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GENERIC AND STABILITY 
PROPERTIES OF RECIPROCAL AND 
PSEUDOGRADIENT VECTOR FIELDS 

MIROSLAV KRAMÁŘ 

(Communicated by Michal Fečkan ) 

ABSTRACT. An analogue of Kupka-Smale theorem for some types of pseudo-
reciprocal vector fields is proven. Also some stability properties of special pseudo-
reciprocal vector fields defining second order differential equations are discussed. 
Pseudogradient vector fields on manifolds are defined and a theorem on the non­
existence of periodic trajectories for this class of vector fields is proven. 

1. Introduction 

Methods of nonlinear analysis are very often used in various scientific fields 
to analyse complicated mathematical models having a specific structure. We 
will study generic and stability properties of so called reciprocal vector fields. 
Reciprocal vector fields were defined by O. C h u a in the paper [2]. These vec­
tor fields are of particular importance in nonlinear circuit systems because the 
state equation of any nonlinear circuit made up of only 2-terminal, and/or re­
ciprocal a-terminal resistors, inductors, and capacitators always gives rise to a 
pseudoreciprocal vector field. In particular, if only 2-terminal capacitators or 
only 2-terminal inductors are present in circuit, in addition to reciprocal resis­
tors, then the Jacobi matrix of the associated vector field always assumes the 
form of a product of two symmetric matrices. This special case corresponds to 
a pseudogradient vector field. 

In this paper an analogue of Kupka-Smale theorem will be proved for some 
types of pseudoreciprocal vector fields. Also some stability properties of special 
types of reciprocal vector fields and pseudoreciprocal vector fields will be dis-
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cussed. Pseudogradient vector fields will be defined on manifolds and analogous 
results to the case of vector fields in W1 will be obtained. 

Now let us recall definitions of reciprocal and pseudoreciprocal vector fields 
from the paper [2]. 

DEFINITION 1.1. A matrix is called reciprocal of order (p, q) if it has the form 

( A c ) 

where A and D are matrices of dimensions p and q, respectively. 

DEFINITION 1.2. A vector field f(x) on E2n is called reciprocal of order (p, q) 
if Bf(x) is a reciprocal matrix function of order (p, q) for all x G R2n . 

DEFINITION 1.3. A vector field f(x) on R2n is called pseudoreciprocal of 
order (p, q) if there exists a nonzero matrix M(x) such that f(x) = M(x)g(x), 
x G K2n , where g(x) is a reciprocal vector field of order (p, q). 

2. Generic properties of reciprocal matrices 

We will use the following notation. Let M2n (M2n(rec)) be the set of all 
2n x 2n real (reciprocal) matrices and M2n (M2n(rec)) be the subset of singular 
matrices. 

LEMMA 2.1. The set Mn = {A e Mn : A £ M°} is open and dense in Mn. 

LEMMA 2.2. The set M2n(iec) = {A G M2n(rec) : A £ M2°n(rec)} is open 
and dense in M2n(rec). 

P r o o f . From Lemma 2.1 it follows that M2n is open in M2 n , but M2n(rec) 
C M2n and -M2n(rec) = M2n n M2n(rec), so .M2n(rec) is open in M2n(rec). 

Now let us show density of yVl2n(rec) in M2n(rec). We construct for e > 0 
and arbitrary matrix B G M2n(rec) a matrix C G yVi2n(rec) such that \\C—B\\M 

< e, where || • \\M2n is a norm in ./W2n(rec). Let 

в=(-c* D)ЄM^IЄC^-

The assertion of Lemma 2.1 enables us to assume that A is a regular matrix. It 
is easy to see that if 

T-( E °\ ' \C*A~1 EJ' 
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then det(TB) = de t (T)de t (#) = det(z5) and so det(5) = 0 if and only if 
det(TB) — 0. After some calculation we have: 

det(Tfl) = det(.A) d e t C C M ^ C + D). 

It is enough to show that there exists a matrix D' such that the matrix 
C*A~lC + D' is regular, \\D - -D'||M2n < £ and so 

C= (-C* D'J eM2n(TeC) 

with \\C — #|lM2n(rec) < e. From Lemma 2.1 it follows the existence of a regular 

matrix M e M2 such that \\M - (C*A~lC + -D)||Mn < e. Let 

D' = [M-C*A-1C]. 

It is obvious that \\D — D'\\M,, < e and the matrix C*A~1C — D' is regular. 
• 

3. Generic properties of reciprocal vector fields 

DEFINITION 3 .1 . Let n,r e N and K C Rn be a compact set. Then 

Cr
b(K,Rn) = {Fe Cr(K,Rn) : \\F\\Cr(K) < oc} 

is a Banach space with the norm 

\\F\\C{K) = maxf sup \\F(x)\\, sup || d.F(x)||, • . . , sup || d^F(x)\\\ . 
bK ' ^ xeK xeK xe$ J 

DEFINITION 3.2. Let n, r G N, r ^ 1, and K C R2n be a compact set. Then 
define the set 

Vr
n(rec)(K) = {F <E Cr(K,R2n) : F is the reciprocal vector field 

of order (n,n)} . 

LEMMA 3 .1 . Let n,r e N. r ^ 1, and K C R2n be a compact set. Then 
V2n(rec)(K) is a second countable Banach space. 

P r o o f . It can be shown that V2n(rec)(K) is a closed linear subspace of 
Cl(K,R2n). Therefore the set V2n(rec)(K) is a Banach space. Since any sep­
arable metric space is second countable and C£(K, R2n) is separable ([6]), so 
Cl(K, R2n) is second countable. Therefore V2n(rec)(K) is second countable. 

• 
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L E M M A 3.2. Let n e N. Then 
i 

Ml(rec) = \jMi, 
i=l 

where Mi is a smooth manifold in M2n(rec) with codimM- ^ 1 for i G 
{ i , . . . , / } . 

P r o o f . It is clear that M2n(rec) is an algebraic set. Therefore from Whit­
ney's theorem ([5]) it follows that 

i 

Ml(vec) = \jMi, 
i=l 

where M{ is a smooth manifold in M2n(rec) for % e { 1 , . . . , / } . The assertion 
concerning the codimensions is proved in [5; Lemma 3.69], where it is formu­
lated for the set M n . The proof for M2n(rec) is analogous to the proof of [5; 
Lemma 3.69], taking into account that dim(M2n(rec)) = (2n)2 — n2. • 

We will use the notation: 

E° = {(u,v,A) eRn xRn x M2n(iec) : u = 0, v = 0, d e t ^ = 0 } , 

E* = {(u, v, A)eRn xRn x M2n(rec) : u = 0 , v = 0 , 

A has a pure imaginary eigenvalue} , 

S = S° U E*. 

As a direct consequence of Lemma 3.2 we obtain: 

LEMMA 3.3. Let n e N. Then 

£° = US?> 
t= i 

where 

E°t = {(u,v,A) e f x T x M2n(rec) : u = 0, v = 0, .4 € M j , 

Mj are manifolds from Lemma 3.2. and 

codimS0 ^ 2 n + l for ie{l,...,l}. 

DEFINITION 3.3. Let n,r € N and K c R2n be a compact set. Then define 
the mapping: 

p: V2
r+\xec)(K) -»• C r(tf,M2nxM2n(rec)) , 

p(F):K-*R2n xM2n(iec), 

p(F)(x,y) = (F(x,y),dF(x,y)), 

where (x,y) e K. For p(F)(x,y) we use also the notation Pp{xiy)-
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Now we will remind A b r a h a m ' s transversality theorem. 

THEOREM 3.1. Let B be a Banach space, X be a smooth manifold, S = 
(J T,{ C Rn , where T,i is smooth manifold for i e I and n G N. Then following 
iei 
assertions hold. 

1. If K C X is a compact set and p: B —•> C r(X, Rn) is C1 -pseudo-
representation (1 < r < oo), then the set AK E = {F G B : pF (\)K S} 
is open in B. 

2. We suppose that 
a) B is second countable Banach space, 
b) r > max{0,n—k}, where k = mincodimS^ 

c) p: B -» Cr(X, Rn) is Cr-representation, 
d) evpnhKS. 

Then the set A^ = {F G B : pF &\K S} is dense in B. 

P r o o f . See [5; Theorem 2.114]. • 

LEMMA 3.4. Let n G N, K C R2n be a compact set and r > max{0,n—k}, 
i 

where k = min codim E? and S° = II---?. Then the set 
*e{i, . . . , i} l i=i l 

S°K = {FeVr+1(rec)(K): p F m E 0 } 

is open and dense in Vr
2

r
n

fl(rec)(i;.r). 

P r o o f . We will use the Abraham transversality theorem. Therefore we con­
sider the evaluation mapping 

<%: y2
r
n

+1(rec)(X) x K -> R2" x M2n(rec) 

evp(F(x,2/)) =pF((x,y)). 

We know that V^^recX-K") is a Banach space and for the proof of openness 
of the set S -̂ in V2

r
n

fl(rec)(X) it is enough to show that p is a C1-pseudo-
representation, i.e. the evaluation mapping is a C°-representation and the map­
ping 

pW: V2
r^(vec)(K) -> Cr~l (T(K),T(R2n x M2n(rec))) 

p^(F) = DpF 

is a C°-representation. 
M2n(rec) is the linear space. Thus Tx(M2n(iec)) = M2n(rec) for x G 

M2n(rec), therefore T(R2n x M2n(rec)) .= R2n x M2n(rec) x R2n x M2n(rec). 
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We have to show that the mappings ev and 

evpu>: Vr+1(Tec)(K) xKxR2n-+ R2" x M2n(rec) x K2" x M2 n(rec) 

evp(i) (F, (x, y), (u, v)) = (dF(x, y)(u, v), d2F(x, y)(u, v)), 

are C°-mappings. 

First we show that the mapping ev is continuous at any (F,(xljy.)) e 
F2

r+1(rec)(iir) x R2 n . Let us compute: 

I K ( G , (x2,V2)) - evp(F, (xvVl))\\R2nxM2n 

= \\(G(x2,y2)-F(x1,yi),dG(x2,y2)-dF(x1,yi))\\R2nxM2n 

= \\G(x2, %)2) - F(x2,2/2) + F(x2, n2) - F(Xl,yi)\\R2n 

+ || dG(x2,2/2) - dF(x2, t,2) + dF(x2, y2) - dF(Xl,Vl)\\M2n 

<_\\G(x2,y2) - F(x2,y2)\\R2n + \\F(x2,y2)-F(x1,yi)\\R2n 

+ || dG(x2, y2) - dF(x2, y2)\\M2n + || dF(x2, y2) - dF(x,, ^ ( J ^ 

< 2||C? — ^Hcjf^)-H 11^(^2, y2) — -^(a?!, yj)!!.-,.̂ -H || <LFC-P2- %) — ^-^C^x. -/^IIAT^-

Now for a given e > 0 we find 5 > 0, such that 

(G, (x2, V2)) G Vr+1(Tec)(K) xR2n , || (G, (x2, y2)) - (F, (x., Vl))\\c;(K)xR2n <S 

and the following inequalities hold: 

(i) 2\\G-F\\c;{K)<
1

3e, 

(») \\F(x2,y2)-F(x1,yi)\\R2n < \e, 

(iii) \\dF(x2,y2)-dF(x1,yi)\\M2n < I £ . 

The inequality (i) holds for St < \e. Since F G V2
r+1(Tec)(K) C Cr+1(K, R2n) 

and r + 1 >- 2, there exist S2 > 0 a S3 > 0 for which (ii), resp. (iii) holds. For 
S = m.m{S1,S2, S3} we have 

\hP(G,(x2,y2))-evp(F,(x1,yi))\\R2nxM2n <e. 

Therefore the mapping ev continuous. 
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Now we show that ev (1) is a continuous mapping. Let us compute: 

| |evp(i)(G,(x2,y2),(tt2,u2))-evp(i )(F,(x1,y1),(t.1,«1))| |R2nxMaB 

= II dG(x2,p2)(u2, v2) - dF(x1,y1)(u1,v1)\\R2n 

+ \\d2G(x2,y2)(u2,v2) - d2F(x1,y1)(u1,v1)\\M2n 

< \\dG(x2,y2)(u2,v2) - dF(x2,y2)(u2,v2)\\u2n 

+ || dF(x2,y2)(u2, v2) - dF(x2,y2)(ux,vx)\\^2n 

+ \\dF(x2,y2)(u1,v1) - dF(x1,y1)(u1,v1)\\u2n 

+ ||d2G(x2,y2)(n2,i;2) -d2E(x2 ,y2)(u2 , i ;2) | |M 2 n 

+ \\d2F(x2,y2)(u2,v2) - d2F(x2,y2)(u1,v1)\\M2n 

+ \\d2F(x2,y2)(u1,v1) - d2F(x1,y1)(u1,v1)\\M2n . 
Using the same considerations as above, we obtain that the mapping ev (1) is 
continuous. We have shown that 5^- is open in V2

r^l"1(rec)(K). Using the second 
part of the Abraham theorem, we show that 5^- is dense in V^1 (vec)(K). 

The assumptions a), b) of the Abraham theorem are satisfied. 
Now we show that also the assumptions c), d) of this theorem are satisfied. 
Let us verify the assumption c). We prove that p: V2+

x (rec) (K) -> CT (K, R2n) 
is a Gr-representation. We have proved that the mapping ev is continuous. Now 
we show that ev is a C1-mapping. One can see that: 

T>evp(F,(x,y))(G,(u,v)) 

= Jim \ (evp(F+tG, (x+tu, y+tv)) - evp(F, (x, y))) 

= lim i ((F+tG)(x+tu, y+tv)-F(x, y), d(F+tG)(x+tu, y+tv)- dF(x, y)) 
t—>o t 

= lim j (F(x+tu, y+tv)-F(x, y), dF(x+tu, y+tv)- dF(x, y)) 
t—>-0 i> 

= lim - (tG(x+tu, y+tv),t dG(x+tu, y+tv)) 
t—yO Z 

= (dF(x,y)(u, v)+G(x,y),d2F(x,y)(u, v)+ dG(x,y)(u, v)) . 

Since F,G G V^^ec^K) C Cl+1(K,R2n), so Devp is a continuous mapping 
and ev is a C1 -mapping. The assertion for r > 1 can be proved by induction. 

Let us verify d). It is sufficient to prove that ev rhS°. So we have to show 
that 

Image(Devp(F,(x,y))) +TeVp(F(X)2 / ) )S
0 = M2" x M2n(rec) 

for any (F,(x,y)) € V2
r+\iec)(K) x R2", for which evp(F,(x,y)) € E°. Now 

we show that for any w € K2" , A G M2n(rec) = ( „„ _ ) , A, C, D G Mn, 
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there exists a G € Vr
2
r
n
f"1(rec)(if) such that 

Devp(F,(x,y))(G,0,0) = (w,A). 

Let us compute: 

Devp(F,(x,y))(G,0,0) 

= il™, j(ev
P(F+tG> (^>y)-evp(E (x,y)))) 

= lim 1 ((F+«?)(x, y)-F(.r. y), d(F+tG)(x, y ) - dF(x, y)) 
t—y\j c 

= \imUtG(x,y),tdG(x,y)) 
t—^U L 

= (G(x,y),dG(x,y)). 

Therefore we need to find a map G such that 

G(x,y) = w, 

dG(x,y) = A. 

Obviously, the map G, defined as 

«<*•>-U-£ ) ( ; ) + - (-c-co)(;) 
for (p, q) e K C K2n , satisfies these conditions. Thus we have proved that 
evprfiE

0. D 

LEMMA 3.5. Let n e N, If C ffi_2n be a compact set and r > max{0,n—k}, 
s 

where k = min codim E*. and E2 = M £*•. Then the set 
JG{I,..,5} 3 ^=1 J 

^ = { ^ ^ ^ n + 1 ( r e c ) W : pF^^} 

is open and dense in V^^recX-K") • 

P r o o f . The proof is analogous to the proof of Lemma 3.4, because it can 
be shown that the set E2 has the same properties as E°. D 

THEOREM 3.2. Let n e N, K C R2n be a compact and r > max{0,n-k}, 
where k = min{k1,fc2} and 

s 

L = min codim E? and E° = I I S? , 
.7 = 1 

s 

k0 = min codim S*. and E2 = I I E2,. 
2 je{i,..,5}

 J ^ J 

J = I 
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Then the set 
SK = {F€V2

r+H^c)(K): pFtiZ} 

is open and dense in V2^
1 (iec)(K). 

P r o o f . If we use the notations from Lemma 3.4 and Lemma 3.5, we have 

$K = $K n $K ' 

Since the sets SK and SK are open and dense in V2^
l(j:eo)(K) and V2^

x(veo)(K) 
is a Banach space, the set SK is also open and dense in V2^

x (iec)(K). • 

DEFINITION 3.4. The equilibrium point x0 of the system x = f(x) is called 
hyperbolic if the Jacobi matrix JAx0) has not an eigenvalue with zero real part. 

COROLLARY 3.1. Let n G N, K C R2n be a compact set and 'mt(K) ^9. Let 
the assumptions of Theorem 3.1 hold and let F = (F1:F2) G SK C V2^

l(K). 
Then the system 

x = Fx(x,y), 

y = F2(x,y) 

has only hyperbolic singular points in 'mt(K). 

P r o o f . Prom definition of the set E it is clear that equilibrium point 
(x,y) G R2n is not hyperbolic singular point if and only if pF(x,y) G S. So, it 
is enough to show that (^F) - 1(S) = 0. 

Since F G SK, so pF rh S. Therefore 

Pj-ffiEj for J G { 1 , . . . , / } 

and 

Pp'foT.) for je{l,...,s}. 

Prom [3; Chap. 2, Theorem 4.4] it follows that (/9F)_1(E°) is a submanifold of 
R2n and 

codim((pF)-1(S J°))>2n + l for ; € { 1 i } . 

Therefore 
( p F ) - 1 ( E ° ) = 0 for je{l,...,l} 

and so 

w-1(so) = Uw1(--5) = 0. 
j=i 

Analogously one can show that (pF)~1(El) = 0 and so we have 
(pF)-1(E) = (pF)"1(S°) U (pF)-1(S i) = 0 • 

• 
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4. Second order ODE's defining reciprocal vector fields 

We shall study a special class of reciprocal vector fields on Rn x R n which 
represents a second order ODE on Rn . 

LEMMA 4 . 1 . The system 

i = y: , (4.D 
y = 9(x,y), 

where x,y G Rn and the point (0,0) G Rn x Rn is an equilibrium point, is 
reciprocal if and only if g(x, y) = — x + Dy + h(y), where D G Mn and h(y) = 

o(\\y\\). 

P r o o f . The Jacobi matrix of the system (4.1) has the form: 

0 E \ 

\9ix, y)) ,d

x9(x,y) dy 

and so the reciprocity condition for the system (4.1) is 

9x^y) = " E ' 

Therefore, if the point (0,0) G Rn x l n is an equilibrium point, then 

g(x,y) = -x + Dy + h(y), 

where h(y) = o(\\y\\). The converse assertion is obviously valid. • 

For planar system we can prove next assertion. 

LEMMA 4.2. If h e CX(R,R) and D + dh(y) ^ 0 for any y G R, then the 
system (4.1) does not have periodic trajectories. 

P r o o f . Since 

-x + Dy + h(y) '"•Иí&S) 4 y 
so 

divf(xiy) = D + dh(y)^0 

and the assertion follows from the Bendixon criterion. (See e.g. [4; Theorem 1.8.2]). 

• 
LEMMA 4.3 . If h G C ^ R ) and Dy2 + yh(y) < 0 for all y G R, then 
the point (0,0) is a global attractor of the system (4.1), i.e., if (x(t),y(t)) is 
arbitrary solution of the system (4.1), then lim (x(t),y(t)) = (0,0) . 

P r o o f . Let 
H(x,y) = \(x2+y2). 
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If (x(t),y(t)) is a solution of the system (4.1), then 

^ (H(x(t), y(t))) = x(t)x(t) + y(t)y(t) 

= x(t)y(t) + y(t)(-x(t) + Dy(t) + h(y(t))) 

= D(y(t))2 + y(t)h(y(t))<0 

and so 

±(H(x(t),y(t)))<0 

for all t G R. This yields that the mapping H is decreasing along any trajectory 
of the system (4.1). Therefore the point (0,0) is the global attractor of the 
system (4.1). • 

Remark 4.1. If h G C^R-R) and Dy2 + yh(y) > 0 for any y G R, then 
the point (0,0) is the global repeller of the system (4.1), i.e., if (x(t),y(t)) is 

an arbitrary solution of the system (4.1), then the function (x2(t) + y2(t))* is 
increasing. 

Remark 4.2. If h G CX(R, R) and Dy2 +ydh(y) ^ 0 for any y € R , then the 
system (4.1) has not periodic trajectories. 

LEMMA 4.4. The eigenvalues of the linearisation matrix at point (0,0) G 
Rn x Rn of the system (4.1) has the following form: 

\ 2 - 2 ' 

where ji are eigenvalues of matrix D. 

P r o o f . It is clear that the linearisation matrix of the system (4.1) is the 
matrix 

(4.2) <-°* D 
and its determinant is equal 1, i.e. this matrix is regular. Now let us solve the 
characteristic equation: 

* ( - ^ D-XE)-"- <4'3> 
After some calculations and taking into account that the matrix (4.2) is regular, 
one can see that the equation (4.3) can be rewritten as 

d e t L D - (л + y ) £ = 0 . 
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Now it is clear that ji = (A + j) is an eigenvalue of the matrix D, where A is 
an eigenvalue of the matrix B. This means that any eigenvalue /z of the matrix 
D defines two eigenvalues 

џ±ҳfџ2 

A l , 2 " 2 

of the matrix D. • 

COROLLARY 4.1. If the matrix D is regular, then the matrix (4.2) has not 
eigenvalues with zero real part. 

COROLLARY 4.2. If the matrix D is regular, then the point (0,0) G Rn x Rn 

is the hyperbolic equilibrium point of the system (4.1). 

DEFINITION 4.1. The equilibrium point x0 of the system x = f(x) is called 
sink (source) if the Jacobi matrix JAx0) has all eigenvalues with negative 
(positive) real parts. 

COROLLARY 4.3. If the matrix D has all eigenvalues with negative (positive) 
real parts, then the point (0,0) G Rn xRn is the sink (source) of the system (4.1). 

LEMMA 4.5 (WAZEWSKI INEQUALITY). If D G Mn and there exists 
a, b G R such that a ^ 3?(A0 ^ b for any eigenvalue \x of the matrix D, 
then there exists a base B of Rn such that 

a\\x\\2

B^(Dx,x)B^b\\x\\2

B, 

where \\x\\B = \/(x,x)B. 

P r o o f . See [5; Lemma 3.82]. • 

LEMMA 4.6. Let the reciprocal system have the form 

" = 2 / ' (4-4) 
y = -x + Dy + ef(y), 

where x,y G R n , f(y) = o(\\y\\) eCl(Wl,Wl), e is a parameter and D G Mn 

such that 3?(/i) < —a < 0 for any eigenvalue ji of the matrix D. Then for any 
compact set K C R2 n the point (0,0) is the attractor of the system (4.4) for 
e G (0,£0(K)) with respect to K, i.e. if (x(t),y(t)) is a solution 0/(4.4) with 
(x(0),y(0)) eK, then lim (x(t),y(t)) = (0,0). 
v 7 n-»oo v 7 

P r o o f . Let r G R be such that K C 5(0,r) = {(x,y) G Rn x Rn : 
\\X\\B + WVWB ^ r l * We w i ^ show that there exists such C > 0 that for y, 
WVWB ^ r5 there holds 

l l / (y) l l B <c|MI B , c * > o . 
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Since f(y) = o(\\y||) e C1 (R n , IT), 

fk(y)-fk(0) = fdfk(ty)ydt 
0 0 

JţҗMЊ.* 
r. г—•*• 

= îlУifҗh(ty)dt, Д(0) = 0, 
г = l л 

for k G {1,..., n}. Therefore we obtain 

fk<v) = jbvifjj-fktoi)4t-

i = l Q 

1 

/
o 

Q-fktty) d*> t , fcG{l , . . . ,n}, 
o 

are continuous and therefore there exist constants Cf{r) > 0 such that 

The functions 

sup 
yeв(o J&ҷ d««Cf(г). 

Using the previous inequality we obtain that 

I 

IШI = fк(ty) àt 
l—l Q 

n 1 n 

*Y,\VÍ\\ fir**™** ^Ei^řw 
1=1 ' ^ ^ i = l 

^ n max lyj max (7*(r) = ||t/ 
2E{l,...,n} iG{l,...,n} 

where || • || is the maximum norm on W1. Let 

гЄ{l,...,n} 

C*(r)=n. max Cf(r). 
2E{l,.-.,n} 

The equivalence of all norms on W1 yields the existence of constants qx > 0, 
q2 > 0 such that 

? l l l y | l s < IMImax < ?2.M.B 
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and so we háve 
\h(y)\<\\y\UxC

k(r)^q2\\y\\BC
k(r) 

for k G {1,..., n}. Therefore 

I I / ( » ) H B < 7 - | | ( / I ( » ) . - . / » ( » ) ) L « ^ ^ I I » I I B I P ™* Ck(r). 
Hl H\ fc6E{l,...,n} 

If 
C=^- max Ck(r), 

qx лє{i,...,n} 

\\î(y)\\в^C\\y\\в-

we define the mapping 

V: Жn x R n - ) R , 

V{x,y) = (x,x)в + (y,y)ß. 

Now we show that for an arbitrary compact set if c Rn x Rn there exists 
an e0(K) > 0 such that arbitrary solution cp(t) = (x(t),y(t)) of the system 
(4.4) with e G (0,eQ(K)) and (p(0) = (x0,y0) E K, is the function V(ip(t)) 
decreasing. So the point (0,0) is the attractor. Let us compute 

iV&(t)) = ±V(x(t),y(t)) = ±(x(t),x(t))B + ±(y(t),y(t))B 

= 2[(x(t),x(t))B + (y(t),y(t))B] 

= 2[(x(t),y(t))B+(y(t),-x(t)+Dy(t)+ef(y(t)))B] 

= 2[(y(t),Dy(t))B + (y(t),ef(y(t)))B]. 

Since Jft(li) < —a for each eigenvalue /x of the matrix F), using the Wazewski 
inequality we obtain 

d 
TV(ip(t)) <_2[-a\\y(ť)fв + (y(t),єf(y(t))) 
àt B\ 

^2[-a\\y(t)\\l + \\y(t)\\B\\ef(y(i))\\B] 
<2[ -a | | y ( t ) | | | + eC||i /( t) | | | ] . 

This yields 

fv(<P(t))<* 
for e < gr, t G M, i.e the function V((p(t)) is decreasing on R. D 
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L E M M A 4.7. Let the reciprocal system have the form 

x = y, , 4 5 x 

y = -x + Dy + f(y), 

where x,y G Rn , f(y) = o(\\y\\) G Cx(Rn ,Rn) and D G Mn such that »(//) < 
—a < 0 for any eigenvalue \i of the matrix D. Then there exists r G R such 
that, for the set B(0,r) = {(x,y) G Rn x Rn : ||x||B + ||y||B < r } , the point 
(0,0) is the attractor. 

P r o o f . Define the mapping 

V: Rn x R n 4 l , 

V(x,y) = (x,x)B + (y,y)B. 

We will show that there exists r G R such that for arbitrary solution 

<p(t) = {x(t),y(t)) 

of (4.5) with (p(0) = (x01y0) G -B(0,r) the function V(y>(£)) is decreasing. In 
the proof of Lemma 4.6 we have shown that 

ftV(x(t),y(t))^2[-a\\y(t)\\l + \\f(y(t))\\B\\y(t)\\B] (4.6) 

and also that 
1 

n n Q 

fk(y) = E y i M > where s*(») = y o^/kity)dt 

2 = 1 0 Z 

is a continuous function for i j ' G { l , . . . , n} and 

fl?(0) = 0 for i j G { l , . . , n } . 

Since / = o(||y||), so 

_d_ 

dVi 
7,(0) = 0. 

and therefore 
l 

/£/.(P)d.-0. 

From these properties of &*(.y) there follows the existence of rf € R for an 
arbitrary £ > 0 such that 

gk
i(y)<£ for all j , with ||y||s < r\ . 
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If 
r = min rf 

then 
<7?(v) < e 

for all z,fc G {l---->ft} and all y with ||y||B < r. Similarly as in the proof of 
Lemma 4.6 one can show that 

ll/MII* < ;HMIB 
#2 

for all y with |M|g < r. Using (4.6) we have 

d ^V(x(t),y(t)) <2[-a\\y(t)\\l + ^e\\y{t)\\2

B] 

for all y with |M|g < r. If 

Є < 

?1 

then 

--V(£(£),y(£)) < 0 for all t G R. 
at 

Therefore the point ( 0 , 0 ) e R n x Rn is the attractor of the set £(0, r ) . • 

Now we will study more general reciprocal systems. 

LEMMA 4.8. Let the reciprocal system have the form 

x = By , , 
(4.7) 

y = -B*x + Dy + f(y), 

where x,y G Rn , B,D G Mn are regular matrices and f(y) = o(||y||). If 
there does not exist w G Rn with \\w\\ = 1 such that (w,Dw) = 0 and 
(w,B*Bw) < 0, then the point (0,0) G Rn x Rn is the hyperbolic equilibrium 
point of the system (4.7). 

P r o o f . We have to show that the Jacobi matrix of the system (4.7) at the 
point (0,0) G Rn x Rn has not eigenvalues with zero real parts. The Jacobi 
matrix has the form 

V-в* DF 
and since B, D are regular matrices, it is clear that 

«(-°B- D)*<> 
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Therefore A = 0 is not an eigenvalue of the Jacobi matrix and thus the matrix 

( * " • E) 
is well defined and regular for any eigenvalue A of the Jacobi matrix. The equa­
tion 

d e t ( ~ ^ D-XE)=° 
is equivalent to the equation 

det\{B* £:)('& D-XE)=°-
After some calculations we can see that it is equivalent to the equation 

det(X2E-XD-B*B) =0. 

The number A is a solution of this equation if and only if there exists w € Rn , 
||u»|| ^ 0, such that 

(X2E -XD- B*B)w = 0. (4.8) 
We can choose w with ||u>|| = 1. Prom (4.8) it follows that 

(w, (X2E-XD-B*B)w) = X2(w, w) - X(w, Dw) - (w, B*Bw) = 0, 
i.e. 

A2 - X(w, Dw) - (w, B*Bw) = 0. 
(4.9) 

The eigenvalues of the Jacobi matrix have to satisfy (4.9) for some w G W1 with 
11it;11 = 1. If there exists an eigenvalue with zero real part, then there exists a 
w eRn with ||tv|| = 1 such that 

(w,Dw) = 0 

and also 

(w,B*Bw) < 0 . 

It is a contradiction with the assumption. • 

LEMMA 4.9. Let the reciprocal system have the form (4.7). If the matrix D is 
negatively definite (D is positively definite) and 

(w, Dw)2 - 4(w, B*Bw) ^ 0 

for an arbitrary w eW1 with \\w\\ = 1, then the point (0,0) G W1 x Rn is the 
sink (source) of this system. 

P r o o f . From the proof of Lemma 4.8 it follows that eigenvalues of the 
Jacobi matrix satisfy equation (4.9) and so 

_ (w, Dw) _ y/(w, Dw)2 - 4(w, B~B~7j 
A i ,2 — ~l > (4-^uJ 
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where w G R n , | |tu|| = 1. Therefore, if the assumptions are satisfied, then all 
eigenvalues of Jacobi matrix are negative (positive). Therefore the point (0, 0) G 
R n x R n is the sink (source) of this system. • 

5. Pseudogradient vector fields on manifolds 

In this part we will use the notification and results from differential topology, 
which can be found in [3; Chap. 1]. For convenience of reader we just recall some 
definitions. 

DEFINITION 5.1. A vector field F G Vr(X), where 0 ^ r ^ oo, is called the 
gradient vector field if there exists a mapping G: X -> R such that F(x) = 
VG(x) for all x G X. 

Denote by L(TX(X), TX(X)) the set of all linear mappings of TX(X) to TX(X) 
and 

L(X,X)= \J L(TX(X),TX(X)) 
xex 

DEFINITION 5.2. If A G L(TX(X),TX(X)). Then A is called positively (neg­
atively) definite if (v,Av)x > 0 ((v,Av)x < 0) for v G TX(X), v ^ 0X. 

DEFINITION 5.3. A vector field F G Vr(X), where 0 ^ r ^ oo, is called the 
pseudogradient if there exists A G L(X,X) and a mapping G: X -» R such 
that F(x) = A(x)VG(x) for all x G X. 

Now we can formulate theorem about the non existence of periodic trajecto­
ries of a pseudogradient vector field on a manifold. 

THEOREM 5.1. Let X be a smooth manifold and F G Vr(X), where 0 ^ 
r ^ oo, is a pseudogradient vector field such that F(x) = A(x)VG(x), where 
A(x) G L(Tx(X),Tx(X)) is positively definite for all x G X. Then the vector 
field F does not have periodic trajectories. 

P r o o f . Let <\>: R —> X be a periodic integral curve passing through the 
point x0 G R, i.e. 

(f>(0) = x0, 

Dt cj)(et) = A((j)(t))VG((p(t)) for all t G R. 
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We will show that the mapping G o 0: R —> R is nondecreasing. Let us compute 

ft[Go<t>](t) = {VmGoDtcl>)(et) 

= DmG(A(<f>(t))VG(<f>(t))) 
= {VG(4>(t)), A(«/>(t))VG(0(f)))0W ^ 0 for all t € R. 

Thus the mapping G o cf>: R —>> R is nondecreasing. 

Since 0 is a periodic integral curve, there exists t0 G R such that 

0(0) = 4>{t0). 

Thus 
G(0(O)) = G(</>(t0)) • 

Therefore G o <f> is nondecreasing and we obtain 

G((j>{0)) = G(4>{t)) for 0 ^ t $C t0 . 

So 
jt[Go4>](t) = 0, 

i.e. 
<VG(0(t)),A(0(t))VG(0(O))0( t )=O for 0 < i < t 0 . (5.2) 

Form (5.2) and the fact that A is positively definite it follows that 

VG (<£(*)) = 0 for ( K * ^ * 0 . 

Therefore 
F(xo) = A(a;o)VG(x0) = 0, 

and so the point x0 is an equilibrium point and </>(£) = x0 for all t E R . Now it 
is clear that <f>(t) is not periodic integral curve. • 

COROLLARY 5.1. Let X be a smooth manifold and F G Vr(X), where 0 ^ 
r ^ oo, is a pseudogradient vector field such that F(x) = A(x)VG(x), where 
A(x) G L(Ta.(K'),Tx(X)) is negatively definite for all x G X. Then the vector 
field F does not have periodic integral curves. 
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