If {a,}, e /areasin5.10andif A = Vi€/««, thenweput <p(A) = V ' 6 ' « ' . From 5.10 

it follows that <p is a correctly defined mapping of the set H+ into (H ' ) + . 

5.11. Lemma. Let A, AieH*, A = V«e/tf<> AI = V / € A . Thenhi^h <=> q(hx)^ 
<p(h). 

Proof. We have 

hi^ho (8') <* (8) o <p(hi)^<p(h). 

5.12. Corollary. <p is a monomorphism, and <p(H+) is an upper directed subset 
ofHf. 

5.13. Lemma. q>(H+) is a convex sublattice of H'. 
Proof. It is obvious that 0 is the least element of <p(H+). Hence in view of 5.12 

it suffices to verify that if pe<p(H+) and pieH', O S p i ^ p , then pe<p(H+). 
Assume that heH+, <p(h)=p, A = V«€/a/. Let O^p iSsp. Then there is a disjoint 
subset {&;}/€/ in K with pi = \f'jejbj. In view of p = \f\ejQi the relation (8') holds, 
thus {bj}jejis upper bounded in H; hence there exists Ai e / / such that (9) is valid. 
Therefore pi = <p(Ai) e <p(H+). 

Clearly <p(k) = k for each keK+. 

5.14. Lemma. Let X c K+, supH X = A. Then supH <p(X) = <p(A). 
Proof. According to the assumption there exists a disjoint subset Xi of K such 

that supH Xi = A. Then <p(A) = supH- Xi. Since x ^ A and <p(x) = x for each xeX, 
in view of 5.11 we have x^<p(h) for each xeX. Thus there exists supW' X=q and 
q^<p(h). From 5.13 it follows that there exists hieW with <p(hi) = q. By using 
5.11 again we get A i ^ A ; moreover, from the fact that <p(x) = *^<p(hx) we infer 
that JC ̂  Ai holds for each x e X, yielding A S Ai. Thus A = Ai, completing the proof. 

5.15. Lemma. Le t A, hieH+. Then<p(h + hi) = <p(h) + <p(hi). 
Proof. There are sets X, Xx c 1C+ with supw X = A, supH Xi = Ai. Then we have 

s u p H ( X + X1) = A + Ai. 

In view of 5.14 we obtain 

<p(A + Ai) = supH' (X + Xi) = supH' X + s u p H Xi = <p(A) 4- <p(Ai). 
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We have proved that <p(H*) is a convex sublattice and a subsemigroup of (H')+ 

isomorphic with H+. From this there follows by routine calculations the 

5.16. Corollary. <p(HT) — <p(H+) is a convex l-subgroup of H' isomorphic with 
II. 

5.17. Theorem. Let G be an archimedean lattice ordered group and let 
He a(G). Then there exists an isomorphism <p of Hinto l(d(G)) such that (1) 
<p(x)- x for each xed(G), and (ii) <p(H) is a convex l-subgroup of l(d(G)). 

Proof. This is a consequence of 5.3, 5.5 and 5.16. 

5.18. Corollary. Let G be an archimedean lattice ordered group. Then l(d(G)) 
e a(G) and H^ll(d(G)) is valid for each He a(G). 

If H is a convex /-subgroup of l(d(G)) with GcH, then obviously He a(G). 
Hence from 5.17 we obtain (in view of identifying certain elements of C(G)9 cf. the 
end of § 1): 

5.19. Corollary. Let G be an archimedean lattice ordered group. Then a(G) is 
the set of all convex l-subgroups Hofl(d(G)) having the property that G cz H. 

Our concluding remark concerns the question in what way we can search to 
generalize the above consideration for lattice ordered groups that need not be 
archimedean. For a lattice ordered group H we denote by HD the extension of H 
described in [3], Chap. V, § 10. (The construction of HD is due to C. J. Everett .) If 
H is archimedean, then the following conditions are equivalent: (a) HD = H;(b)H 
is complete. Let G be a lattice ordered group (here we do not assume that G is 
archimedean). Let Ci(G) be the class of all lattice ordered groups H such that (i) 
HD — H; (ii) G is an /-subgroup of H; (iii) JFJis c-generated by G. The quasiorders 
^ i and 1̂ .2 in the class Ci(G) can be defined analogously as we did for C(G). The 
following problem remains open: Which results concerning C(G) can be extended 
for C(G)1 
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ПОПОЛНЕНИЯ СТРУКТУРНО УПОРЯДОЧЕННЫХ ГРУПП 

Мария Якубикова 

Резюме 

В этой статье исслеуется класс С(С) всех пополнений архимедовой структурно упорядоченной 
группы С. Доказано, что в С(С) может отсутствовать наибольший элемент и что С(С) может 
быть собственным классом. Если С — полное прямое произведение линъйно упорядоченных 
групп, то сага* С(С) = 1. Рассмотрены соотношения между прямыми разложениями С и прямыми 
разложениями структурно упорядоченных групп, принадлежащих С(С). 
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