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COMPLETIONS OF LATTICE ORDERED
‘GROUPS

MARIA JAKUBIKOVA

In the presented paper there is examined the existence of the largest completion
of an archimedean lattice ordered group. The investigation was inspired by
a question proposed by M. Kolibiar at the Algebraic Winter School (Krpacova
1980). The methods used below are analogous to those applied in the author’s
papers [6] and [7] for examining the existence of free complete lattice ordered
groups or free complete vector lattices.

1. Preliminaries

For the terminology concerning lattice ordered groups cf. Conrad [2] and
Fuchs [3]. Let us recall some notations we shall need in the sequel.

Let H be a lattice ordered group. H is said to be complete if each nonempty
upper bounded subset of H possesses the least upper bound in H. If this is the case,
then also the corresponding dual condition is valid. An /-subgroup H; of H is called
closed in H if, whenever X is a subset of H; and x, is an element of H such that
xo=sup X or xo=inf X holds in H, then x, belongs to H;. Let Y H. The set y is
said to generate (c-generate) the lattice ordered group H if for. each (closed)
I-subgroup H; of H with Yc H; we have H, = H.

A lattice ordered group A is called archimedean if for each 0<a € A and each
b € A there exists a positive integer n such that na¥ b. The following results are
well known: (i) If H is a complete lattice ordered group, then each /-subgroup of H
is archimedean. (ii) For each archimedean lattice ordered group A there exists
a complete lattice ordered group H such that A is an /-subgroup of H and A
c-generates H. (iii) Each archimedean lattice ordered group is abelian.

Let G be an archimedean lattice ordered group. We denote by C(G) the class of
all complete lattice ordered groups H such that

(a) G is an l-subgroup of H, and
(b) the set G c-generates H.

The lattice ordered groups belonging to C(G) will be said to-be completions of G.
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Let Gi, G:€ C(G). If there exists an isomorphism @ of G, onto G, such that
@(g) = g for each g e G, then we shall not distinguish G, from G, and we write
Gl = Gz.

2. Quasiorders =, and =; on C(G)

Unless otherwise stated, G will always denote an archimedean lattice ordered
group. Let T,, T€ C(G). The lattice ordered group T; is called the a-largest
completion of G if for each S e C(G) there exists an isomorphism @ of S into T,
such that ¢(g)=g for each g € G. The lattice ordered group T; is said to be the
f-largest completion of G if for each S e C(G) there exists a homomorphism ¥ of
T, onto S such that ¥(g)=g for each ge G.

The above notions are related to the following binary relations =, and =; on the
class C(G). Let S, Te C(G). We put S=,T if there exists an isomorphism @ of S
into T such that ¢(g)=g for each g € G. Further we put S=,T if there exists
a homomorphism ¥ of T onto S such that ¥(g) = g for each g € G. The relations
=, and =, are obviously quasiorders on the class C(G).

Analogous quasiorders concerning the situation when a partially ordered set is
embedded into a lattice have been investigated by M. Kolibiar [9].

Let us illustrate the quasiorder =, by the following example.

Example 1. Let I be an infinite set and for each ieI let G; and H; be the
additive group of all rationals or all reals, respectively ; both G: and H; are linearly
ordered in the natural way. Put

G=2ieIGi, H__“EieII_Iiy H' =HieII'Ii-

Then H and H' belongto C(G), H=, H’ and H fails to be isomorphic with H'.

The natural question arises: what are the properties of the quasiordered class
(C(G); =1) or (C(G); =2)? In particular, does G always have the a-largest
completion or the B-largest completion? The first question seems to be rather
difficult. It will be shown below that the answer to the second question is negative.

We need the following result (it follows from the construction applied in the
proof of Thm. 4.7 in [6]):

(A) Let M be a set with card M=R,. Let a be a cardinal. There exists
a complete lattice ordered group G, such that G, is c-generated by the set M and
card G.=a.

The complete lattice ordered groups G. were constructed in [6] by means of
complete Boolean algebras B, having properties analogous to those of G, (i.e., Be
is c-generated by a denombrable set and card B, = a); the Boolean algebras B.
have been described by Hales [4]. Let us dencte by G/ the /-subgroup of G.
generated by the set M.
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Since the class of all lattice ordered groups is a variety, there exists the free lattice
ordered group FLG($) with R, free generators and clearly card FLG(Rs) = Ro. If
H is a lattice ordered group having a denombrable subset M, such that M;
generates H, then there is an /-ideal K in FLG(R,) such that H is isomorphic with
FLG(R,)/K. From this it follows that the number of non-isomorphic types of
lattice ordered groups with N, generators is less than or equal to 2'.

The above consideration shows that there is a set {H;}:.r of lattice ordered
groups such that 1) for each i e I there is M; = H; with card M; =R, such that M;
generates H;; 2) for each pair i, j of distinct elements i, j of I, H; fails to be
isomorphic with H;; 3)if H is a lattice ordered group with R, generators, then
there is i € I such that H is isomorphic to H..

Let I, be the class of all i € I that have the following property : there is a cardinal
a(i) such that G; fails to be isomorphic to H; for each cardinal 8 with 8> a(i).
Suppose that I; = I. Then there is a cardinal a, with a,> a(7) for each i e I'; thus
for each i € I, G, fails to be isomorphic with H;, which contradicts 3). Thus there is
ice NI, ; denote G°= H,. Hence we have

2.1. Lemma. For each cardinal a there is‘a cardinal B with-f> a such that G° is
isomorphic to G.

2.2. Theorem. There exists an archimedean lattice ordered group G such that
(i) G has neither the a-largest completion nor the B-largest completion, and (ii)
C(G) is a proper class.

Proof. Put G= G° Suppose that T; is the a-largest completion of G. Denote
card T; = a. According to 2.1 there exists. > a such that G° is isomorphic with
Gj; thus without loss of generality we can assume that G°= Gj. Hence G;j is
a completion of G°. Since card Gj = 8, there does not exist any isomorphism of Gj
into Ty, which is a contradictioen.

Next suppose that T is the §-largest completion of G, card T>= a. Let f be as in
the previous consideration. From card Gs = > a it follows.that there cannot exist
any homomorphism of T, onto Gz, which is a contradiction.

The assertion (ii) is an immediate consequence of 2.1.

Let Ci(G) be the partially ordered class that we obtain from the quasiordered
class (C(G), =.) by identifying each pair of elements Gi, G, € C(G) which fulfil
the relations G, =, G:, G,=; G.. Further let G;(G) be defined analogously. The
question whether there must exist maximal elements in C;(G) or in C;(G) remains
open.

A nonempty subclass A of C(G) is said to be an antichain in (C(G); <)) if for
any pair of distinct elements G,, G: € A we have neither G, =, G, nor G, =, G,.

2.3. Proposition. Let a be an infinite cardinal. There exists an archimedean
lattice ordered group G' such that there is an antichain A in (C(G'), =,) with
card A=a.
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Proof. Let Jbe aset, card J=a. Let G, H and H' be as in the Example 1. For
each je J let G} = G; further we put G’ =I1;.,G}. Let k be a fixed element of J.
We set Gi=I1,.,Gy, where Gy, =H for j=k and Gy,;=H' otherwise. Then

%€ C(G") for each keJ and A ={G%}«.sis an antichain in (C(G'), =.) with
- card A=a.

3. Completions of linearly ordered groups

In this paragraph it will be shown that for. each archimedean linearly ordered
group G, C(G) is a one-element set.

An [-subgroup G; of a lattice ordered group G, will be said to be an rl-subgroup
of G; if whenever X c G, xo€ G; and x, is the join of the set X in Gy, then xo is
also ‘the join of the set X in G,. (This is equivalent to the corresponding dual
condition.)

Let us recall the following definition:

3.1. Definition. The complete lattice ordered group K is called a Dedekind
completion of the lattice ordered group G if the following conditions hold:

(i) G is an l-subgroup of K.

(ii) Foreach k € K there are subsets X, Y of G such that sup X = k =inf Y holds
in K.

It is easy to verify that if G possesses a Dedekind completion, then this is
determined uniquely up to isomorphisms. It will be shown below that if K is the
Dedekind completion of G, then G is an ri-subgroup of K (cf.S5.2.1). The
following. theorem has been proved by Clifford (cf. Fuchs [3]):

(B) Let G be an archimedean lattice ordered group. Then G possesses
a Dedekind completion.

The Dedekind completion of an archimedean lattice ordered group G will be
denoted by d(G).

Let us denote by R the additive group of all reals with the natural linear order.
Then we have (cf. [3], Chap. IV, Thm. 1 (Hélder)):

(C) Each archimedean linearly ordered group is isomorphic to an /-subgroup of
R.

3.2. Lemma. Let G be an [-subgroup of a lattice ordered group K. Assume that
G is linearly ordered. Let G’ be the convex l-subgroup of K generated by G. Then
G’ is a closed I-subgroup of K.

Proof. The case G={0} being trivial we can assume that G+ {0}. Choose
0< g e G. Itis easy to verify that G is the set of all k € K such that | k| =|g(k)| for
some g(k)e G. Let @+ X c G, k € K and-suppose that sup X = k holds in K. If X
is upper-bounded in G, then clearly k € G'. If X fails to be upper-bounded in G,
then we have in K the relation
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k=sup X=sup G=sup(G—g)=sup G—g=k—g<k,

which is a contradiction.

Let G, K and G’ be as in 3.2. For each k€ G’ denote I(k) = {ge G, g=k}.
Let G, be the set of all elements k € G’ such that k =sup I(k) holds in K. Clearly
k € K belongs to G, if and only if there exists a nonempty subset X of G such that
(i) X is an upper bounded subset of G and (ii) sup X =k holds in K:

3.2. Lemma. G is the closed I-subgroup of K generated by G, and G, is linearly
ordered.

Proof. From the definition of G, it follows that G, is linearly ordered. Let
ki, k2 € Gi. There are nonempty subsets X, X, of G-that are upper-bounded in G
such that the relations kr=sup X and k> =sup X; hold in K. Then X; + X is an
upper-bounded subset of G-and k&, + k2 = sup (Xi+ X3) is valid in K; thus G, is
closed with respect to the group operation. Hence G, is an /-subgroup of K,
G c Gi. Let'{k:}.1be a nonempty subset of G, k € K -and suppose that k =\/, .k
holds in K. Then in view of 3.2 we have k€ G’, hence thereis g € G with k=g.
For each i € I there exists a nonempty subset X; of G such that sup X; = k; is valid
in K. Therefore X=X is a subset of G that is upper bounded by the element
g € G, and sup X =k holds in K. Hence k€ G, completing the proof.

By a dual argument we can verify that for each k € G, there exists a nonempty
subset Y of G such that k=inf Y is valid in K.

3.4. Proposition. Let G be an archimedean linearly ordered group. Then
C(G)={d(G)}.

Proof. Since G is archimedean, d(G) exists by Theorem (B), and d(G) belongs
to C(G) according to the definition 3.1. Let K € C(G) and let G, be as in 3.3. Since
K is complete, it follows from 3.3 that G, is c-generated by G. From this and from
K e C(G) we obtain K = G;. In view of the definition of G, and with respect to 3.3
we infer that the condition (ii) from 3.1 is valid. Therefore K =d(G).

A generalization of this result will be given below (cf. 4.8).

4. Completions of direct products

Let G be a lattice ordered group and let X< G. Put
X°=X*9={geG: |x|a|g|=0 foreach xeX}.

The following results are well known:
(C) (Ct. Sik [10]) X?® is a closed convex I-subgroup of G.
(D) (Riesz; cf. [3]) If G is complete, then X is a direct factor of G.

Now let G be an archimedean lattice ordered group, He C(G), G= A X B. Let
A, be the set of all elements /& € H such that there exists a subset X < A having the
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property that sup X=#A holds in H. Next let A’ be the convex /-subgroup of H
generated by the set A;. Analogously we define B; and B’. It is a routine to verify
that A’ can be characterized as the set of all 4#eH that fulfil the following
condition:

(c) There are sets X< A™ and Y < A~ such that (i) sup X and inf Y do exist in
H, and (ii) inf Y=h=sup X.

Let ZcA’', he H and suppose that supuZ=h. Put X = {zv0:zeZ},
Y = {zA0:z€ Z}. Then supeX = hvO0 and supyY = An0, XcA', YC A"
From the convexity of A’ in H it follows that A0 € A’. For each x € X there exists
a set P(x)c A with supuP(x) =x. Put X;=|J:cxP(x). Hence supxX = supuX;
= hv0, yielding hv0e A’. By using again the convexity of A’ we obtain he A'.
Thus A’ is a closed /-subgroup of H. Clearly A c A’. Similarly, B' is a closed
I-subgroup of H and Bc B'. In view of G=A X B we have |a|A|b| =0 for each
a € A and each b € B, hence according to (c) we infer that |a’|A|b'| =0 is valid for
each a’€ A’ and each b'e B'. Thus a’'+b’ = b’ +a’ for each a’ € A’ and each
b' € B’ ;moreover, A'nB’'={0}. Thus A’+B’' = A’ X B’ and A’ X B' is a closed
convex /-subgroup of H. Since G A’ X B’, we must have H=A'X B'.

If 0<a’€ A’, b € B, then from (c) it follows that a’ A|b| =0, hence A’ = B*™.
Let 0=y e B**™, We denote by y(A’) and y(B’) the component of y in the direct
factor A’ or B’, respectively. Then y=y(A') + y(B') = y(A')vy(B’). From
y € B** and from (c) (applied for B')-we obtain y(B’)=0, hence y=y(A')e A’.
Thus A’=B*™, Similarly, B'=A’*. In view of H=A’'X B’ this yields A’
= (B')’* = A%

Let A, be the closed /-subgroup of H generated by A and let B, be defined
analogously. Put Co = Ao+ Bo. Then C;= AoX By and G, is a closed /-subgroup of
H, G G. Hence Gy= H. If we have either A¢# A’ or Bo# B’, then in view of
H=A'X B' we would have C, <= H, which is a contradiction. Hence Ao=A' and
Bo = B' .

By summarizing, we obtain

4.1. Proposition. Let G be an archimedean lattice ordered group, G=A X B,
He C(G). Then H= A’ x B Moreover, A*™*™ ¢ C(A) and
B e C(B).

The following assertion is easy to verify:

4.2, Lemma. Let G, A, B, H be as in 4.1 and let ge G. Then g(A)
= g(AMDeeD),
By standard induction steps we get from 4.1:

4.3. Theorem. Let G be an archimedean lattice ordered group, G= A, X Az X
X ... X As HeC(G). Then H= A} x AN = x AP
Moreover, A{*™*™ e C(A)) holds for i=1, 2, ..., n.
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The following example shows that this theorem cannot be generalized for direct
decompositions having infinitely many direct factors.

Example 2. Let G, H and H' be as in Example 1. Let J be an infinite set and
for each jeJ let Gj=H', G}=G. Put K,;=1I1;.,G} and let K be the set of all
ke K, having the property that the set {jeJ: k(G))¢ H} is finite. Further let
Go=I1,c,G5. Then K e C(G,), but K cannot be expressed as a direct product
I, {G})*®*o_

Nevertheless, from 4.3 we obtain the following

4.4. Corollary. Let G be an archimedean lattice ordered group, G=1I1,;.,A;,

He C(G). Then
(i) each AJ*P*™ js a direct factor of H
(i) if i, jeJ, i#j, then A{*P%HD A A = (0},

(iii) for each jeJ, AJ*™*™ e C(A)).

For an archimedean lattice ordered group G we denote by C,(G) the class of all
H e C(G) which have the property that for each % € H there exists ge Gwith h=g
(in other words, the convex /-subgroup of H generated by G coincides with H).
Clearly d(G)e C.(G).

4.5. Lemma. Let G, A; (jeJ) and H be as in 4.4. If H e C,(G), then A]"*™ ¢
C,(Ay) for each jeJ.

Proof. Assume that He G,(G). Denote B;=AJ*°™, Let 0=b;€ B;. Then
b;e H, hence there is g e G with b;=g. In view of 4.2, b; = bj(B)) = g(B)
= g(Aj) € A,', thus Bje Cb(A,').

4.6. Theorem. Let G be an archimedean lattice ordered group, G =1I1;c;A;,
He C(G). Assume that A}*"**™ belongs to C,(A;) for each jeJ. Then H=
I1  JA20D30D,

Proof. In view of 4.4 it suffices to verify that the following conditions are valid
(we use the denotation B;=A7*%* 35 above):

a) if 0=b; e B, for each jeJ, then supu{b;};cs does exist;

b) if 0=he H, then h=\/;c,;h(B)).

Let 0=b;¢e B; (jeJ). Because of B;e C,(A,) there exist elements a; € A; with
0= b, = g, for each jeJ. Further there exists g € G such that g(A;) =g holds for
each jeJ. In view of g(A;)=g(B;) (cf. 4.2) we have b;=g for all jeJ. Hence
there exists supu{b;j};cs; thus a) is valid.

Let 0= h e H. Put h(B;y=b; for each je J and let g be as in a). Then-in H we
have g =\/;<.a;, hence

h=hang=\,cAhAa).
Since hAa e B; and haa;=h, we get haa;= h(B)). Therefore h=\/;.,h(B)).
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4.7. Corollary. Let G, A; (jeJ) and Z be as in 4.4. Then the following
conditions are equivalent: (i) He C,(G); (ii) for each je J, A]*** belongs to
G.(A)).

Proof. (i) implies (ii) by 4.5. Let (ii) be valid. Then from the condition b) in 4.6
we obtain that (i) holds.

4.8. Corollary. Let G be an archimedean lattice ordered group, G =1I;.,A;.
Assume that all A; are linearly ordered. Let He C(G). Then H =11;.,d(A)).

Proof. This follows from 3.4, 4.4 and 4.6.

Now let us consider the question what the structure of H is if G and H are as in
4.4 and if we do not assume that He G,(G).

4.9.Lemma. Let G and H be as in 4.4, Bj= A?™*™ and let 0<h e H. Then
there exists j € J with h(B;)>0.

Proof. Suppose that A(B;)=0 for each jeJ (under the denotation as above).
Then for each jeJ and each 0<b;e B, we have hab,=0. Let 0=g € G. Since
gd=Vic9(A) = V;e9(B), we get hang=0, hence G {h}**™cH. Since
{h}**™ is a closed /-subgroup of H, we have a contradiction.

4.10. Lemma. Let G and H be as in 4.4, B;= A*™*™ and let 0= h e H. Then
h=V,ech(B).

Proof. Since H is complete, there exists #;=\/;c,A(B;)in Hand h,=h.If jeJ
and (A—hi) (B)>0, then h(B) < h(B) + (h—h)(B) = h + (h—h)
= hand h(B;) + (h — h) (B;) € B;, which is impossible. Therefore (h — h;) (B;) =
=0 for each jeJ. Thus in view of 4.9, h=h,.

The notion of the completely subdirect product of lattice ordered groups has
been introduced by Sik [11]; cf. also [8], §3.

‘From 4.4, 4.9 and 4.10 we obtain:

4.11. Theorem. Let G be an archimedean lattice ordered group, G =1I1,.,A,,
He C(G). Then H is a completely subdirect product of lattice ordered groups
A;i(H)é(H) (]GJ)

4.12. Corollary. Let G be an archimedean lattice ordered group, G =1I1,c,A,. If
the class C(A;) is a set for each jeJ, then C(G) is a set as well.

4.13. Proposition. Let G be an archimedean lattice ordered group, G =1I1;.,A,.
For each jeJ, let B;e C(A;), B=I1,.,B;. Then Be C(G).

Proof. Since B is a direct product of complete lattice ordered groups, B is
complete as well. G is an /-subgroup of B. For each jeJ, B; is the closed
I-subgroup of B generated by A;. Let C be the closed /-subgroup of B generated
by G. Then B;c C for each jeJ. Let 0=be B. We have b=\/,c,b(B;) and
b(B))e C for each jeJ, whence b e C; thus B* < C. From this it follows that
B =C. Therefore Be C(G).
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4.14. Corollary. Let G be an archimedean lattice ordered group, G =11;.,A;,
He C(G). Then II; ;AP pelongs to C(G).
This follows from 4.1 and 4.13.

5. The class Co(G)

Let G be an archimedean lattice ordered group. We denote by Co(G) the class of
all completions H of G such that each element & € H with #=0 is a join of a subset
of G. This class Go(G) is nonempty, since the Dedekind completion d(G) belongs
to Co(G). The class Go(G) need not coincide with C(G) (this is a consequence
of 2.2).

A subset {x,}:.rof G is said to be disjoint if x; =0 for each i € I and x; Ax; =0 for
each pair of distinct elements i, j e I. The lattice ordered group G is said to be
laterally complete if each disjoint subset of G possesses the join in G.

We shall apply the following result (cf. [5]):

(D) Let K be a complete lattice ordered group. There exists a complete lattice
ordered group K; such that

(i) K, is laterally complete;
(i) K is a convex [-subgroup of Ki;

(iii) for each 0<k;e K, there exists a disjoint subset X of K such that
sup X = k; holds in K.

It is easy to verify that K is defined uniquely up to isomorphism. K is said to be
the lateral completion of K and we write K;=I(K). Clearly K; € C(K). (Lateral
completions of lattice ordered groups that are not assumed to be complete have
been investigated by several authors, e.g. [1].)

In this paragraph it will be shown that for each He Gy(G) the relation

d(G)=,H=I(d(G))

is valid.
The following lemma shows that the definition of Co(:G) is in a certain sense
self-dual.

5.1. Lemma. Let He G(G), 0> h e H. Then there is a subset S = G such that
h=inf S holds in H.

Proof. There is 0=g € G. We have 0< g — A, hence there exists S; = G with
supuS1=g—h. Thus infy (=S1) = h—g and this yields infy (—S:+g)=h.
Clearly —S:+g<G.

5.2. Lemma. Let He G(G). Then G is an rl-subgroup of H.

Proof. Itis easy to verify that G is regular with respect to joins if and only if it is
regular with respect to meets. Suppose that G fails to be regular in H. Then there is
S1 = G such that
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h1=il’lfy L1>g=iﬂfa Sl.

Put Si—g=S, h=h,—g. Then O=infc S<h = infy S. There exists T<= G with
supy T=h. Since A>0, there is te T with t£0. Thus t,=tv0>0, ti=h, t1 e G.
Further we have ¢, =s for each s e S, hence inf¢ S#0, which is a contradiction.

5.2.1. Corollary. G is an rl-subgroup of d(G).

5.3. Lemma. Let He Cy(G). Let G, be the convex I-subgroup of H generated
by G. Then G,=d(G).

Proof. G isacomplete lattice ordered group and G is an /-subgroup of G,. Let
x € Gi. There exists g € G with —(0Ax)=g. Since —(0Ax) = (xv0)—x, we have
x+g = xv0=0. Thus there is S G with supy S =x + g. Therefore supx S: =1x,
where S;=S-gc G. Analogously we can verify that there exists S, G with
infy S:=x. Clearly supx Si = supg, S1 and infy S: = infs: S;. Therefore G, =
d(G).

5.4. Corollary. Let He Co(G). Then d(G)=. H.

5.5. Proposition. Let G be an archimedean Iattice ordered group. Let
He C(G), 0=he H. Then there exists a disjoint system S of elements of d(G)
such that supuy S=h.

Before proving 5.5 we need some auxiliary results. In 5.6—5.9 we assume that H
is a complete lattice ordered group. For X< H we denote

[X] = Xo008¢D,

For x € H we write [x] instead of [{x}]. Let 0=x € H. For each 0=y e [x] we have
y=V(nxay) (n=1,2,..) (cf. e.g., [12]; in [12] vector lattices are investigated,
but the proof remains valid for complete lattice ordered groups as well). From this
it follows that

2[x]=Va(nxaz[x]) = Va(nxlx]az[x]) = V.((nx AZ)[x]) = Va(nx A2)
is-valid for each 0=z e H.
5.6. Lemma. Let I be a nonempty set, 0=x;€ H for each ie I, supu xi=x,

0=yeH. Then y[x] = Viey[x]
Proof. We have

)= Vaang) =Va(y AnViem) =VaViedy Anx) =
=VieVa(yAnx)=Viery[x].

5.7. Lemma. Let 0<a e H and let 0(a) be the set of all elements a; € H having
the property that there exists a’ € H with a;Aa;=0, aiva’=a. Then (i) 0(a) is
a Bocolean algebra, and (ii) 0(a) is a closed sublattice of H.
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The first assertion follows immediately from the definition of 0(a). The second
assertion is a consequence of the infinite distributivity of H.

The following further properties of the elements of 0(a) are easy to verify:

Let a,, a;€0(a), ce H. The we have

ala]l=aina, alcle0(a), (c[a))]a]=clana].
Now let 0<aeH, 0<beH. Put
A’={a;€0(a):a;=0 or b[a]>0}, a’=supuy A°.
For each positive integer n we denote
At={a € A°: na;Zb[a]}, at=supu AJ.

Then from 5.7 we obtain that a belongs to 0(a) for n =1, 2, .... We also have
ai=a3=...=a. For each positive integer n we put ar=a’—aj This yields
ainal=0 for n=1, 2, ...

5.8. Lemma. Let 0<a;€0(a), a;=a,. Then na;<b[a).

Proof. If b[a;]— na;=0, then a; = a, which is impossible. Thus b[a;] — na;#0.
Suppose that b[a;] — na;*0. Hence (b[a] — na;)™ = z>0. Clearly z €[a;]. Hence
a[z]=a;€0(a) and [z] =[4;]. Thus 0< a;=a,=a) and (b[a]— na;)* Az=0. From
this it follows that

0=(b[a] — na))* = (b[a)] — nala])* = (b — na)*[a] =
=((b — na)"[a])[4] = (blai] — na))*[4;] = (bla] — na)*[z] =0,

whence (b[a;] — na;)* =0, implying b[a;]= na;. Hence a;= a5, asnay>0, which is
a contradiction.

5.9. Lemma. \.a.=0.

Proof. By way of contradiction, assume that there is 0 <x € H such that x=<a,,
holds for i =1, 2, ... Then according to 5.8 we have nx = b[a,] = b for each positive
integer n. This is impossible, because H is archimedean.

Put a, = af, and define by induction a, = a5 — a,-, for each n> 1. Then we have .

2 ar=ava;v...va,
for each positive integer n, and

(3) An Aam =0

for each pair of distinct positive integers n, m. Moreover, for each 0<a; = a, we
have na, Zb[a] and (n —1)a,<b[a:). Put at=\/,.an Then a;e0(a) and clearly
a4 = ao. If we had aj< ao, then there would be a, €0(a) with 0<a; = ao—ab and
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hence ai=a) for n=1, 2, ..., contradicting 5.9. Hence \/.a,= ao. From this and
from (2) we obtain

4 V. = a.

From the definition of ao we get b[a] = a,, hence according to (4) and in view of
56 :

(%) bla]=b[ao]=V.b[a.].
In view of (3) the system {b[a.]}n-1,, .. is disjoint; moreover,
(6) bla.]= na. (n=1,2,..).

Proof of Proposition 5.5:

Let 0< k€ H. There exists a subset X< G* such that sup X =#A is valid in H.
From this we infer by using the Axiom of Choice that there exists a disjoint subset
{y,},es Of strictly positive elements of [ X] such that (i) y; € G for each j € J, and (ii)
if ze[X]*, zay,=0 for each jeJ, then z=0. Thus [X]=[{y;};eJ]. Because of
he[X] we have also he[{y;}ie]=V,eAy], hence h=\/,;ch[y].

Let jeJ be fixed. Put y;=a, h[y;]=5b and let us write a.,; instead of a,. Then
according to (5) and (6)

hly]=V.(hlyDlas), (hlyDlas]=nay  (n=1,2,..),
hence by 5.2 and 5.3 (k[y;])[a.] € d(G). Further we have

h=V;e\Va(hlyDan]

and the system {(h[y;])[a~]} G€J, n=1,2,...) is disjoint. The proof is complete.

In 5.10—5.16 we assume that K and H are complete lattice ordered groups such
that (i) K is a convex /-subgroup of H, and (ii) for each 0<h € H there exists
a disjoint subset X in K with supy X =h. '

Let us denote H' = I/(K). For distinguishing the lattice operations in H and in H’
we shall denote the lattice operations in H' by A’ and v’, while A, v are lattice
operations in H. (If x, ye K, then xAy = xA’y and xvy=xv'y.)

Suppose that both {a:}:c; and {b;};cs are disjoint subsets of K.

5.10. Lemma. Assume thath'e H', h' =\/'icia;and that \/...a, = \/,c,b,. Then
h' =V;'Elbi~
Proof. From Vicai=\/;cb; it follows that

(7) ai=\,eAa,nb)) foreachiel,
®) b,=V.c{bjana)foreachjeJ.
Since K is a convex /-subgroup of H, we obtain
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™) a;i=\/jc,(ainb;)foreachiel,
8" bj=V'ici(bjaa)for each je J.

According to (8'), b;=h' is valid for each jeJ, hence (in view of the lateral
completeness of H') there is h; € H' with Ay =h’ such that

(9) h1=V}erj-

From (9) and (7') we get h’'=h,, thus hy=h'.
If {a;}icrare as in 5.10 and if 2 =\/.a,, then we put (k) = \/'<:a:. From 5.10
it follows that ¢ is a correctly defined mapping of the set H" into (H')".

5-11. Lemma. Let h, h] GH+, h=V,-s;a,~, hl:Vie-’bI" ﬂzen h1§h <> (p(h1)§
o(h). :
Proof. We have

h=h < (8') < (8) < e(h)=e@(h).

5.12. Corollary. @ is a monomorphism, and @(H") is an upper directed subset
of H'.

5.13. Lemma. @(H") is a convex sublattice of H'.

Proof. Itis obvious that O is the least element of @(H"). Hence in view of 5.12
it suffices to verify that if pe ¢(H") and p.e H', 0=p,=p, then pe @(H").
Assume that he H*, p(h)=p, h =\/icia.. Let 0= p,;=p. Then there is a disjoint
subset {b;};csin K with pi=\/}e.b;. In view of p =\/'c 1a: the relation (8) holds,
thus {b;};e,is upper bounded in H; hence there exists h, € H such that (9) is valid.
Therefore p:=@(h) € @(H").

Clearly @(k)=k for each ke K*.

5.14. Lemma. Let X< K*, supuy X=h. Then supu @(X)=@(h).

Proof. According to the assumption there exists a disjoint subset X; of K such
that supx Xi = h. Then @(h) = sups Xi. Since x =k and @(x) = x for each x € X,
in view of 5.11 we have x = @(h) for each x € X. Thus there exists supx X = q and
q = @(h). From 5.13 it follows that there exists , € H" with @(h:)=q. By using
5.11 again we get A, = h; moreover, from the fact that @(x)=x= @(h:) we infer
that x = h, holds for each x € X, yielding /4 = h,. Thus A = h,, completing the proof.

5.15.Lemma. Let h, hne H*. Then @(h+ h) = @(h)+ @(h). :
Proof. There are sets X, X; c K" with supy X = h, supy X; = h,. Then we have
supy (X+X1)=h+h,.
In view of 5.14 we obtain
@(h+ h)=supu (X +X,) =supw X +supy X;=@(h)+ @(h).
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We have proved that ¢(H™) is a convex sublattice and a subsemigroup of (H')"
isomorphic with H*. From this there follows by routine calculations the

5.16. Corollary. ¢(H")— @(H") is a convex l-subgroup of H' isomorphic with
I

5.17. Theorem. Let G be an archimedean lattice ordered group and let
H e C(G). Then there exists an isomorphism ¢ of H into I(d(G)) such that (1)
@(x)=x for each x € d(G), and (ii) ¢(H) is a convex I-subgroup of I(d(G)).

Proof. This is a consequence of 5.3, 5.5 and 5.16.

5.18. Corollary. Let G be an archimedean lattice ordered group. Then I(d(G))
€ C(G) and H=,1(d(G)) is valid for each H € C(G).

If H is a convex /-subgroup of /(d(G)) with G c H, then obviously H e Co(G).
Hence from 5.17 we obtain (in view of identifying certain elements of C(G), cf. the
end of §1): '

5.19. Corollary. Let G be an archimedean lattice ordered group. Then Cy(G) is
the set of all convex I-subgroups H of I(d(G)) having the property that G < H.

Our concluding remark concerns the question in what way we can search to
generalize the above consideration for lattice ordered groups that need not be
archimedean. For a lattice ordered group H we denote by Hp the extension of H
described in [3], Chap. V, § 10. (The construction of Hp isdue to C. J. Everett.) If
H is archimedean, then the following conditions are equivalent: (a) Hp = H; (b) H
is complete. Let G be a lattice ordered group (here we do not assume that G is
archimedean). Let Ci(G) be the class of all lattice ordered groups H such that (i)
Hp = H; (ii) G is an /-subgroup of H; (iii) H is c-generated by G. The quasiorders
=, and =, in the class Ci(G) can be defined analogously as we did for C(G). The
following problem remains open : Which results concerning C(G) can be extended
for Ci(G)? :
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MOTIONMHEHWS CTPYKTYPHO YTIOPAOOYEHHBIX I'PYTIIT
Mapus SIky6uxkosa

Pe3ome

B aroii cratbe Hecneyetest kiace C(G) Beex MOMOMHEHUH apXMMEIOBOM CTPYKTYPHO YIOPSA0YeHHOM
rpynnst G. loka3aHo, 4ro B C(G) MOXeT OTCYTCTBOBaTh HanGonbumit aneMeHT u uro C(G) MoxeT
6bITh cOGCTBeHHBIM KitaccoM. Ecnmn G — monHoe npsiMoe NpoM3BefieHHe JMHBAHO YHOPSIOYEHHBIX
rpynn, To card C(G) = 1. PaccMOTpeHbI COOTHOLIEHNST MEXAY NPAMBIMH Pa3NOXEHUAMH G H IPSIMbIMU
Pa3710XEHUsIMHA CTPYKTYPHO YNOPSIIOYEHHBIX rpymnmn, npuHafnexamux C(G).
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